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Abstract

Medical notes summarization is challenging because of the scarcity of labelled
data. The goal of the project is to develop a method that scores each sentence
based on its importance without human annotation data and select the top 10
percents of sentences to produce a succinct summary.

We proposed a weakly supervised scheme, where the model learns to pre-
dict a proxy target: near future procedure, and during this process also learns the
importance of each sentence. We build an attention-based head model on top of
ClinicalBert[1] that takes diagnoses as accessory inputs and predicts near future
procedures, both of which can be automatically extracted from a medical database.
Using the intermediate attention weights as importance scores, we demonstrated
that this approach can boost performance of extractive summarization compared
with baseline unsupervised learning, achieving an F1 score of 0.353 and an area
under receiver-operator curve of 0.708 on the test set. This study opens new
possibilities to other potential heuristics that may help circumventing the need of
manually labelled data.
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2 Introduction

Medical professionals need to read and process huge amounts of medical notes every day. Among var-
ious types of notes, progress notes are particularly common ones that are written by doctors to record
the evaluation, discussion, and treatment decisions at each patient’s visit. Given the time constraints of
medical consultation, reviewing previous progress notes is a heavy workload for doctors, especially if
the patient has many years of notes. Therefore, automatic summarization of notes that condense multi-
ple documents into a single succinct summary would bring huge improvement in health care workflow.

In general, there can be two different approaches for text summarization: extractive and ab-
stractive. Extractive summarization scores sentences based on their importance and directly select
the high-score sentences for summary, whereas abstractive summarization generates new sentences
from scratch after digesting the input documents. While abstractive summarization might produce
more coherent paragraph, we focused on extractive summarization in this study because medical
documents require high accuracy and correctness.
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Despite the astonishing improvement in other medical natural language processing (NLP)
tasks using deep-learning models[2], medical text summarization remains a challenge due to the
lack of labelled training data. Reviewing medical notes and selecting reference summaries require
tremendous time investment and domain expertise, and is unlikely to obtained by crowdsourcing for
protection of patient privacy.

To circumvent this data scarcity problem, we aim to develop a summarization model with-
out direct supervision by making it learn a different task, in which the labels are readily
available without human annotation. This task is designed in a way that the model would
need to rely on "valuable" sentences to perform well, and we can approximate the importance
of a sentence by how much the model uses it for prediction. This can be viewed as weakly
supervised learning where the label in the new task are a "proxy" of the true label. Similar ap-
proaches have been demonstrated successfully to generate summaries relevant to a specific query[3],
and we aimed to extend this idea to produce general summaries that do not depend on any query word.

To achieve a general summarization task, we devised a different heuristic: predicting near
future medical procedures, to infer the importance of a sentence. The model takes two inputs: the
diagnoses and the notes, and predicts if any procedure will occur in the near future. This approaches
has two advantages: (1) both diagnoses and procedures are well recorded, including the date and the
type of them, and easily accessible in any electronic medical health records; (2) physician often use
sentences that signal changes in a summary, and a need for procedure usually indicates the patient’s
condition worsens.

With near future procedures as proxy labels, we experimented with 5 different models with
different attention and prediction heads and achieved 12% higher F1 score with our best model than
the unsupervised term frequency-inverse document frequency (tf-idf) baseline. We also analyzed the
advantages and drawbacks of this approach using generated samples. We hope this proof-of-concept
study would inspire the future work on general summarization task of medical notes by designing
more comprehensive proxy labels.

3 Related Work

Deep-learning based models have demonstrated good results with extractive summariazation. A
model called SummaRuNNer[4], which is composed of a hierarchical recurrent neural network (RNN)
with gated recurrent units (GRU), progressively encodes word-level embedding and sentence-level
embeddings, and use the sentence embeddings to predicts if it belongs to summaries. NeuSum[5] uses
similar GRU-based RNN to encode sentences and add additional attention mechanism at the sentence
selection step which achieved better results. Recently, with more powerful transformer-based encoder,
[6] proposed similar approach of sentence classifiers with BERT-encoded sentence vectors, achieved
better results on DailyMail dataset. While building more powerful encoder seems to be promising,
a key issue that prohibits the use of such models on medical texts is the need for large labelled data set.

To avoid the need of manually labelled data, Liu et al. [7] used the intrinsic correlation be-
tween medical notes to generate pseudo-labels for training. The key idea was that physicians tend to
repeatedly record important terms, such as the diagnoses, in each note and these terms would have
higher correlation with future notes. However, this approach has limited value in the summary of
progress notes, in which doctors often copy and paste non-important information from last progress
notes as well.

Another strategy is to use a query sentence or word to score the importance of each sen-
tence, which is also called query-based summarization. In a recent study[3], McInerney et al. used
query-based approach to extract sentences relevant for making diagnoses in radiology reports. They
trained the model on a separate task of predicting future diagnosis and used the intermediate results
to score the importance of sentences. This circumvents the need of manually labelled reference
summary for training due to easily available diagnoses in any medical database. However, the
generated summary is query-specific, which means using a different query word would produce
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different summaries. We’re inspired by this and decide to extend the idea to build a model that
generates patient-specific summaries without relying on specific query words.

4 Approach

At a high level, the model is a scoring function that gives each sentence an importance score, given
the diagnoses on the same day the sentence is written. After obtaining the scores for all sentences for
a given patient, we select the top 10 percent highest scoring sentences as our summary. We used
the occurrence of medical procedures in near future to weakly supervised the model to learn the
importance score.

Let yj be the label of the j-th note, which equals 1 if any medical procedure happens within 30 days
of the note’s date or 0 otherwise. Let nj be the total number of sentences in j-th note, mj be the
number of diagnoses on the same date of the note, Sj = {s1,j , s2,j , ..., snj ,j} be the set of sentences
in j-th note, and Dj = {d1,j , d2,j , ..., dmj ,j} be the set of diagnoses of j-th note. Let g(Sj , Dj) be
the function that estimates the probability pj of near future procedure of the j-th note, the objective of
training becomes minimizing ℓ(θ) = −

∑
j yj log(g(Sj , Dj)). From the intermediate calculation of

g, we can derive another scoring function f such that the importance score of si,j is fDj (si,j).

Let A =
⋃

j Sj be the set of all sentences of a given patient. The ultimate goal is to find a
subset A′ such that

{si,j : si,j ⊂ A′} = argmax
A′⊂A,|A′|=⌊ |A|

10 ⌋fDj
(si,j) (1)

4.1 Baselines

Four different baselines were explored. Since we fix the ratio of selecting sentences at 10 percents,
the very basic baseline is to randomly sample 10 percents of sentences with equal probabilities.

The second baseline is to simply perform K-means with euclidean distance as metric on all
sentence embeddings of ClinicalBERT[1] using ⌊ |A|

10 ⌋ as the number of centroids and extracting the
sentences closest to the centroids. The [CLS] token embedding from ClinicalBERT was used as the
representative embedding for the whole sentence. We used scikit-learn package of version 1.0.2 to
perform K-means algorithm.

The third baseline is to use tf-idf encoding of sentences to compute the importance score.
Each term T has a tf-idf score tf(T, si,j) · idf(T ), where tf(T, si,j) is the frequency of T in si,j and
idf(T ) = log (1+n)

(1+df(T )) + 1, where n is the total number of sentences and df(T ) is the document
frequency of T . The larger the tf-idf score, the more important the term is. The score of a sentence is
simply the summation of all tf-idf scores of each unique term in it:

∑
T∈si,j

tf(T, si,j) · idf(T ). We
trained the TfidfVectorizer in scikit-learn library on the training data and encoded each sentence in
the test set to get their importance scores.

The fourth baseline uses cosine similarity as scoring function, that is: fDj (si,j) = ŝTi,jD̂j ,
where ŝi,j is the [CLS] token embedding of si,j from ClinicalBert and D̂j is 1

mj

∑mj

k=1 d̂k,j , the
average of [CLS] embeddings of Dj .

4.2 Models

We explored 5 different models, which can be grouped into 2 classes: single-direction attention and bi-
direction attention between diagnoses and sentences. The 2 classes of model are illustrated in Figure 1.

In ClinicalBERT-Naive, ClinicalBERT-PL, and ClinicalBERT-DL models, we used Clin-
icalBert as our encoder. The above models utilizes single-direction attention from direction to
sentences. Using the same notation, we denote ŝi,j as the [CLS] token embedding of si,j from
ClinicalBert and d̂k,j as the [CLS] token embedding of dk,j from ClinicalBert. Let D̃j be the overall
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embedding of Dj after passing all d̂k,j through a diagnosis layer. A multi-headed dot product
attention of D̃j with respect to all ŝi,j were performed to compute a weighted sum of values as
output S̃j . We then concatenate S̃j and D̃j and pass it through a prediction layer to compute ŷj . In
ClinicalBERT-Naive, the diagnosis layer is simple averaging and the prediction layer is a single
layer neural net.

The naive design apparently is too simple for the model the learn the complex relationship
between the embeddings and the label, so in ClinicalBERT-PL we modifies the prediction layer into
2-layer neural net with residual connection and applies layer normalization on the input ŝi,j and d̂k,j .
In ClinicalBERT-DL, we tried to improve the expressive power of the diagnosis embedding, using a
2-layer neural net as diagnosis layer to processes each d̂k,j and taking averages of the outputs to form
D̃j .

The next attempt is to improve the BERT encodings themselves. Because ClinicalBert is
trained on notes in intensive care units, a place where ophthalmology patients rarely visit, we
believed a domain-specific BERT model would have higher power in understand the texts. So in
OphBERT-PL we replaced the encoder with a BERT model finetuned on ophthalmology notes as
encoders, which was generously provided by our external collaborator [Tao, 2022, work in progress],
and kept the head model the same as ClinicalBERT-PL. In the above models the scoring function
fDj

(si,j) is the average across different heads of the attention weights of D̃j with respect to si,j .

The single-directional attention did not leverage the full power of attention mechanism to
understand the relationship between sentences and the diagnoses. In our last model Transformer-PL,
we treated all si,j and dk,j as continuous sequence separated by a [DIA] token and capped by a
[SNT] token. The embeddings of the two introduced tokens are randomly initiated and are learnable
parameters during training. The entire sequence is fed into a transformer-like model with 4 blocks of
multi-headed dot product self-attention. The last hidden states of [SNT] and [DIA] are concatenated
and passed through a prediction layer same as in ClinicalBERT-PL to make predictions. The
scoring function fDj (si,j) is w[SNT ] + w[DIA], where wX is the average across different heads of
the attention weights of X with respect to si,j .

Figure 1: Model architecture. (A) single-direction attention model (B) bi-direction self attention
model
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5 Experiments

5.1 Data

Ophthalmology progress notes were extracted from Stanford Research Repository (STARR) database.
A thousand patients who had underwent any ophthalmic procedures in their history were randomly
sampled from the above data. Their de-identified IDs were randomly split into training, validation,
and test sets of size 950, 50, 50 patients, respectively. This amounts to 13974, 974, 724 notes in each
group, respectively. The diagnoses for each visit were also extracted from the database and matched
with the notes on the unique ID for each encounter.

We wrote codes to clean each note by using regex patterns to search and remove de-identified
brackets, numbers in the subheadings, the replacement character in unicode, and long spaces.
Subsection titles, such as "Family History", were joined using a slash (e.g. Family/History) for easier
sentence segmentation. We used python package scispaCy [8] 0.4.0 with model "en_core_sci_md" to
split each note into sentences, resulting in 462130, 29855, 22604 sentences in train, validation, and
test set, respectively.

5.2 Evaluation method

For each model, a 3-fold evaluation was done to help us analyze the performance of the model.
We first checked if it performed well on the proxy task: (1) predicting near future procedures.
This is a note-level binary classification problem where each note is assigned a probability. The
area under receiver-operator curve (AUROC) was calculated from the predicted probabilities and
the true labels in the test set. F1 score using a fixed threshold of 0.1 was also reported on the
test set. Secondly, we randomly selected 5 patients from the test set and manually annotated 2
versions of summaries using their corresponding 870 sentences and tested the model prediction
performance on (2) only procedure-related sentences and (3) general summary sentences. In (2),
only sentences with clear indication of future procedures were labeled positive, whereas in (3) all
sentences considered important for a summary were labeled positive. The two versions of summaries
do not necessarily overlap. Notice that only (3) is what we’re interested in ultimately, but (1) and (2)
can help us understand why the model succeeds or fails. Both (2) (3) can be viewed as sentence-level
classification. F1-score with threshold of 0.1 and AUROC were reported on the manually labelled
sentences. We also included ROUGE score[9], a common metric to evaluate extractive summaries.
ROUGE-n refers to the overlap of n-grams between predicted summaries and true summaries, and
ROUGE-L refers to overlap of the longest common subsequence. The number of overlaps can be
used to derive the precision, recall, and the corresponding F1 scores. The ROUGE scores were
computed by python rouge-score package of version 0.0.4.

The baselines were only tested on our true target (3). Notice that AUROC for random
selection and K-means were not reported because they don’t output probabilities.

5.3 Experimental details

Each input sentence is tokenized by the Hugging Face Tokenizer of ClinicalBert with a maximum
length of 128. Longer sentences were truncated and shorter sentences were padded to the maximum
length. Due to the limitation of computation resources, we freezed all parameters in pre-trained
BERT models and only trained the head model. All models were trained with an AdamW optimizer
with beta1 of 0.9, beta2 of 0.95. Each batch of data contains all sentences and diagnoses of the j-th
note.

Except the ClinicalBERT-Naive, all models were trained for 30 epoches using an exponen-
tial decay of learning rates from 0.001 with a decaying rate of 0.9 after each epoch, and the model
with the lowest validation loss was saved. ClinicalBERT-Naive was only trained for 8 epoches with
a fixed learning rate 3e-5 due to limitation of computation resources, but it reached a similar loss on
validation set as other models. The number of heads in attention for all models was 8.
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5.4 Results

The quantative results were summarized in Table 1. Naive K-means clustering only achieved F1 score
of 0.105, which showed no much improvement from random selection. Using cosine similarities, the
area under ROC curve (AUROC) was only 0.508 but the F1 score improved to 0.153, reflecting that
sentences containing similar meaning as the diagnoses were more likely chosen for the summary.
Tf-idf performed reasonably good, even outperforming two of our models, OphBERT-PL and
Transformer-PL.

All single-direction models had moderate performance on both the near future procedure
prediction and procedure-related summary prediction. Despite having no outstanding performance
on the proxy task, the model did learn better to select important sentences. Both ClinicalBERT-PL
and ClinicalBERT-DL outperformed the tf-idf baseline, with the latter achieving 0.353 in F1 score
and 0.708 in AUROC. ClinicalBERT-DL also had highest ROUGE-1, ROUGE-2, and ROUGE-L F
scores. This indicated that while the proxy task is hard to learn, the model was able to incorporate
additional knowledge on which sentences to rely upon to make good predictions. Notice that the
relatively low performance of procedure-related summary compared with general summary might
seem counterintuitive, but this could be due to procedure-related summary contained much fewer
positive sentences, only 54% of that in general summary and roughly 5% of all sentences.

Using a ophthalmology-specific BERT model surprisingly decreased the performance in
summary extraction. Bi-direction self attention model Transformer-PL performed poorly on all 3
evaluation tasks, with F1 score on general summary prediction close to that of random selection.

Table 1. Quantative results of baselines and 5 models on 3 tasks: procedure prediction, procedure-
related summary prediction, general summary prediction

6 Analysis

We performed qualitative analysis by visual inspection of the selected summary sentences.
Unfortunately, we can not present the examples here because they may contain sensitive patient
health information. One interesting observation is that our models have tendency to select sentences
from shorter notes. To visualize this behavior, in Appendix Figure A1 we showed that more sentences
were selected from shorter notes in all our models. This phenomenon can be explained by our use of
softmax scores as selection criteria. Because the softmax scores were calculated across sentences
within a single note, a sentence in a shorter note (i.e. less sentences) was more likely to receive a
high softmax score regardless of its actual information content. To solve this problem, we can devise
a more complex scoring function that adds a penalty to a shorter note.
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Adding more layers to both prediction and diagnosis layer has the best performance in our
test set. We believed the diagnosis layer is especially important because the model learns better
how to represent the ophthalmology diagnoses, which were rarely seen in original MIMIC data.
Comparing the outputs between ClinicalBERT-PL and ClinicalBERT-DL, we noticed that
ClinicalBERT-PL somtimes made mistakes by attending to some unrelated sentences, such "Family",
whereas ClinicalBERT-DL more consistently selected diagnoses-related sentences.

Surprisingly, Transformer-PL model, which takes sentences and diagnoses embeddings as
inputs, did not perform well, even on procedure prediction. From the outputs we observed that the
model erroneously attend to personal information of patients, such as the number of children and
the birth place. This can partially explain why the model also performed poorly on the precedure
prediction task. One possible cause is that the model is more complicated and contains more weights
than the others, and our training data was not big enough, resulting in ineffective learning.

Providing domain-specific BERT model did not seem to improve the performance. The
OphBERT model reportedly did not perform better than ClinicalBert on text classification task [Tao,
2022, work in progress]. A possible explanation is that the size of ophthalmology notes corpus might
not be large enough for the BERT model to learn effective weights. Turning to Bert models trained
on scientific literatures, instead of only clinical notes, might be a reasonable choice. While literatures
may lack special abbreviations commonly used for clinical notes, they presumably contain more
ophthalmology-related words than MIMIC data.

A limitation of this approach is that the model attends to some sentences related to proce-
dure but not relevant to general summary, such as saying that the patient has signed the informed
consent. This sets the upper limit of how this approach can perform on extractive summarization. To
avoid this problem, we plan to devise other heuristics in the future that teaches the model to put more
attention on patient conditions instead of focusing only on procedure itself.

7 Conclusion

In this study, we devised a weakly supervised learning strategy that uses near future procedures as
proxy labels to learn the importance of sentences in medical notes. We demonstrated that the model
was able to learn importance scores of sentences using this approach, which circumvents the need
of manually labelled data. This could bring inspirations on how to approach this task with other
heuristics. We plan to add more heuristic that help the model learn more precise scoring functions
and also expand the reference summaries to evaluate the robustness of the model.
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Figure A1. Distribution of note sizes from which sentences are selected
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