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Abstract

Patent applications and acceptances are a useful domain for assessing the state of
innovation across various fields, including biomedical sciences, artificial intelli-
gence, software services, and more. The number of patents filed per year has nearly
doubled since 2000 with over 650,000 patent filed in the 2020 fiscal year. Until
now, no large-scale corpus of patent filings exists for ML and NLP practitioners
to leverage. The Harvard USPTO Patent Dataset (HUPD), consisting of over 4.5
million English-language utility patent applications filed between 2004 and 2018
is the first example of such a corpus. Unlike other, smaller but similar corpora, this
dataset contains the inventor-submitted versions of patent applications as opposed
to the final versions of granted patents, allowing for the usage of NLP techniques at
the time of filing. Taking advantage of this rich data, we vary the metadata inputs to
a number of NLP models to conduct an ablation study on the binary classification
of filed patents (i.e. acceptance or rejection). Our best metadata-augmented model
achieves 63.32% binary classification accuracy, outperforming the best language
models from the HUPD paper [1] as well as our baseline models. Yet, for some
text fields our best model still cannot outperform bag-of-words models, likely due
to specific qualitative linguistic features of these fields.

2 Introduction

Patents are essential for assessing the level of technological innovation across and within modern
fields, providing a valuable source of information for evaluating growth, activity, and transformation
in emerging and traditional industries. The number of patents filed per year to the United States
Patent and Trademark Office (USPT) has nearly doubled since 2000, with over 650,000 patents filed
in the 2020 fiscal year alone, making the study of patents more important than ever before.

Yet, the absence of a “large-scale, well-structured, and distilled patent dataset" has been a significant
impediment to this goal, making computational, quantitative research approaches to understanding
patent acceptances incredibly difficult. Consequently, the machine learning (ML) and natural language
processing literature (NLP) on this topic is very sparse. However, the introduction of the Harvard
USPTO Patent Dataset (HUPD) addresses this deficit, providing comprehensive information on
more than 4.5 million patent application documents from 2004 to 2018, substantially more than the
pre-existing patent datasets (see Appendix Figure 6 for an overview of these) [1].

The HUPD provides an all-encompassing and holistic view of patent applications at the time of filing
through their lifespan, allowing for flexibility and control in developing ML and NLP models. In
particular, unlike other patent datasets, the HUPD has access to both patents that were accepted and
rejected alike in the condition in which they were first filed, thereby enabling the binary classification
analysis of patent decisions. Solving such a problem would provide insight into the importance of
various components and data fields when filing a patent application. Moreover, the dataset contains
critical information that is otherwise not easily available, such as filing data, IPC codes, examiner
information, and more. This metadata provides an opportunity to enhance ML and NLP models
alike as they feed off of the additional data; further, this allows for the visualization and analysis
of acceptances and rejections based on completely new data, providing insight into the relative
importance of each field.

3 Related Work

Prior to the introduction of the HUPD, the existing patent datasets in the NLP literature were designed
for two primary tasks: patent subject classification (see Larkey, 1999; Chu et al. 2018; Devlin et
al., 2019; Zaheer et al. 2020) and patent summarization (see Sharma et al. 2019). For example,
the dataset introduced in Sharma et al. (2019) [2], is a collection of all the successful patents
stored within the Google Patents Public Dataset. This dataset contains strictly accepted patents and
contains fewer metadata and text fields than the HUPD. Indeed, to the best of our knowledge (and
the authors of the HUPD study), the HUPD was the first paper within NLP to “introduce the patent
decision classification task" and discuss the patterns in patent decisions from a textual perspective
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[1]. Consequently, this work draws inspiration from and works to extend the original HUPD study.
The authors similarly tackle the binary classification problem and run baseline tests with a variety of
different methods, including traditional statistical methods as well as state-of-the-art Transformer
models.

In order to integrate metadata information into our neural model, we looked within the NLP literature
for similar architectures. Ostendorff et al. 2019 proposes a way to enrich BERT hidden states with
knowledge graph embeddings for classifying book genres [3]. The authors create an intermediate
representation formed by contatenating BERT’s final hidden state output with knowledge graph
embeddings. They then pass this representation through a projection layer and a 2-layer multilayer
perceptron (MLP) before a prediction head. Their results show a general improvement in performance
over baseline BERT sequence classification.

4 Approach

4.1 Main Approach

Our main approach in this paper uses a natural language model to encode the patent text stream
and combines it with a neural network embedding of the patent metadata. We then compare this
metadata-augmentation approach to the base language models used in the original HUPD paper [1].

4.1.1 Natural Language Model

For our natural language model, we utilize pre-trained DistilBERT (distilbert-base-uncased)
and RoBERTa (roberta-base) models available through HuggingFace 1. We then finetune these
models to fit our task. While the reference paper only focused on the abstract and the set of claims,
we make use of the additional rich text fields, such as description and summary.

We make use of the BERT class of models for their pre-trained robustness and the textual nature
of the various data fields for our classification task. They are particularly good at tasks in which
word context is important, returning different embeddings for words depending on their context,
which is critical for the dissection of patent applications. In particular, DistilBERT, while maintaining
approximately 95% of standard BERT’s performance, runs 60% faster using 40% less parameters,
leaving us with more time for training more models in the ablation study. Finally, RoBERTa, which
is more robust than BERT due to making use of more training data, introduces dynamic masking and
removes next sentence prediction (NSP) from BERT’s pre-training to improve the training procedure.
This, in theory, increases the accuracy with which we predict patent acceptances.

However, since some of the text fields exceed the maximum input sequence length for the BERT
family of language models of 512 tokens – for instance, the claims field has an average of 1,272 tokens
– we also implement a Longformer model. The Longformer was introduced in Beltagy et al., 2020
as a way to apply Transformer architectures to long text sequences [4]. Transformer self-attention
in models like BERT or GPT scales quadratically with sequence length, making it computationally
infeasible for long sequences. The Longformer, by contrast, implements local windowed attention
together with global attention on pre-selected indices. Since the number of selected indices is typically
signicantly less than the sequence length, the overall complexity is still O(n). HuggingFace provides
a Longformer implementation from Allen AI that supports a maximum sequence length of 4,096
tokens.2

4.1.2 Metadata Augmentation

Each patent comes with 20 metadata fields in addition to the actual text of the patent. Many of these
fields are irrelevant for learning as they’re unique to each individual patent. Other fields may carry
signal, but we initially did not know which would be helpful for classification. In order to select
relevant metadata fields, we did data exploration on the distributions of accepted and rejected patents.
Specifically, we observed that acceptance criteria varies substantially over time and by field as well

1For DistilBERT, see https://huggingface.co/docs/transformers/model_doc/distilbert; for
RoBERTa, see https://huggingface.co/docs/transformers/model_doc/roberta.

2https://huggingface.co/allenai/longformer-base-4096
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as based on the chosen patent examiner – see Figure 1 for acceptances rates broken down by year and
examiner – we worked to introduce these additional variables in our model.

Figure 1: Acceptance rates by year and by examiner. These figures are created using the balanced
sample as described below. The acceptance percent is defined as the number of accepted patents over
the sum of accepted and rejected patents, times 100.

Inspired by [3], our metadata-augmented models learn 128-dimensional embeddings for each field of
interest. Embeddings are fit from scratch using the same training corpus as is used for finetuning. We
concatenate these embedding outputs to the final hidden state output of a language model to form an
intermediate representation, which has shape (batch size, 2 ∗ 128 + 768 = 1024). Next, we learn a
2-layer MLP with 728-dimensional hidden linear layers, which takes the intermediate representation
as input. Finally, a 2-class prediction head outputs the probability that the patent was accepted.

In addition to the learned dense representations, we calculate a target mean-imputation encoding for
the examiners, that is, given the categorical examiner x and target decision y variables, we replace
each distinct examiner j in x with its conditional mean of y: ȳj =

∑n
i=1

1xi=jyi

1xi=j
. Examiners with

fewer than 10 patents are replaced with the overall, unconditional mean. To avoid data leakage, all
estimates are obtained “out-of-fold", i.e. for a given project in fold 1, the mean encoding is calculated
based on the average of the project outcome in folds 2-5.

To understand the effect of metadata augmententation, we perform an ablation study where we
iteratively added embeddings for patent examiners and patent filing dates by year. Due to compute
constraints, we used only DistilBERT for our language model when ablation testing. From the HUPD
paper we note that DistilBERT, BERT, and RoBERTa perform within a percentage-point accuracy
of one another on the classification task [1]. It remains as future work to see if BERT or RoBERTa
could better leverage the metadata-enhanced architecture to improve performance on the task. Figure
2 shows a diagram of the metadata-enhanced model architecture.

4.2 Baseline

We utilize two sources for our baseline. First, we compare the performance of our preferred models
against naive, non-natural language classification methods, such as logistic regression or Naive Bayes.
In the reference paper, these methods, in particular Bernoulli Naive Bayes, actually outperformed the
natural language models on the claims text stream.

Second, we treat the best performing models from the original HUPD paper as baseline results to
improve upon. Specifically, the authors focused on the abstract and claims text streams, where they
obtained their best results from a fine-tuned DistilBERT (61.83% accuracy) and a Bernoulli Naive
Bayes model (64.37%).

5 Experiments

5.1 Data

We are using the Harvard University Patent Dataset (HUPD), which contains approximately 4.5
million patent applications [1]. A patent formatted to the USPTO specifications contains the following
sections:
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Figure 2: Architecture of our Metadata-Augmented Model.

1. Abstract: A brief summary of the invention in broad terms, not exceeding 150 words.
2. Background: Describes the general context in which the invention takes place.
3. Description: The main technical disclosure of the patent, describing the invention in detail.
4. Summary: A condensed version of the description field.
5. Claims: The most important part of the patent from a legal standpoint, which sets out the

limits of intellectual property claims for the invention.

For each application, the entire text is available, broken into abstract, background, claims, description,
and summary fields. Of these, the main text fields are the abstract (average 132 tokens), the claims
(1,272), the background (627), the summary (918), and the description (11,856). Metadata for
each application also includes the application invention type, the application examiner’s full name,
the International Patent Classification (IPC) code, which classifies the application according to the
technical fields to which it pertains. Of particular interest to us is the binary version of the decision
class, which has the continuation application phase removed as in the original paper. The USPTO
permits a lengthy appeals process where patents may be accepted after an initial rejection; for
simplicity we ignore these cases. See Figure 3 for a visual representation of these fields.

Figure 3: Example of a patent application in our dataset.

Given that the full panel of data is approximately 370 GB, far exceeding the available disk space on
our virtual machines, in addition to CPU and GPU-RAM limitations, we selected a subset of patent
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applications according to the International Patent Classification (IPC) category code “G06F-17/30".
This is the largest category code in the data, including about 30,000 patents from 2005 to 2017,
representing all patents for inventions relating to “information retrieval; database structures therefore"
[5]. We chose this category as it was the largest and the acceptance dynamics match that of the greater
sample well, as can be seen in Figure 4.

Figure 4: Acceptance rates by sample.

As we are completing a binary classification task, we proceed with our analysis on a perfectly
balanced version of this subset. This allows us to justifiably compare our accuracy to a 50% chance
baseline, as well as to the models from the HUPD paper, where the authors also balanced their data
[1]. Thus, this final sample includes approximately 13,000 accepted and rejected claims, respectively.

5.2 Evaluation method

For training, we use binary cross entropy loss with mean reduction, defined as

l(x, y) =

N∑
n=1

1∑N
n=1 wyn

ln

such that ln is given by

ln = −wyn
log

exp(xn,yn)

exp(xn,0) + exp(xn,1)

where x is the input, y is the target, w is the weight, and N represents the batch size. After balancing
our data sample above, we do not impose any weighting, thus w = 1 for all n. The pytorch
implementation of this loss is used.3 We use binary accuracy to evaluate our predictions. In addition,
we also calculate a confusion matrix post-prediction.

5.3 Experimental details

We run our experiments using the Azure setup provided by the CS 224N course, which means a
Standard NC6s v3 machine (6 vCPUs, 112 GB RAM, running one NVIDIA Tesla V100 GPU with
16 GB of memory). We jointly develop model code using a Github repository forked from the HUPD
paper.

For our language models, we adopted open-source code from HuggingFace with the following
high-level specifications:

1. RoBERTa: 12 layers, 768 hidden size; 12 heads; 125 million parameters;
2. DistilBERT: 6 layers; 768 hidden size; 12 heads; 66 million parameters.

Other hyperparameters will be the HuggingFace defaults unless specified otherwise. For our Naive
Bayes bag-of-words model we adapted the Bernoulli Naive Bayes implementation from sklearn,4

3See https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html.
4https://scikit-learn.org/stable/modules/naive_bayes.html
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with α = 1. We trained all language models with a batch size of 64, except where CUDA memory
constrained us – we point these cases out explicitly in our results tables. We fine-tuned for 10 epochs.
We used AdamW to set the learning rate,5 and reduced the default parameters for more stable updates
(lr=2e-5, eps=1e-8). Vocabulary size was limited to 10,000 for all models, and tokenizer max
length was 256 except where stated otherwise.

5.4 Results

Table 1 compares our best results with baseline models from the HUPD paper (applied on our sample).

Table 1: Comparison of our best models to the baselines from [1].

Model Batch Size Validation Accuracy (%)

Abstract Claims
Baseline DistilBERT 64 60.82 61.83

RoBERTa 32 60.74 61.76
Logistic Regression 64 59.31 59.31
Bernoulli Naive Bayes 1 61.54 64.37

Metadata-Augmented DistilBERT 64 63.08 63.32

Table 2 shows the results of ablation studies we conducted to understand the effect of metadata
augmentation. As we expected, adding metadata improves on the performance of language models
alone. The more metadata we added, the better the models did, with marginally diminishing returns.
We observe that our feature engineering efforts to encode the imputed mean of each field also brought
small improvement.

Regrettably, our Longformer implementation was unable to stably learn to a high accuracy, so we
omit the results. Due to CUDA memory constraints, we had to reduce our batch size to 8 in order
to train. This resulted in an infeasible learning setting given our limited Azure credits. Future work
should explore the performance of the Longformer with sufficient computing resources.

Finally, Table 3 compares the results of our best model, DistilBERT with full metadata-augmentation,
on the five main text inputs against Naive Bayes. The model performs best on all fields other than the
claims section. Once again, given the long nature of these sections – particularly the description – we
would have wished to take advantage of the Longformer implementation here, but ran into memory
issues. In addition, we were unable to train the metadata-augmented DistilBERT with a batch size of
64 and a maximum input sequence of 512. As a result, we were forced to truncate these input streams
after the 256th unique token, discarding valuable information. In comparison, as Naive Bayes was
implemented as a bag-of-words model with a 10,000 vocabulary size, it was able to ingest much
more of the text than the language models.

Table 2: Ablation studies to understand the effect of metadata augmentation. Every model was run
with a max input length of 256 for 10 epochs. The best validation accuracy for each model is reported.

NLP Model Metadata Validation Accuracy (%)

Abstract Claims
DistilBERT None 60.82 61.83

Examiner ID 62.01 62.38
Examiner ID + Year 62.11 63.30
Examiner ID + Year + Imputed Mean 63.08 63.32

None Examiner ID + Year 57.59
None Examiner ID + Year + Imputed Mean 58.32

5See https://huggingface.co/docs/transformers/main_classes/optimizer_schedules#
transformers.AdamW
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Table 3: Performance of main model across different input text streams compared to Naive Bayes.

Model Validation Accuracy (%)
Abstract Claims Description Summary Background

DistilBERT Examiner ID + Year + Imputed Mean 63.08 63.32 62.46 62.28 62.34
Bernoulli Naive Bayes 61.54 64.37 61.05 61.49 59.31

Figure 5: Confusion matrix for our best performing model, with 63.32% classification accuracy.

6 Analysis

Figure 5 shows the confusion matrix of our best model. We note that misclassification is some-
what balanced, with a comparable number of false positives (652) as false negatives (751). We
are slightly more accurate on ground-truth accepted patents ( 1288

1288+652 = 66.39%) than rejected
patents ( 1134

1134+751 = 60.16%). Related, our precision ( 1288
1288+652 = 66.39%) is better than our recall

( 1288
1288+751 = 63.16%) for identifying accepted patents.

In our result section, we noticed that the bag-of-words models were only able to outperform language
model-based approaches even with metadata augmentation on the claims text, but not the rest of the
application. We think this result can be explained by some of the qualitative linguistic features of the
claims section:

• Technical jargon: Patent language tends to include long sequences of technical words,
which is unusual for most English text. An example sentence from a patent for “modified
human growth hormones” reads: “Stimulated T-cell proliferation is measured using 3H-
thymidine (3H-Thy) and the presence of incorporated 3H-Thy assessed using scintillation
counting of washed fixed cells.” We suspect that bag-of-words models can outperform
pretrained language models in these cases since technical words like “thymidine” are likely
not seen often during pretraining tasks.

• Legal jargon: Patents are legal documents, so the language therein is not free-formed.
Instead, it’s crafted carefully for legal interpretation, resulting in abnormal English lan-
guage. Previous work, such as Limsopatham 2021, identify difficulties in legal document
classification using langauge models, which supports this thesis [6].

• Non-grammatical format: Patent claims especially are filled mostly with enumerated lists,
English descriptions of tabular data, and generally many sentence fragments. We suspect
BERT’s masking pretraining task does not prepare it well for language of this form.

• Long sequences: As we stated in 5.1, the claims, background, and description sections
of patents are long on average. Claims average 1,272 tokens, backgrounds average 627
tokens, and descriptions average 11,856 tokens. All of these lengths are longer than BERT’s
maximum sequence length of 512. Bag-of-words models, by contrast, can support much
larger “sequence” sizes by ignoring sequences altogether and just taking as many words as
the maximum vocabulary size allows. Future work should explore whether this limitation
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holds for the Longformer model as well, which can support attention on entire claims and
background sections.

Given these results, we suspect that future work could improve on our results with an ensemble model
combining bag-of-words, metadata embeddings, and language model encodings of other text sections,
such as the abstract or the description.

7 Conclusion

Taking advantage of the novel HUPD dataset, we specified a metadata-augmented natural language
model that was able to out-perform the baseline language models from the reference paper on all text
fields. Specifically, for the abstract field, this model performed the best relative to all other models,
highlighting the importance of incorporating metadata into the language model. However, on the
claims section, our model was not able to surpass the bag-of-words model. We argue that this can be
explained by distinctive attributes of this text field: the high frequency of technial and legal jargon
as well as the non-grammatical format and long sequences. Moreover, due to memory and compute
constraints, we were forced to truncate input text sequences (at 256 tokens) and were unable to train
the Longformer method on a reasonable batch size. We believe that future work – less constrained by
these technical specs – should take advantage of the rich nature of this text, specifying models with
the capacity for much longer text streams and/or ensemble methods that are able to combine insights
across these text streams.

Finally, while this paper specifically focused on the area of US patent applications, the possibilities
unlocked from the introduction of this dataset have wide-reaching implications. The obtained
fine-tuned natural language model can be used to enable transfer learning to other highly-structured
governmental application contexts. For instance, such a model could be generalizable to the context of
scientific grant proposals, where researchers must submit an application to a US governmental agency
in order to receive funding. Moreover, the findings from the patent application acceptance model
have the potential to impact the larger literature on innovation, e.g. what makes a successful product,
and, outside of a research context, inform future innovators on how to prepare more successful filings.
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A Appendix

Figure 6: Figure from the HUPD paper, comparing their dataset to existing patent datasets for NLP.

Table 4: Model performance on a smaller sample. Because of the aforementioned compute struggles,
we chose an even smaller sample and ran a lot of models on this sample to better understand their
dynamics. This is why performance here is slightly higher. We think that natural language models
were better able to rote memorize in this case.

Metadata-Augmented Model Batch Size Validation Accuracy (%)
Abstract Claims Description Summary Background

Yes DistilBERT 64 63.29 66.08 67.34 64.34 64.34
No DistilBERT 64 62.94 65.08 66.74 65.39 64.34
No RoBERTa 32 50 65.74 66.44 65.34 50
No Logistic Regression 64 54.55 56.29 55.24 59.79 60.84
No Bernoulli Naive Bayes 1 62.24 67.03 66.78 63.99 60.48
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