
Using Weakly Supervised Learning to Enhance Text Classification 
 

Stanford CS224N Custom Project 
 

Pooja Chopra 
Department of Computer Science 

Stanford University 
chopra14@stanford.edu 

 
      Abstract 
In today’s day and age, companies are making concerted efforts every day to be digitally advanced by 
automating their processes to increase accuracy, save time, and cut costs. They are trying to incorporate 
predictive algorithms that rely on machine learning modules to increase revenue and extract valuable 
insights that allow them to stay relevant and competitive in today’s market. As a senior data scientist 
working to help clients achieve these goals, a problem I see every day is how predictive models are limited 
in their performance by the amount of data provided. My goal is to leverage weakly supervised learning 
to generate data that can not only increase performance, but also prevent overfitting (common in model 
trained with very less data). To close this gap, I explore how data generation can amplify performance of 
classification models. I create a pipeline that aims to advance results shown in a researched approach by 
Meng, Yu, et al. I combine language generation through a combination of skip-gram and LSTM models 
which uses keywords and existing labeled documents to build a vocabulary and learn semantics to 
generate new data mimicking the data provided with a BERT classification model. The results show that 
my proposed hybrid approach outperform both the researched WeSHClass method and BERT alone.  
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2)   Introduction 
 
To see reliable performance for models utilizing machine learning algorithms, a common thread is that a 
lot of training data is required.  Machine learning models varying from Logistic Regression to Deep Neural 
Nets all rely heavily on large number of labeled datasets to converge and stabilize in their performance.  
However, “the reliance of these models on massive sets of hand-labeled training data” comes at a not 
only a high financial cost, but also is time consuming [3]. Creating a quality hand-labeled dataset also 
requires domain expertise. These reasons serve as an impediment to achieving high performance metrics. 
Further population data is often not completely balanced, and models can be prone to overfitting and 
leaning towards overpopulated classes. 
 



 
   Image 1: How to get more labeled training data? [2] 
 
The graphic above shows that there are multiple ways of getting more labeled training data. This includes 
Traditional Supervision, Semi-supervision Learning, Weak-Supervision, and Transfer Learning. Traditional 
Supervision is a common approach, however, costly, time consuming, and necessitates SMEs to hand label 
large datasets. Active Learning is used to label those data points that could lie close to model decision 
boundary lines to make the effort of hand labeling “worth it”. Semi-supervised learning relies on the idea 
that structural assumptions of few labeled data points can help make assumptions of large unlabeled 
datasets, therefore making the large dataset valuable. Transfer learning utilizes large, labeled datasets, 
and “pre-train” before “fine-tuning” on a more specific dataset. Weak Supervision is an alternative to the 
above approaches and relies on the same concept: leverage a smaller quality labeled dataset to create a 
larger labeled dataset that can be used in ML algorithms. [2] I am motivated by the idea of using weakly 
supervised learning to leverage data generation, therefore, effectively overcoming a common impetus: 
lack of training data.  
 
3)   Related Work 
 
This paper explores language generation through a combination of skip-gram and LSTM models. It uses 
keywords and existing labeled documents to build a vocabulary and learn semantics to generate new data 
mimicking the data provided. It is an interesting approach to data generation that aims to replicate natural 
language. It is taking a step forward to enhance classification models by leveraging weakly supervised 
learning to generate data. 
 
 
 
 
 
 
 
 
 



4)   Approach 
 

       
     Image 2: Hybrid Model  

The goal of my project is to explore the efficacy of the classifier in the WeSHClass pipeline researched by 
Meng, Yu, et al. Above I have created my own model pipeline that takes pieces from the WeSHClass 
pipeline. For reference, I have included the WeSHClass pipeline in the Appendix (Image A1). To improve 
the efficacy of the WeSHClass pipeline I have decided to research how replacing a sequence of RNN and 
CNN classifiers with a BERT classification model can improve published metrics on three different 
datasets.  

WeSHClass uses keywords to generate pseudo documents for model pre-training. The “user-given weak 
supervision” whether it be labeled documents or the keywords, are necessary to generate pseudo 
documents [1]. The paper outlines two distinct ways to retrieve keywords per subclass: keywords can be 
provided as inputs or extracted using tf-idf weighting from labeled documents.  To generate data, the 
WeSHClass model utilizes a skip-gram and long short-term memory (LSTM) model to generate new text. 
First, a skip-gram model is trained on the entire corpus. This allows the model to learn the dimensional 
space of each word in the corpus within the vector space. Next an LSTM model is trained on the entire 
corpus and is the key component to create pseudo documents. For each subclass, an embedding vector 
is sampled from the distribution per class. As a reminder, this distribution is created by training the skip-
gram model on the corpus to understand how each word relates to the other in higher dimensional space. 
The closest word to this embedding vector is picked as the start word of the sequence. The LSTM model 
is then able to generate the next word and attach it to the sequence recursively. [1] 

The hybrid approach leverages aspects of the WeSHClass model and serves as a precursor input into the 
BERT model. To accomplish this task, there are three main steps in my approach. In the WeSHClass 
methodology, it is important to remember it has two parts: 1) generation of pseudo documents, and 2) a 
built in deep neural network classifier (Appendix Image A1). For the hybrid approach, I use the first part 
of the WeSHClass model and pull the generated pseudo documents per subclass. I replicate the approach 
outlined by Meng, Yu, et al. to generate this data.  

These pseudo documents are then fed into a BERT model. I leverage the idea of “pre-trained models” with 
the following approach. The BERT model is already pre-trained, but I have created another “base model”: 
a pre-trained BERT model finetuned on pseudo documents from WeSHClass. In the graphic above, I refer 



to this as PseudoBase in step 2.  It is noteworthy to mention the increase in training data available at this 
point to create PseudoBase. In Step 3, I have further finetuned the PseudoBase model, which now serves 
as the new “base model”. My FinalClassifier model is the PseudoBase model trained on the real labeled 
documents and is the model that runs predictions on a true test set outlined in results.  
  
5) Experiments 
 
Data. Because my goal is to enhance the approach highlighted in my chosen research paper, I compare 
results of my proposed approach to the paper’s results on two of the three datasets used in the paper. I 
focus on Yelp Reviews and NYT dataset. Below is a summary of the datasets taken from the paper.  

 

   
     Table 1: Data Summary [1] 
  
Using train_test_split from sklearn, I use an 85/15 split of data for train and validation respectively to train 
the PseudoBase model. For both the yelp and NYT dataset, I use 1,000 documents and feed it into the 
WeSHClass model. The WeSHClass model creates 500 additional pseudo documents per subclass, 
resulting in 2,500 and 12,500 additional documents for the Yelp Review and NYT dataset, respectively. 
The original 1,000 labeled documents for each dataset are then used again to “fine-tune” and create the 
FinalClassifier model. To test the FinalClassifier model, I take 20% of the real labeled dataset and run my 
final model predictions of the hybrid approach on this holdout set. 
 
Evaluation Method. F1 Score. This metric is used in the paper as a way of measuring model performance 
of the binary classifiers for each class. I have used this metric not only for comparison but also because of 
its ability to assess model performance for classification models. Imbalanced classes and the distribution 
of false positives and negative can give a falsely high accuracy, and to use reliable metrics to evaluate 
model performance, for classification it is recommended to use Precision, Recall, and F1 Score as our 
evaluation metrics. Specifically, I choose to focus on Macro F1 Scores. The paper I am researching reports 
both Macro and Micro F1 scores for each dataset (with the Micro scores averaging higher than the Macro 
F1 Scores). Statistically, Micro F1 scores calculate accuracy because it is the number of correctly classified 
instances divided by total instances. With 5 subclasses in the Yelp dataset and 25 subclasses in the NYT 
dataset, the overall Micro F1 score can be skewed if certain classes perform far better than other. To get 
a more holistic representation of how the WeSHClass, BERT, and Hybrid model compare, I rely solely on 
the Macro F1 score. However, in future work it would be worth investigating more granular details of 
performance metrics.  

 
Experimental details.  For the WeSHClass portion of my hybrid approach, I replicated the parameters the 
researchers use on the Yelp and NYT dataset. For the BERT classification model, I followed these 
parameters: optimizer = AdamW(model.parameters(), lr=1e-5,eps=1e-8) for 5 epochs. I chose to keep the 
same parameters for both layers of BERT training. In terms of model performance, my goal is to overcome 
a data sparsity issue by leveraging weakly supervised learning to generate data that could not only 
increase performance but also prevent overfitting. To prevent overfitting, I made sure to include a dropout 
layer (probability = 0.1) in my neural network in the BERT model during training (it is excluded in test to 
ensure replicability of classification predictions). The main benefit of dropout is that it randomly zeroes 



nodes, therefore spreading out the weights and ensuring the neural network does not rely on any one 
feature for predictions [4]. It is a commonly used regularization technique to prevent overfitting while 
training.  Further, I outline my training times below for both datasets. 
 

Model  # Documents # Classes Training Time with GPU 
WeSHClass 1,000 5 36 min 
BERT Layer 1 2,500 5 7 min 
BERT Layer 2 1,000 5 3 min  

     Table 2: Training times for Yelp 
 

Model  # Documents # Classes Training Time with GPU 
WeSHClass 1,000 25 2 hrs 10 minutes 
BERT Layer 1 12,500 25 28 min  
BERT Layer 2 1,000 25 2 min 

     Table 3: Training times for NYT 
 
Unfortunately, I had to exclude the arXiv dataset. For both the Yelp and NYT dataset, I trained the 
WeSHClass on the provided 1,000 rows of data. The arXiv dataset showed NaN probabilities in the 
spherical distribution generated by the skip-gram model when I cut the given dataset of ~230,000 
documents to even 10,000. Further, training on all ~230,000 rows showed an estimated training time of 
19 hours per epoch for a total of 25 epochs. Given this constraint, I chose not to pursue this dataset. More 
importantly, my specific point of interest is how to increase classification performance metrics given a 
small amount of training data. The necessity of training over all ~230,000 documents for arXiv deviated 
from my research goal.  
 
Something to note here is that the prediction time was quite fast (within few seconds). This is important 
to note because the biggest limiting factor of deploying a transformers model in the client environment 
is that though they are trying to increase accuracy, it is not at the cost of increased time. With such a fast 
prediction time, this model would be eligible for deployment in a client environment.  
 
Results. This table below lays out the different model approaches and corresponding F1 scores for both 
the Yelp and NYT datasets.  

 

Model  Data Macro F1 Score 

WeSHClass Real + Generated Yelp Data 42.3% 

BERT Real Yelp Data 55% 

WeSHClass + BERT Layer 1 Real + Generated Yelp Data 98.6% 

Hybrid Model  Real + Generated Yelp Data 58% 

Hybrid Model + tf-idf Real + Generated Yelp Data + 
additional keywords 

59% 

    Table 4: Model Results for Yelp Dataset 
 



Model  Data Macro F1 Score 

WeSHClass Real + Generated NYT Data 63.2% 

BERT Real NYT Data 59% 

WeSHClass + BERT Layer 1 Real + Generate NYT Data 92.3% 

Hybrid Model Real + Generated NYT Data 66.8% 

    Table 5: Model Results for NYT Dataset 
 
WeSHClass: These metrics are reported from the researched paper and serve as a base comparison. 
Specifically, I choose Macro F1 scores from the reported metrics for aforementioned reasons.  
 
BERT: As a base comparison, I run a BERT model classifier only on the real labeled datasets for Yelp and 
NYT. This also provides a good baseline to compare the Hybrid model against.  
 
WeSHClass + Bert Layer 1: This intermediary step correlates to Step 2 from Image 1. For both the Yelp and 
NYT datasets, this layer gives a much higher F1 score of 98.6% and 92.3%, respectively. The most apparent 
explanation for this is that the WeSHClass uses keywords for each subclass to build a vocabulary. These 
keywords are prominently used in the generated text, therefore, making the distinction between text in 
different classes far more distinct than the real data would. This step is built and tested on only pseudo 
documents and does not give a full picture as the model at this point has not been tested on real labeled 
documents mimicking population data.  
 
Hybrid Model: These results are the most interesting to look at. For both Yelp and NYT, the hybrid 
approach outperforms the WeSHClass model and BERT model alone giving a Macro F1 score of 58% and 
66.8%, respectively. Not only did the hybrid approach achieve higher performance metrics, it also is 
trained on substantively more training data then BERT alone and is a step in the right direction for 
overcoming overfitting.  
 
Hybrid Model + tf-idf: Given the constraint with the arXiv dataset, I instead chose to focus on 
understanding how manipulation of keywords can increase model performance. For the yelp dataset, I 
cleaned the text and removed stopwords and then ran a tf-idf vectorizer over each subclass to extract 
highly correlative features of each class. As a result, I was able to add a few keywords to each class. This 
shows a menial increase of 1% in overall Macro F1 score and was not as fruitful of an approach as 
expected. An analysis of this is further highlighted below.  
 
6)   Analysis 
 
The hybrid approach leverages data generation and increase performance metrics by replacing a 
combination of a RNN and CNN with a transformers approach. A key limitation to note is that the 
performance metrics are still relatively low. The hybrid approach does yield higher metrics for both Yelp 
and NYT than the researched method, however, it still does not hit a threshold of 80%. Specifically for the 
Yelp dataset, I qualitatively assessed the output of the tf-idf max features and the actual text of Yelp 
reviews per class to understand the root cause of seemingly low metrics.  Below I have outlined the results 
of words I selected are qualitatively interesting to look at.  



 
Subclass Common Keywords extracted from tf-idf 
great ‘amazing’, ‘delicious’, ‘favorite’, ‘fresh’, ‘good’, ‘great’, ‘special’, ‘wonderful’ 
good ‘delicious’, ‘favorite’, ‘fresh’, ‘good’, ‘great’, ‘pretty’, ‘well’, ‘worth’ 
average ‘better’, ‘friendly’, ‘pretty’, ‘price’, ‘service’, ‘special’ 
bad ‘best’, ‘better’, ‘decent’, ‘friendly’, ‘good’, ‘great’, ‘small’ 
terrible ‘cold’, ‘friend’, ‘money’, ‘poor’, ‘pretty’, ‘wait’ 

    Table 6: tf-idf on Yelp dataset 
 
It is apparent, that there is a strong overlap of commonly appearing words amongst the five subclasses. 
After looking at the actual dataset there were numerous examples of a negative word placed in front of a 
positive word for the classes “bad” and “terrible”. For example, both the “bad” and “good” subclases show 
the common words: ‘good’ and ‘pretty’, however, the “bad” reviews will have phrase such as “not so 
good” or “pretty bad”. It might be useful to investigate what the results will look like if we concatenate a 
tf-idf vectorizer with bi- and tri- grams with BERT embeddings as additional context could be provided in 
training if we include common n-grams.  All in all, the common keywords are very telling as to why a metric 
of 80% was difficult to achieve, the different subclasses were simply no unique enough for BERT alone to 
discern while classifying.  
 
7)   Conclusion 
 

 
BERT WeSHClass Hybrid 

Enough Training Data 
 

✓ ✓ 

Increased Performance Measure ✓ 
 

✓ 

Prevents Overfitting   ✓ 

Fast Training Time ✓ ✓ ✓ 

Fast Prediction Time ✓ ✓ ✓ 

    Table 7: Advantages of each model 
 
Above, I choose five important factors I typically use to assess machine learning models before 
deployment: the model is trained on enough training data, shows substantial performance, is not prone 
to overfitting, and has a fast training and prediction time. Relatively speaking, based on each of these 
factors the hybrid model outperforms a BERT model only trained on labeled data and the researched 
WeSHClass pipeline.  
 
For future work, I have a keen interest in developing the hybrid model further to reach a threshold of 80% 
F1 Score. My next steps would include a thorough analysis of mis-classified instances. It would be telling 
to look at incorrectly labeled predictions in my validation set to which if there are specific classes in which 
majority of my errors fall. An example of this would possibly be if a “bad” review was repeatedly mis-
labeled as “good” or vice versa based on the analysis shown above. Based on this investigation, some sort 
of feature engineering could be used to increase performance measures. For example, length of text could 
be an additional feature to include as an input i.e., it is possible there could be a distribution of length of 



text amongst the 5 categories. Any of these avenues would be worth investigating to mold the model to 
the specifics of the population dataset.  
 
It would also be useful to take a more granular look at the performance metrics. Right now, I have focused 
on Marco F1 Scores because a high-level look at the model performance was important in my model 
iterations to look at performance increase. However, to understand the pitfalls, looking at F1 Scores per 
class along with precision and recall would be an effective way to assess how to improve model 
performance.  
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Appendix 

 
    Image A1: WeSHClass Pipeline [1] 
 
 
 
 
 
 


