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Abstract

Neural networks were introduced for dependency parsing by Chen and Manning
(2014) and through using neural networks, they were able to to make massive
strides in transition-based dependency parsing. However, these transition-based
dependency parsing mostly rely on greedy decoding at inference stage which
means that if the model makes an error early on, then it parser will continue to
diverge further and further away from the ground truth. Thus, we reconstruct a
reinforcement learning algorithm to perform non-greedy decoding for transition-
based parsers first shown by Shen et al [2016]. Our RL-based parser was tested on
the English Penn Treebank (PTB) dataset and it achieved a 89.2% accuracy and
improves by about 0.4 percentage points over a supervised dependency parser.

1 Key Information to include

• Mentor: Allan Zhou

• External Collaborators (if you have any): None

• Sharing project: No

2 Introduction

Today, one of the most important tasks in Natural Language Processing is definitely dependency
parsing. It has been recently shown that dependency relationships can actually improve performance
on a variety of NLP tasks. For example,in 2014, Levy and Goldberg showed that word-embeddings
created with dependency-based contexts are less topical and exhibit more functional similarity than
the original skip-gram modeling. Furthermore, in 2015, incorporating dependency knowledge in
their model allowed Angeli et al. to beat the state of the art on the end-to-end TAC-KBP 2013 Slot
Filling task. However, if a dependency parser is prone to making errors, incorporating dependency
relationships can actually harm performance on the downstream task. So, it is essential to improve
the accuracy of parsing methods.

In the literature, the problem of dependency parsing has been tackled using primarily two approaches.
The first of these approaches treats dependency parsing as a structured prediction task and makes use
of graph-based search algorithms. The second involves creating a shift-reduce parser that greedily
produce dependency arcs for each word in order. The second of these methods has been used often due
to its decoding efficiency. However, this method suffers in a way similar to many greedy approaches.
If our model diverges from the ground-truth parse at any step, it will continue to diverge from there.

With the intuition that Dependency parsing seemed like a game in a sense, we decided to consider
Reinforcement Learning approaches for parsing. In 2016, Shen et al. of Carnegie Mellon University
improved on the performance of transition-based dependency parsing using Deep Reinforcement
Learning. They built a reinforcement learning agent with transition-based shift-reduce parsing which
learns non-greedy decoding by considering future rewards.
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3 Related Work

A prominent strategy used to tackle dependency parsing has been trasition-based dependency parsing.
This involves predicting a sequence of actions to parse a sentence. Nivre and Scholtz [2004] describe
an arc-standard parsing system that maintains a stack and a buffer. The stack and buffer keep track
of the progress so far, and the actions considered are shift, left-arc, and right-arc. Other transition
systems build on this, such as the arc-eager transition system of Nivre [2004] which takes advantage of
the incrementality in parsing. Then Nivre and Fernandez-Gonzalez [2014] enforced a tree-constraint
to the arc-eager system without modifying the parser training procedure. This method consistently
outperformed the standard heuristics.

Other works introduce Neural networks to the dependency parsing problem. These papers use neural
networks to work with the arc-standard parsing system described by Nivre and Scholtz. Chen and
Manning [2014] used neural networks to solve the problem of extensive manually designed features
and the enormous computational complexity of feature extraction. They use neural networks to
predict the arc labels for a given configuration. Dozat and Manning [2016] built on this by using
a biaffine layer to compute attention over the combination of features. Yong et al. [2016] actually
consider unsupervised dependency parsing. They learn a dependency grammar from only Part of
Speech tags. The main supervised neural dependency work that we consider in this paper is the paper
by Chen and Manning which utilized a neural network to predict actions for transition-based parsers.
It performs reasonably well and uses greedy decoding, and we aim build on it via RL approaches.

Several authors have experimented with reinforcement learning on dependency parsing tasks. Zhang
and Chan [2009] studied value-based learning approaches. To approximated their state-action
function, they calculated the negative free energies for the Restricted Boltzmann Machine. Using their
neural network as a policy network, Le and Fokkens [2017] use the approximate policy gradient to
maximize the expected reward. Furthermore, Neu and Szepesvari[2009] used inverse reinforcement
learning algorithms to tackle dependency parsing with context-free grammars.

The main paper which we build off of is Shen et al. [2016] which uses actor-critic based reinforcement
learning to train an agent to parse the sentence. The authors claim that the series of actions necessary
to parse each token of the sentence lends itself well towards being framed as an RL task. Moreover,
the main benefit they aim to demonstrate is that an RL framework would focus on non-greedy
decoding. They claim that the supervised models are trained to perform greedy decoding as they
produce the dependency arcs for each word incrementally and are trained as such. Thus they claim
that an RL-based parser would reduce error propogation as the parser aims to improve the overall
parse instead of taking actions greedily. They use actor-critic based RL methods to create their parser
and the parser demonstrates moderate improvement over supervised methods. Our goal is to both
replicate the results of Shen et al, as the code for their RL-based dependency parser is not publically
available. Additionally, we aim to to test other reward functions and examine other RL algorithms for
the parser as these were areas highlighted as possible future work in Shen et al.

4 Approach

4.1 Transition-Based Dependency Parsing

The transition-based dependency parser works to create a dependency tree by predicting a sequence
of transitions. Specifically, we are using the arc standard transition system. In this system the parsing
configuration consistsn of a triple ⟨Σ, B,A⟩ where Σ represents a stack of the partially processing
tokens in the sentence, B is a buffer of unprocessed tokens and A are the arcs in the current parsing
tree. Additionally, there are three transition operators – SHIFT, LEFT-ARC and RIGHT-ARC –
which represent the actions the parser can perform. The SHIFT action moves b1 onto the stack Σ.
The LEFT-ARC action adds an arc from the first element in the stack to the second element in the
stack, while the RIGHT-ARC action adds an arc from the second element to the first. The initial
configuration for a sentence s with tokens w0, w1, . . . , wn is Σ = [ROOT ], B = [w0, w1, . . . , wn]
and A = ∅. This parser terminates when the buffer is empty, the stack contains one element and thus
A contains the parse tree.

The baseline model that we compared our RL parser to was the supervised neural dependency parser
from Chen and Manning. The parser uses a single linear layer to output action logits which it then
uses to select a transition for the transition parser.
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4.2 Reinforcement Learning

Since the method for transition-based dependency parsing requires an actor to decide a series of
actions that ultimate leads to a final dependency tree, the problem of dependency parsing tends itself
well for reinforcement learning. In order to use RL methods to approach a problem, one must first
frame the problem as a Markov Decision Process (MDP). Formally, an MDP is a tuple (S,A, T, r, γ)
where where S is the set of all possible states, A contains all possible actions, T : S ×A → S is the
transition function, r : S ×A → R is the reward function and γ is a discount factor which is used to
discount future rewards.

At each time step, t, given the current state is st ∈ S, the parser takes an action at ∈ A. This action
should be given by a model and we can generalize the model as a policy π : § → P(A). Thus using
the policy, we are able to generate actions either deterministically or sample them. From this, the
expected accumulative reward Rt is defined by

Rt =

∞∑
k=0

γkrt+k (1)

at the time step t. Thus we see that actions that come later in the sequence are weighted slightly
lower. The agent’s objective is to maximize the expected accumulative reward.

4.3 Parsing Environment

To formulate transition-based dependency parsing as an MDP environment, we define the set of
states § to be the set of configurations ⟨Σ, B,A⟩. The set of actions A is {SHIFT,LEFT −
ARC,RIGHT −ARC}. The transition function is given by performing the action to the current
parser configuration to get a new configuration that is our new state. Finally, the reward function that
we decided to use deviates from the reward function that is used in Shen et al. In that paper, they
used the negative Hamming Loss between the golden parse and the current partial parse meaning that
for a sentence of length T , the loss is

rt = −
T∑

i=1

1[yi ̸=
ˆ

y
(t)
i ] (2)

where yi is the true head of the i-th token and
ˆ

y
(t)
i is the predicted head according to the partial

dependency tree at time step t. However, they noted that when considering the cumulative loss, tokens
which the parser gets initially will be summed as positive rewards over all future configurations. They
noted that this leads the parser to finish as soon as possible and thus the parser performs mainly shifts
at the beginning to maximize the reward. Thus to eliminate this greedy strategy, we decided to use a
relative reward function. We modeled our reward function after the Unlabeled Attachement Score
(UAS) of a partial parse which is similar to the Hamming Loss in that it is

u(y, ŷ) =
1

T

T∑
i=1

1[yi = ŷi] (3)

where y is the golden parse while ŷ is the predicted parse. Then for the transition at time step t as
we are transitioning from st to st+1 with partial parses ŷ(t) and ŷ(t+1) respectively, the value of our
reward function is

rt = u(y, ŷ(t+1))− u(y, ŷ(t)) (4)

Note that we define u(y, ŷ(0)) = 0 where ŷ(0) is the starting tree. Thus we see that the reward is based
on the improvement of the parse tree from our action. Then we see that for γ = 1, Rt = u(y, ŷ) where
ŷ is the final dependency tree. Thus since the agent aims to maximize the expected accumulative
reward, then in our environment, the agent will aim to maximize the final UAS of the parse.

Then to implement the environment, we had to write a STEP method which takes a current state st
and an action at and then outputs the tuple (st+1, rt, ft) where ft is a flag indicating whether the
episode is done or not – i.e. whether the parser has terminated. Additionally, we needed to implement
a RESET method which resets the configuration of the parser back to its initial state with the current
sentence.
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4.4 Actor-Critic Methods

For the RL algorithms which we used to maximize the value of Rt, we used an actor-critic architecture.
This architecture was introduced by Sutton et al. [2000] and uses two neural networks. The actor
network is the approximated policy function with parameters θ and produces an action distribution
given the current state. The critic network can be viewed as the approximated value function with
parameters ω and aims the estimate the optimal accumulated reward that can be gained from that
state.

The architecture we used for the actor network was similar to the neural architecture proposed by
Chen and Manning. The architecture for the critic network is a densely connected neural network.
The critic evaluates the quality of the current policy by adapting the value function estimate.

From here, we have two actor-critic algorithms. The first is the Advantage Actor-Critic algorithm
(A2C) that provides a balance between bootstrapping using the value function and using the full
reward –i.e. the quality of the final parse. The definition of the advantage value is

Aω(st, at) = r(st, at) + Vω(st+1)− Vω(st) (5)

as it indicates how much better the agent’s actions are than expected. Then the actor and critic
network losses are defined as

L(θ) =
1

T

T−1∑
t=0

Aω(st, at) log πθ(at | st) and L(ω) =
1

T

T−1∑
t=0

Aω(st, at)
2 (6)

The other actor-critic method we used is the Proximal Policy Optimization method shown in Schulman
et al. [2017]. As this was an actor-critic method that was developed after the Shen et al. paper was
released, we decided that testing this new method as the RL architecture could be useful. It also has
an actor and critic network with the same architecture as the A2C method but uses different losses.
The actor loss is calculated with a KL penalty to ensure that the policy does not change too quickly,

L(θ) = rtAω(st, at)− βKL[πθold , πθ] (7)

where β is an adaptive parameter. Then the value loss is calculated from the original mean-squared
error loss used by the A2C method and an entropy bonus calculated based on the state. Both the A2C
and PPO algorithms were implemented using stable-baselines3 which is an open source RL library.
All hyperparameters of these models that are not specified in the experiment section are the set to the
default values that stable-baselines3 uses. We mainly needed to write the training scripts and write
the script for pretraining the policy network.

5 Experiments

5.1 Data

We conducted our experiments on the English Penn Treebank (PTB) dataset created by Marcus [1993]
with standard splits which has the input as the sentence and the output as the golden dependency
parse tree of the sentence. The training, development and testing set contains 39832, 1700 and
2416 sentences respectively. Now the sentences themselves were loaded in one at a time into the
environment as the sentence that the agent is attempting to parse. Then after the agent is done the
episode resets to a new sentence.

The main evaluation metric which we used for the parser was the Unlabeled Attachement Score
(UAS) which measures the percentage of tokens with the correct head. We see that to calculate the
UAS of a particular parse using our parser environment, we simply need to sum all of the rewards
during the episode and the result is the final UAS of the parse.

5.2 Experimental Details

First for both the A2C and PPO models, the actor network was identical to that of Chen and Manning
– it had a single hidden layer of size 200. The critic had 4 hidden layers with 128, 128, 64 and 32 as
the hiddne sizes with RELU activation functions between the layers. A last hidden layer is used to
predict a scalar as the value for the current state. For both networks the learning rates were 1e− 5
and the discount factor γ was set to 0.99.
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Model UAS
Neural Dependency Parser 88.8825± 13.5610
Advantage Actor-Critic 31.1950± 10.2854
Advantage Actor-Critic ∗ 89.1770± 13.5316
Proximal Policy Optimization ∗ 89.1217± 13.3844

Table 1: Comparison of UAS values between the parsers on the test set. The ∗ indicates that the
model used supervised pretraining to initialize the policy network.

The optimizer we used was the Adam optimizer. For each sentence, we have 5 environments running
simultaneously on that episode and we run updates using batches with 50 timestep rollouts for each
environment according to the policy.

We also initialized the policy network for both A2C and PPO with the same parameters of the model
trained from the supervised learning method as a pretrained actor. To do this, we were able to use
the actor network to sample many different transitions from the environment and then use these
transitions to train an initial A2C and PPO policy network. Additionally, we tried training the A2C
model with no supervised pretraining to determine whether the RL model was able to determine an
optimal strategy by itself. The A2C method – both with and without supervised pretraining – was
trained for 5 million time steps while the PPO method was trained over 2 million time steps.

One other issue that we came across was what to do when the model predicts an illegal action. To
eliminate that, we limited the set of actions when the policy produces the most likely actions. This
prevents us from having to impose a significant negative reward for illegal actions and thus improves
the training.

Lastly, during testing, we ensured that the policies were deterministic in that they choose the most
likely action each time. During training, we want the policy to be stochastic as this allows for increased
exploration of the environment. However, during testing we want the policy to be deterministic as by
that point we are assuming that there exists one unique correct action at each step.

5.3 Results

The performance of both the A2C and the PPO parsers did improve upon the supervised parser from
Chen and Manning when using supervised pretraining. The UAS results are shown in Table 1. We
see that when using supervised pretraining, the A2C model improves upon the supervised parser by
around 0.4 percentage points while the PPO model improves upon the supervised parser by around
0.3 percentage points. These results are at a similar level to the results shown in the Shen et al. paper
as the improvement that their RL methods posts over the supervised method also improves by around
0.4 percentage points.

Next, we see that Figures 1 and 2 show the test accuracy of the model after some number of training
steps for the A2C models and PPO model respectively. The test accuracy was evaluated every 1000
time steps. Again recall that the accuracy of the model on the set is the same as its average episode
reward. We see that the A2C-based parser even without a supervised pretrained model performs
significantly better than a policy which selects legal moves at random as that policy achieves an
average UAS of 12.9021± 11.1732. Thus the A2C algorithm is able to learn a policy with no starting
information that performs significantly better than random.

Overall, the performance of the models was around in line with the results we would expect from
the results of Shen et al. and thus we have succeeded in replicating the paper. This indicates that the
change in the reward function that we adopted did not worsen the training of the model although we
were not able to see significant improvement over the results of Shen et al. by simply altering the
reward function. Moreover, we were able to test the more recent PPO algorithm and we determined
that it also performs slightly better than the supervised model and in line with the performance of the
A2C-based parser.
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Figure 1: The accuracy on the test set during training for the A2C model w/ and w/o supervised
pretraining. The scale on the left-hand side is for the model w/o supervised pretraining and the scale
on the right-hand side is for the model w/ pretraining.

Figure 2: The accuracy on the test set during training for the PPO model

6 Analysis

While both the A2C and PPO algorithms perform slightly better than the supervised model on the
test data, we can learn much about their characteristics by examining the loss curves. Figure 3 shows
the loss curves for both the A2C models with and without pretraining. Note that the loss of the
policy network fluctuates significantly more for the model without pretraining versus the model with
pretraining. This makes sense intuitively as we would expect the model that already has a good policy
to not have as high of a loss versus the model with a significantly worse initial policy. Moreover,
we see that both policy losses converge to be within the interval (−0.005, 0.005) after 3 million
iteration indicating that at this point the model has settled on a policy and the magnitude of the
updates decrease.
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Now if we look at the value loss we see that for both models, the value loss trends downwards.
However, note that the value loss is initially larger for the pretrained model versus the non-pretrained
model. The reason this happens is because the pretrained model starts already trained on a particular
policy and thus the accumulated rewards of the policy are quite high whereas the value network still
has not been trained and is thus not predicting even relatively correct values for the states. Thus as the
agent iterates through more episodes, the value loss declines as the model becomes more confident
about the values of particular states that it has seen before. Especially considering that we run 5
environments in parallel, this means that for each sentence, it is repeated 5 times and assuming that
the sequence of actions is roughly the same for each of the 5 iterations, then this means that the
sequence of states that the value network trains on appear multiple times and thus the model learns
those examples faster. Lastly, note that while the non-pretrained model arrives at a suboptimal policy,
the value loss continues to decline as the probability of exploration success on this task is quite low.
Thus once the agent finds a local optimum, it is likely to get stuck there.

Figure 3: Losses for both the Policy and Value network of the A2C algorithm

We can examine a sample sentence under all three of the parsers – the neural dependency parser, the
A2C parser and the PPO parser. For the sentence shown in Figure 4, we note that the A2C and PPO
models achieve a UAS of 80 on sentence while the Neural Dependency Parser only achieves a UAS of
50. It is possible that the reason why this occured is due to the phenomenon that Shen et al. discussed.
Namely, when the supervised model makes a mistake because it performs greedy decoding, the error
propogates to the rest of the parse reducing the UAS further than the RL-based parsers as they use
non-greedy decoding. Specifically, note that all three parsers made the same mistake of drawing an
edge from ’point’ to ’up’ possibly because the training data has the phrase ’point up’ one or multiple
times. Moreover, note that this error is essentially just switching the direction of one of the arrows in
the golden parse. Thus the RL-based parsers are able to recover and improve their UAS by drawing
all the same arcs as in the golden parse and then attaching ’were’ to ’point’ instead of ’were’ to ’up’.
After the initial error, this is the optimal strategy to get a high UAS and we see that this is exactly
the parse which the RL-based parsers produce. However, the supervised model performs greedy
decoding and thus after it makes the error it is no longer in a domain which it is familiar with. Thus
we see that the model makes numerous other errors ultimately culminating in labeling the wrong
word as the root. Therefore, this example sentence highlights how the RL-based parser is able to
recover from errors early in the parse while the supervised dependency parser struggles at the task
exactly as Shen et al. predicted.

7 Conclusion

We were able to construct two RL-based dependency parsers that performed at least comparably if not
better than a supervised Neural Dependency parser. Through this project, we were able to combine
what we have learned about dependency parsing with some prior knowledge of reinforcement learning
to create an RL-based dependency parser. We also showed that on many sentences, the supervised
parser suffers from the error propogation issue whereas the RL models perform better and we
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highlighted the importance of initializing the parameters of the policy network as the parameters of
supervised model as otherwise the state space is simply too large to explore. The primary limitations
of our project is that we were unable to quantitatively test whether the supervised parser or the
RL-based parser handles error propogation better. We were trying to find a way to systematically
cause errors early in the parse that are still recoverable and then determining the final UAS which the
RL-parser is able to achieve versus the supervised baseline. Future work testing the error propogation
claims of Shen et al. specifically could be useful then.

Additionally, many of the possible extensions which Shen et al. discussed could be implemented on
top of our framework. For example, using a custom model class, it is possible to replace the core
policy network with a recurrent network that is able to take in all previous states of the environment
and choose an action based off of that extra information. Lastly, while we believe that our reward
function is a better candidate for the reward function over the negative Hamming loss, future work on
reward shaping for the dependency parsing problem could yield interesting findings.
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Figure 4: Gold parse of sentence
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Figure 5: A2C and PPO parse of the sentence
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Figure 6: Neural Dependency Model parse of sentence
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