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Abstract

Learning policies that effectually utilize language instructions in complex, multi-task environ-
ments is an important problem in imitation learning. While it is possible to condition on the
entire language instruction directly, such an approach could suffer from generalization issues.
To encode complex instructions into skills that can generalize to unseen instructions, we propose
Learning Interpretable Skill Abstractions (LISA), a hierarchical imitation learning framework
that can learn diverse, interpretable skills from language-conditioned demonstrations. LISA
uses vector quantization to learn discrete skill codes that are highly correlated with language
instructions and the behavior of the learned policy. In navigation and robotic manipulation
environments, LISA is able to outperform a strong non-hierarchical baseline in the low data
regime and compose learned skills to solve tasks containing unseen long-range instructions. Our
method demonstrates a more natural way to condition on language in sequential decision-making
problems and achieve interpretable and controllable behavior with the learned skills.

1 Key Information to include

• TA mentor: Allan Yang Zhou
• External collaborators: Skanda Vaidyanath (svaidyan)

2 Introduction

“pull the handle and 
move black mug right”

Skill code z

time

0 1 2 3 4 K

VQ Codebook

31 1 333

1

1
3

3
3

Figure 1: Overview of LISA. Given a language instruction,
our method learns discrete skill abstractions z, picked from a
codebook C. The policy conditioned on the skill code learns to
execute distinct behaviors and solve different sub-goals. See
GIF.

Intelligent machines should be able to solve a vari-
ety of complex, long-horizon tasks in an environment
and generalize to novel scenarios. In the sequential
decision-making paradigm, provided expert demon-
strations, an agent can learn to perform these tasks
via multi-task imitation learning (IL). As humans, it
is desirable to specify tasks to an agent using a con-
venient, yet expressive modality and the agent should
solve the task by taking actions in the environment.
There are several ways for humans to specify tasks
to an agent, such as task IDs, goal images, and goal
demonstrations. However, these specifications tend to
be ambiguous, require significant human effort, and
can be cumbersome to curate and provide at test time.
One of the most natural and versatile ways for humans
to specify tasks is via natural language.

The goal of language-conditioned IL is to solve tasks
in an environment given language-conditioned trajecto-
ries at training time and a natural language instruction
at test time. This becomes challenging when the task
involves completing several sub-tasks sequentially, like the example shown in Figure 1. A crucial step towards
solving this problem is exploiting the inherent hierarchical structure of natural language. For example, given the
task specification “pull the handle and move black mug right”, we can split it into two independent skills, i.e. “pull
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the handle” and “move black mug right”. If we are able to decompose the problem of solving these complex tasks
into learning skills, we can compose these skills to generalize to unseen tasks in the future. This is especially
useful in the low-data regime, since we may not see all possible tasks given the limited dataset, but may see all the
constituent sub-tasks. One of the main goals of language conditioned IL is to utilise language effectively so that
we can learn skills as the building blocks of complex behaviours.

Utilising language effectively to learn skills is a non-trivial problem and raises several challenges. (i) The process
of learning skills from language-conditioned trajectories is unsupervised as we may not have knowledge about
which parts of the trajectory corresponds to each skill. (ii) We need to ensure that the learned skills are useful,
i.e. encode behavior that can be composed to solve new tasks. (iii) We would like the learned skills to be
interpretable by humans, both in terms of the language and the behaviours they encode. There are several benefits
of interpretability. For example, it allows us to understand which skills our model is good at and which skills it
struggles with. In safety critical settings such as robotic surgery or autonomous driving, knowing what each skill
does allows us to pick and choose which skills we want to run at test time. It also provides a visual window into a
neural network policy which is extremely desirable [1]. There have been prior works such as [2, 3, 4] that have
failed to address these challenges and condition on language in a monolithic fashion without learning skills. As a
result, they tend to perform poorly on long-horizon composition tasks such as the one in Figure 1.

To this end, we propose Learning Interpretable Skill Abstractions from language (LISA), a hierarchical imitation
learning framework that can learn interpretable skills from language-conditioned offline demonstrations.
LISA uses a two-level architecture – a skill predictor that predicts quantized skill codes and a policy that uses
these skill codes to predict actions. The discrete skill codes learned from language are interpretable (see Figure 3)
and can be composed to solve long-range tasks. Using skill quantization maximizes code reuse and enforces a
bottleneck to pass information from the language to the policy, enabling unsupervised learning of interpretable
skills. We perform experiments on grid world navigation and robotic manipulation tasks and show that our
hierarchical method can outperform a strong non-hierarchical baseline in the low-data regime. We analyse these
skills qualitatively and quantitatively and find them to be highly correlated to language and behaviour. Finally,
using these skills to perform long-range composition tasks on a robotic manipulation environment results in
performance that is more than 2x better than the non-hierarchical version.

Concretely, our contributions are as follows:

• We introduce LISA, a novel hierarchical imitation framework conditioned on language to decompose
complex tasks into skills.

• We demonstrate the effectiveness of our approach in the low-data regime where its crucial to break down
complex tasks to generalize well.

• We show our method performs well in long-range composition tasks where we may need to perform
multiple skills sequentially.

• We show that the learned skills are highly correlated to language and behaviour and can easily be
interpreted by humans.

3 Related Work

3.1 Imitation Learning

Imitation learning (IL) has a long history, with early works using behavioral cloning [5, 6, 7] to learn policies
via supervised learning on expert demonstration data. Recent methods have shown significant improvements via
learning reward functions [8] or Q-functions [9] from expert data to mimic expert behavior. Nevertheless, these
works typically consider a single task. An important problem here is multi-task IL, where the imitator is trained to
mimic behavior on a variety of training tasks with the goal of generalizing the learned behaviors to test tasks. A
crucial variable in the multi-task IL set-up is how the task is specified, e.g vectorized representations of goal states
[10], task IDs [11], and single demonstrations [12, 13, 14, 15]. In contrast, we focus on a multi-task IL setup
with task-specification through language, one of the most natural and versatile ways for humans to communicate
desired goals and intents.

3.2 Language Grounding

Several prior works have attempted to ground language with tasks or use language as a source of instructions for
learning tasks with varying degrees of success ([16, 17, 18, 19, 20]). [21] is a good reference for works combining
language with sequential-decision making.
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But apart from a few exceptions, most algorithms in this area use the language instruction in a monolithic fashion
and are designed to work for simple goals that requires the agent to demonstrate a single skill. ([22, 23, 24, 25])
or tasks where each constituent sub-goal has to be explicitly specified ([26, 27, 28, 29, 30, 31, 32, 33, 34]).
Some recent works have shown success on using play data [35] or pseudo-expert data such as LOReL [2] and
CLIPORT [3]. LOReL and CLIPORT are not hierarchical techniques. [35] can be interpreted as a hierarchical
technique that generates latent sub-goals as a function of goal images, language instructions and task IDs but the
skills learned by LISA are purely a function of language and states alone and don’t require goal images or task
IDs.

3.3 Latent-models and Hierarchical Learning

Past works have attempted to learn policies conditioned on latent variables and some of them can be interpreted
as hierarchical techniques. For example, [36] learns skills using latent variables that visit different parts of the
environment’s state space. [37] improved on this by learning skills that were more easily predictable using a
dynamics model. But these fall more under the category of skill discovery than hierarchical techniques since
the skill code is fixed for the entire trajectory, as is the case with [36]. [38] and [39] are other works that use a
latent-variable approach to IL. But these approaches don’t necessarily learn a latent variable with the intention
of breaking down complex tasks into skills. With LISA, we sample several skills per trajectory with the clear
intention of each skill corresponding to completing a sub-task for the whole trajectory. Also, none of the methods
mentioned here condition on language.

There has been some work on hierarchical frameworks for RL to learn high-level action abstractions, called
options [40], such as [41, 42, 43] but these works are not goal-conditioned. Unlike LISA, these works don’t use
language and the options might lack diversity and not correspond to any concrete or interpretable skills.

4 Approach

The key idea of LISA is to learn quantized skill representations that are informative of both language and
behaviors, which allows us to break down high-level instructions, specified via language, into discrete interpretable
and composable codes (see Fig. 5 and Fig. 4 for visualizations). These codes enable learning explainable and
controllable behaviour, as shown in Fig. 1 and Fig. 3.

Section 4.1 describes the problem formulation, an overview of our framework, and presents our language-
conditioned model. Section 4.2 provides details on the training approach.

4.1 Language-conditioned Skill Learning

4.1.1 Problem Setup

We consider multi-task environments represented as a task-augmented Markov decision process (MDP) with a
family of different tasks T . A task Ti can be union of other tasks in T . For example, in a navigation environment,
a task could be made up of two-sub tasks: “pick up ball”, “open door”. S,A represent state and action spaces. We
further assume that each task has a natural language description l ∈ L, where L represents the space of language
instructions.

We assume access to an offline dataset D of N trajectories obtained from an optimal policy for a va-
riety of tasks in an environment with only their language description available. Each trajectory τ i =
(li, {(si1, ai1), (si2, ai2), ..., (siT , aiT )}) consists of the language description and the observations sit ∈ S, actions
ait ∈ A taken over T timesteps.

Our aim is to predict the expert actions at, given a language instruction and past observations. Unlike some
prior works, we assume a single language instruction for the whole task, e.g., "Go to the red box and pick up the
green ball", instead of separate instructions for each sub-goal. Also note our trajectories are not labeled with any
rewards.

The challenge here is generalizing to unseen compositions of the language grammar. Considering the example in
Fig. 1, say we were given a new language instruction with the reverse order of sub-goals: "move black mug right
and pull the handle". Then an agent should still be able to solve the task and LISA is motivated to solve this issue.

4.1.2 Hierarchical Skill Abstractions
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Figure 2: LISA Architecture: The skill predictor f gets
the language instruction and a sequence of observations as
the input, processed through individual encoders. It predicts
quantized skill codes z using a learnable cookbook C, that
encodes different sub-goals, and passes them to the policy π.
LISA is trained end-to-end.

We visualize the working of LISA in Figure 2. Our
framework consists of two modules: a skill predictor
f : L×S → C and a policy π : S×C → A. Here, C ={
z1, . . . , zK

}
is a learnable codebook of K quantized

skill codes.

Our key idea is to break learning behavior from lan-
guage in two stages: 1) Learn discrete codes z, rep-
resenting skills, from the full-language instruction to
decompose the task into smaller sub-goals 2) Learn a
policy π conditioned only on these discrete codes. In
LISA, both stages are trained end-to-end.

Given an input τ = (l, {st, at}Tt=1), the skill predic-
tor f predicts a skill code at a timestep t as z̃ =
f(l, (st, st−1, ...)). These codes are discretized using
a vector quantization operation q(·) that maps a code z̃
to its closest codebook entry z = q(z̃). The quantiza-
tion operation q(·) helps in learning discrete codes and
acts as a bottleneck on passing language information.
We detail its operation in Sec. 4.2.

The chosen skill code z, is persisted for H timesteps
where H is called the horizon. After H timesteps, the
skill predictor is invoked again to predict a new skill.
This enforces the skill to act as a temporal abstraction, i.e. options [40]. The policy π predicts the action at at
each timestep t conditioned on a single skill code z that is active at that timestep. For π to correctly predict the
original actions, it needs to use the language information encoded in the skill codes.

LISA learns quantized skill codes in a codebook instead of continuous embeddings as this encourages reusing and
composing these codes together to pass information from the language input to the actual behavior. Our learnt
discrete skill codes adds interpretability and controllability to the policy’s behavior.

Finally, we note that LISA works similar to masked autoencoders (MAE) [44], a very scalable framework for
self-supervised learning. MAE masks parts of a signal and learns a latent representation to reconstruct the missing
parts. In our case, the trajectory (with language) is the input signal, and the actions and future states are masked 1.

4.2 Training LISA

Algorithm 1 Training LISA

Input: Dataset D of language-paired trajectories
Input: Num skills K and horizon H

1: Initialize skill predictor fϕ, policy πθ

2: Vector Quantization op q(·)
3: while not converged do
4: Sample τ =

(l, {s0, s1, s2...sT }, {a0, a1, a2...aT })
5: Initialize S = {s0} ▷ List of seen states
6: for k = 0..

⌊
T
H

⌋
do ▷ Sample a skill every H

steps
7: z ← q(fϕ(l, S))
8: for step t = 1..H do
9: akH+t ← πθ(z, S[: −H]) ▷ Use recent

H steps
10: S ← S ∪ {skH+t} ▷ Append last state
11: end for
12: Train fϕ, πθ using objective LLISA

13: end for
14: end while

Learning Discrete Skills. LISA uses Vector Quan-
tization (VQ), inspired from [45]. It is a natural and
widely-used method to map an input signal to a low-
dimensional discrete learnt representation. VQ learns
a codebook C ∈

{
z1, . . . , zK

}
of K embedding vec-

tors. Given an embedding z̃ from the skill predictor
f , it maps the embedding to the closest vector in the
codebook:

z = q(z̃) =:zk∈C ∥z̃ − zk∥F

This can be classically seen as learning K cluster cen-
ters via k-means [46].

Backpropagation through the non-differentiable quan-
tization operation is achieved by a straight-through
gradient estimator, which simply copies the gradients
from the decoder to the encoder, such that the model
and codebook can be trained end-to-end.

VQ enforces each learnt skill z to lie in C, which can
be thought as learning K prototypes or cluster centers

1We also tried reconstructing the future states but didn’t observe any benefits in our experiments.
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for the language embeddings using the seen states. This acts as a bottleneck that efficiently decomposes a language
instruction into sub-parts encoded as discrete skills.

LISA Objective. LISA is trained end-to-end using an objective LLISA = LBC + λLVQ, where LBC is the
behavior-cloning loss on the policy πθ, λ is the VQ loss weight and LVQ is the vector quantization loss on the
skill predictor fϕ given as:

LVQ(f) = Eτ [∥sg [q(z̃)]− z̃∥22] (1)

with z̃ = fϕ(l, (st, st−1, ..)).

sg [·] denotes the stop-gradient operation. LVQ is also called commitment loss. It minimizes the conditional
entropy of the skill predictor embeddings given the codebook vectors, making the embeddings stick to a single
codebook vector.

The codebook vectors are learnt using an exponential moving average update, same as [45].

𝑧 = 14

Figure 3: Behavior with fixed LISA options. We show the word clouds and the behavior of the policy obtained by using a
fixed skill code z = 14 for an entire episode. We find that this code encodes the skill “closing the drawer”, as indicated by the
word cloud. The policy executes this skill with a high degree of success when conditioned on this code for the entire trajectory,
across different environment initializations and seeds.

Avoiding language reconstruction. LISA avoids auxiliary losses for language reconstruction and it’s not obvious
why the skill codes are properly encoding language. It’s known that given a signal X and a code Z. Reconstructing
the signal X̃ = f(Z) using cross-entropy loss amounts to maximizing a lower bound to the Mutual Information
(MI) I(X,Z) between X and Z [47, 48]. In our case, we can write the MI between the skill codes and language
using entropies as: I(z, l) = H(z)−H(z | l), whereas methods that attempt to reconstruct language apply the
following decomposition: I(z, l) = H(l)−H(l | z) (where H(l), the entropy of language, is independent from
LISA’s skill encoder).

Thus we can avoid language reconstruction via cross-entropy loss by maximizing I(z, l) directly. In LISA,
Lvq = −H(z | l), and we don’t observe a need to place a constraint on H(z) as the codes are diverse, needing to
encode enough information to correctly predict the masked actions. 1

As a result, LISA can maximize the MI between the learnt skills and languages without auxiliary losses and
enforcing only Lvq on the skill codes. We empirically estimate the MI and find that our experiments confirm this
in Sec 5.5.

4.2.1 LISA Implementation

LISA can be be implemented using different network architectures, such as Transformers or MLPs.

In our experiments, we use Transformer architectures with LISA, but we find that out method is effective even
with simple architectures choices such as MLPs, as shown in the appendix. Even when using Transformers for
both the skill predictor and the policy network, our compute requirement is comparable to the non-hierarchical
Flat Transformer policy as we can get away with using fewer layers in each module.

Language Encoder. We use a pre-trained DistilBERT [49] encoder to generate language embeddings from the
text instruction. We further fine-tune the language encoder to the vocabulary of the environment. We use the full
language embedding for each word token, and not a pooled representation of the whole text.

Observation Encoder. For image observations, we use convolution layers to generate embeddings. For simple
state representations, we use MLPs.

1In our experiments, we tried enforcing a constraint on H(z) by using extra InfoNCE loss term without success.
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Skill Predictor. The skill predictor network f is implemented as a small Causal Transformer network that takes
in the language embeddings and the observation embeddings at each time step. The language embeddings are
concatenated at the beginning of the observation embeddings before being fed into the skill predictor

The network applies a causal mask hiding the future observations.

Policy Network. Our policy network π, also implemented as a small Causal Transformer inspired by Decison
Transformer (DT) [50]. However, unlike DT, our policy is not conditioned on any reward signal, but on the skill
code. The sequence length of π is the horizon H of the skills which is much smaller compared to the length of the
full trajectory.

Flat Baseline. Our flat baseline is implemented similar to LISA, but without a skill predictor network. The
policy here is a Causal Transformer that directly takes the language instruction and past observations as inputs to
predict the policy. We found this baseline to be in-efficient at handling long-range language instructions, needing
sequence lengths of 1000 on complex environments such as BabyAI-BossLevel in our experiments.

Table 1: Imitation Results: We show our success rates (in %) compared to the original method and a flat non-hierarchical
baseline on each dataset. LISA outperforms all other methods in the low-data regime, and reaches similar performance as the
number of demonstrations increases. Best method shown in bold.

Task Num Demos Original Flat Baseline LISA

BabyAI GoToSeq 1k 33.3± 1.3 49.3± 0.7 59.4± 0.9
BabyAI GoToSeq 10k 40.4± 1.2 62.1± 1.2 65.4± 1.6
BabyAI GoToSeq 100k 47.1± 1.1 74.1± 2.3 77.2± 1.7

BabyAI SynthSeq 1k 12.9± 1.2 42.3± 1.3 46.3± 1.2
BabyAI SynthSeq 10k 32.6± 2.5 52.1± 0.5 53.3± 0.7
BabyAI SynthSeq 100k 40.4± 3.3 64.2± 1.3 61.2± 0.6

BabyAI BossLevel 1k 20.7± 4.6 44.5± 3.3 49.1± 2.4
BabyAI BossLevel 10k 28.9± 1.3 60.1± 5.5 58± 4.1
BabyAI BossLevel 100k 45.3± 0.9 72.0± 4.2 69.8± 3.1

LOReL - States (fully obs.) 50k 6± 1.2† 33.3± 5.6 66.7± 5.2
LOReL - Images (partial obs.) 50k 29.5± 0.07 15± 3.4 40± 2.0

5 Experiments

In this section, we evaluate LISA on grid-world navigation and robotic manipulation tasks. We compare the
performance of LISA with a strong non-hierarchical baseline in the low-data regime. We then analyse our learnt
skill abstractions in detail – what they represent, how we can interpret them and how they improve performance on
downstream composition tasks. Finally, we show ablation studies on important hyperparameters and architecture
choices.

5.1 Datasets

Several language-conditioned datasets have been curated as off late. [27, 51, 4, 2, 52, 53, 26, 54] are some
examples. Nevertheless, a lot of these datasets focus on complex-state representations and navigation in 3D
environments, making them challenging to train on and qualitatively analyze our skills as shown in Fig. 3. We
found BabyAI, a grid-world navigation environment and LOReL, a robotic manipulation environment as two
diverse test beds that were very different from each other and conducive for hierarchical skill learning as well as
detailed qualitative and quantitative analysis of our learned skills and we use them for our experiments.

BabyAI Dataset. The BabyAI dataset [4] contains 19 levels of increasing difficulty where each level is set in a
grid world and an agent sees a partially observed ego-centric view in a square of size 7x7. The agent must learn to
perform various tasks of arbitrary difficulty such as moving objects between rooms, opening or closing doors, etc.
all with a partially observed state and a language instruction. The dataset provides 1 million expert trajectories
for each of the 19 levels, but we use 0.1− 10% of these trajectories to train our models. We evaluate our policy
on 100 different instructions from the gym environment for each level, which contains unseen environments and
language instructions given the limited data we use for training. More details about this dataset can be found in
the appendix and in the BabyAI paper.

†We optimized a language-conditioned BC model following the details in the appendix of the LOReL paper to the best of
our abilities but could not get better performance.
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LOReL Sawyer Dataset. This dataset [2] consists of pseudo-expert trajectories collected from a RL buffer of a
random policy and has been labeled with post-hoc crowd-sourced language instructions. Hence, the trajectories
complete the language instruction provided but may not necessarily be optimal. This makes this dataset extremely
difficult to use in a behavior cloning (BC) setting. Despite this, we are able to achieve good performance on this
benchmark and are able to learn some very useful skills. The LOReL Sawyer dataset contains 50k trajectories
of length 20 on a simulated environment with a Sawyer robot. We evaluate on the same set of 6 tasks that the
original paper does for our results in Table 4: close drawer, open drawer, turn faucet right, turn faucet left, move
black mug right, move white mug down. More details can be found in the appendix and in the LOReL paper.

5.2 Baselines

Original. These refer to the baselines from the original paper for each dataset. For BabyAI, we trained their
non-hierarchical RNN based method on different number of trajectories. Similarly, on LOReL we compare with
the performance of language-conditioned BC. The original LOReL method uses a planning algorithm on a learned
reward function to get around the sub-optimal nature of the trajectories. We found the BC baseline as a more fair
comparison, as LISA is trained using BC as well. Nonetheless, we compare with the original LOReL planner in
Section 5.7 for composition tasks. LOReL results in Table 4 refer to the performance on the 6 seen instructions in
the LOReL evaluation dataset, same as ones reported in the original paper.

Flat Baseline. We implement a non-hierarchical baseline using Transformers, the details of which are in section
4.2.1.

5.3 How does the performance of LISA compare with non-hierarchical baselines in a low-data regime?

We consider three levels from the BabyAI environment and the LOReL Sawyer environment. From the BabyAI
environment, we consider the GoToSeq, SynthSeq and BossLevel tasks since they are challenging and require
performing several sub-tasks one after the other. Since these levels contain instructions that are compositional in
nature, when we train on limited data, the algorithm must be able to learn the skills which form these complex
instructions to generalize well to unseen instructions at test time. Our results are given in Table 4. We train
the models on a random sample of 1k, 10k and 100k trajectories on the BabyAI dataset and 50k trajectories
on the LOReL dataset. We use more data from the LOReL dataset because of the sub-optimal nature of the
trajectories. On all the environments, our method is competitive to or outperforms the strong non-hierarchical
decision transformer baseline. The gap grows larger as we reduce the number of trajectories we train on, indicating
that our method is able to leverage the common sub-task structures better and glean more information from
limited data. As mentioned above, we evaluate on the same 6 seen instructions the original LOReL paper did. We
also evaluated the performance on varying the language instructions, similar to the original paper with results in
appendix.

We were pleasantly surprised that LISA was 2x better than the flat baseline on LOReL tasks, reaching 40% success
rate despite the sub-optimal nature of the data. One explanation we can think of is that the discrete skill codes are
able to capture different ways of doing the same task, thereby allowing LISA to learn an implicit multi-modal
policy. This is not possible with the flat version as it has no way to compartmentalize these noisy trajectories, and
perhaps tends to overfit on this noisy data, leading to performance degradation.

5.4 What skills does LISA learn? Are they diverse?

Figure 4: LISA Skill Heat map on LOReL. The sparsity and the bright spots show
that specific options correspond to specific language tokens and by extension, skills

To answer this question, we
analyse the skills produced by
LISA and the language tokens
corresponding to each skill. We
plot a heat map in Figure 4 cor-
responding to the correlation
between the language tokens
and skill codes. Here, we plot
the map corresponding to the
LOReL dataset. From the fig-
ure, we can see that certain skill
codes correspond very strongly
to certain language tokens and
by extension, tasks. We also see the sparse nature of the heat maps which indicates that each skill corresponds
to distinct language tokens. We also plot word clouds corresponding to four different options in the LOReL
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environment in figure 5 and we notice that different options are triggered by different language tokens. From
the figure, it is clear that the skill on the top left corner corresponds to close the drawer and the skill on the top
right corresponds to turn faucet left. Similar word clouds and heat maps for the BabyAI environments are in the
appendix.

5.5 Do the skills learned by LISA correspond to interpretable behavior?

Figure 5: Word clouds on LOReL: We show the
most correlated words for 4 different learnt skill
codes on LOReL. We can see that the codes rep-
resent interpretable and distinguishable skills. For
e.g, the code on the top left corresponds to closing
the drawer. (note that container is a synonym for
drawer in the LOReL dataset)

We have seen that the different skills correspond to different lan-
guage tokens, but do the policies conditioned on these skills be-
have according to the language tokens? To understand this, we fix
the skill code for the entire trajectory and run the policy i.e. we
are shutting off the skill predictor and always predicting the same
skill for the entire trajectory. As we can see from the word cloud
and the corresponding GIF in figure 3, the behaviour for skill code
14 is exactly what we can infer from the language tokens in the
word cloud – close the drawer. More such images and GIFs can
be found in the appendix.

5.6 Why do the skills
learned by LISA have such a strong correlation to language?

As mentioned in section 4.2, the commitment loss from VQ acts as
a way to increase the MI between the language and the skill codes
during training. This allows the codes to be highly correlated with
language without any reconstruction losses. To analyze this, we
plot the MI between the options and the language during training on the BabyAI BossLevel with 1k trajectories and
the plot can be seen in figure ??. The plots show the MI increasing over training for a wide range of settings as we
vary the number of skills and the horizon. In the ablation studies below, we report the success rate corresponding to
each of these curves and we notice that there’s almost a direct correlation with increasing MI and task performance.
This is very encouraging since it clearly shows that the skills are encoding language and that directly impacts the
performance of the behavior cloning policy.

5.7 Can we use the
learned skills to perform new composition tasks?

Table 2: LISA Composition Results: We show our perfor-
mance on the LOReL Sawyer environment compared to base-
lines

Method Success Rate (in %)

Flat 8.33
LOReL Planner 20.1
LISA (Ours) 22.5

To test our composition performance, we evaluate on
LOReL composition tasks using images. To this end,
we handcraft 12 composition instructions, some of
which are from the LOReL training data and some of
which are unseen. We have listed these instructions in
the appendix but one such example is “pull the handle
and move black mug down”. As we can see, over 10
different runs, our performance is more than 2x that of
the non-hierarchical baseline. We also compare with the original LOReL planner on these composition tasks and
we notice that we perform slightly better despite them having access to a reward function and a dynamics model.
Note that we set the time horizon to 40 from the usual 20 for all the methods while performing these experiments
because of the compositional nature of the tasks.

5.8 Ablation studies

Table 3: Ablation on number of options. We fixed
the horizon to be 10 for these experiments

Number of Options 1 10 20 50 100

Success Rate (in %) 44 47 47 47 43

Table 4: Ablation on horizon. We fixed the number
of options to be 50 for these experiments

Horizon 1 5 10 50

Success Rate (in %) 32 52 47 47

For the sake of time, all our ablations were performed with a 1-layer, 4-head transformer for the skill predictor
and for the policy. All our ablations are on the BabyAI-BossLevel environment with 1k expert trajectories.

Our first experiment varies the horizon of the skills. The table below shows the results on BabyAI BossLevel for 4
different values of the horizon. We see that the method is fairly robust to the different choices of horizon unless
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we choose a very small horizon. For this case, we notice that a horizon of 5 performs best, but this could vary with
different tasks.

We also tried varying the number of skills the skill-predictor can choose from and found that this hyperparameter
is fairly robust as well unless we choose an extremely high or low value. We suspect using more skills worsens
performance because it leads to a harder optimization problem and the options don’t clearly correspond to specific
language skills. Using only one skill also doesn’t work very well because its hard to effectively capture the space
of all language instructions with just one skill.

6 Limitations and Future Work

We present LISA, a hierarchical imitation learning framework that can be used to learn interpretable skill
abstractions from language-conditioned expert demonstrations. We showed that the skills are diverse and can be
used to solve long-range language tasks and that our method outperforms a strong non-hierarchical baseline in the
low-data regime.
However, there are several limitations to LISA and plenty of scope for future work. One limitation of LISA is that
there are several hyperparameters to tune that may affect performance like the number of options and the horizon
for each option. It certainly helps to have a good idea of the task to decide these hyperparameters even though the
ablations show that the method is fairly robust to these choices. Its also useful to learn the horizon for each skill
by learning a termination condition and we leave this for future work.
Although our method has been evaluated on the language-conditioned imitation learning setting, its not difficult to
modify this method to make it work for image goals or demos, and in the RL setting as well. Its interesting to see
if the vector quantization trick can be used to learn goal-conditioned skills in a more general framework.
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Appendix

A More visualizations

A.1 Generating heat maps and word clouds

To generate heat maps and word clouds, for each evaluation instruction, we run the model and record all the
skill codes used in the trajectory generated. We now tokenize the instruction and for each skill code used in the
trajectory, record all the tokens from the language instruction. Once we have this mapping from skills to tokens,
we can plot heat maps and word clouds. This is the best we can do since we don’t know exactly which tokens in
the instruction correspond to the skills chosen. Therefore, these plots can tend to be a little noisy but we still see
some clear patterns. Especially in BabyAI, since the vocabulary is small, we see that several skills correspond to
the same tokens because many instructions contain the same tokens. But in LOReL because each task uses almost
completely different words, we can see a very sparse heat map with clear correlations.

For reader viewability and aiding the interpretability on the LISA skills, we show below the unnormalized
heatmaps showing the skill-word correlations, the column normalized heatmaps showing word frequencies for
each skill as well as the row normalized showing the skill frequencies for each word.

A.2 BabyAI

Figure 7: Skill Heat map on BabyAI BossLevel

Figure 8: Word Freq. for each skill on BabyAI BossLevel (column normalized)
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Figure 9: Skill Freq. for each word on BabyAI BossLevel (row normalized)

A.3 WordClouds

Due to the small vocabulary in BabyAI environment, its hard to generate clean word clouds, nevertheless, we
hope they help with interpreting LISA skills.

Figure 10: Word Cloud on BabyAI BossLevel for z = 1

Figure 11: Word Cloud on BabyAI BossLevel for z = 13

Figure 12: Word Cloud on BabyAI BossLevel for z = 37
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A.4 LOReL Sawyer

Figure 13: Skill Heat map on LOReL Sawyer

Figure 14: Word Freq. for each skill on LOReL Sawyer (column normalized)

Figure 15: Skill Freq. for each word on LOReL Sawyer (row normalized)
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A.5 Behavior with fixed skills

Figure 16: Behavior and language corresponding to skill code 4: “turn faucet left”

Figure 17: Behavior and language corresponding to skill code 15: “move white mug right”

Figure 18: LOReL Composition task: “close drawer and turn faucet left”
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B Datasets

B.1 BabyAI Dataset

Figure 19: BabyAI BossLevel

The BabyAI dataset [4] contains 19 levels of increasing difficulty where each level is set in a grid world where
an agent has a partially observed state of a square of side 7 around it. The agent must learn to perform various
tasks of arbitrary difficulty such as moving objects between rooms, opening doors or closing them etc. all with a
partially observed state and a language instruction.
Each level comes with 1 million language conditioned trajectories, and we use a small subset of these for our
training. We evaluate our model on the environment provided with each level that generates a new language
instruction and grid randomly.
We have provided details about the levels we evaluated on below. More details can be found in the original paper.

B.1.1 GoToSeq

Sequencing of go-to-object commands.
Example command: “go to a box and go to the purple door, then go to the grey door”
Demo length: 72.7± 52.2

B.1.2 SynthSeq

Example command: “put a purple key next to the yellow key and put a purple ball next to the red box on your left
after you put a blue key behind you next to a grey door”
Demo length: 81.8± 61.3

B.1.3 BossLevel

Example command: “pick up a key and pick up a purple key, then open a door and pick up the yellow ball”
Demo length: 84.3± 64.5

B.2 LOReL Sawyer Dataset

This dataset [2] consists of pseudo-expert trajectories collected from a RL buffer of a a random policy and has
been labeled with post-hoc crowd-sourced language instructions. Therefore, the trajectories complete the language
instruction provided but may not necessarily be optimal. The Sawyer dataset contains 50k language conditioned
trajectories on a simulated environment with a Sawyer robot of demo length 20.
We evaluate on the same set of instructions the original paper does for 4, which can be found in the appendix of
the original paper. These consist of the following 6 tasks and rephrasals of these tasks where they change only the
noun, only the verb, both noun and verb and rewrite the entire task (human provided). This comes to a total of 77
instructions for all 6 tasks combined. An example is shown below and the full list of instructions can be found in
the original paper.
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Figure 20: LOReL Sawyer Environment

1. Close drawer
2. Open drawer
3. Turn faucet left
4. Turn faucet right
5. Move black mug right
6. Move white mug down

Table 5: LOReL Example rephrasals for the instruction “close drawer”
Seen Unseen Verb Unseen Noun Unseen Verb + Noun Human Provided

close drawer shut drawer close container shut container push the drawer shut

For the composition instructions, we took these evaluation instructions from the original paper and combined
them to form 12 new composition instructions as shown below.

Table 6: LOReL Composition tasks
Instructions

open drawer and move black mug right
pull the handle and move black mug down

move white mug right
move black mug down

close drawer and turn faucet right
close drawer and turn faucet left

turn faucet left and move white mug down
turn faucet right and close drawer

move white mug down and turn faucet left
close the drawer, turn the faucet left and move black mug right

open drawer and turn faucet counterclockwise
slide the drawer closed and then shift white mug down

We included the instructions “move white mug right” and “move black mug down” as composition tasks here in
the hope that we may have skills corresponding to colors like black and white or directions like right and down
that can be composed to form these instructions but we did not observe such behaviour.

C Training details

We plan to release our code on acceptance. Here we include all hyper-parameters we used. We implement our
models in PyTorch. Our original flat baseline implementation borrows from Decision Transformer codebase which
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uses GPT2 to learn sequential behavior. However, we decided to start from scratch in order to implement LISA
to make our code modular and easily support hierarchy. We use 1 layer Transformer networks for both the skill
predictor and the policy network in our experiments for the main paper. We tried using large number of layers but
found them to be too computationally expensive without significant performance improvements. In BabyAI and
LOReL results we train all models for three seeds.

For BossLevel environment we use 50 skill codes, for other environments we used the settings detailed in the
table below:

C.1 LISA

Table 7: LISA Hyperparameters
Hyperparameter BabyAI LORL
Transformer Layers 1 1
Transformer Embedding Dim 128 128
Transformer Heads 4 4
Skill Code Dim 16 16
Number of Skills 20 20
Dropout 0.1 0.1
Batch Size 128 128
Policy Learning Rate 1e− 4 1e− 4
Skill Predictor Learning Rate 1e− 5 1e− 5
Language Model Learning Rate 1e− 6 1e− 6
VQ Loss Weight 0.25 0.25
Horizon 10 10
VQ EMA Update 0.99 0.99
Optimizer Adam Adam

C.2 Baselines

Table 8: Flat Baseline Hyperparameters
Hyperparameter BabyAI LORL
Transformer Layers 2 2
Transformer Embedding Dim 128 128
Transformer Heads 4 4
Dropout 0.1 0.1
Batch Size 128 128
Policy Learning Rate 1e− 4 1e− 4
Language Model Learning Rate 1e− 6 1e− 6
Optimizer Adam Adam

For the original baseline for BabyAI, we used the code from the original repository. For the LOReL baseline, we
used the numbers from the paper for LOReL Images. For LOReL States BC baseline, we implemented it based on
the appendix section of the paper. We ran the LOReL planner from the original repository for the composition
instructions.

C.3 Ablations

As mentioned in the paper, all our ablations were performed on BabyAI BossLevel with 1k trajectories over a
single seed for the sake of time. Unless otherwise specified, we use the following settings. We use a 1-layer,
4-head transformer for both the policy and the skill predictor. We use 50 options and a horizon of 10. We use a
batch size of 128 and train for 2500 iterations. We use a learning rate of 1e-6 for the language model and 1e-4 for
the other parameters of the model. We use 2500 warm-up steps for the DT policy. Training was done on GPUs.

D Detailed LOReL Sawyer results

We provide details results on the LOReL evaluation instructions below for LISA and the flat baseline in the same
format as the original paper. The results are averaged over 10 runs. The time horizon used was 20 steps.

19



Table 9: Task-wise success rates (in %) on LOReL Sawyer.
Task Flat LISA

close drawer 10 100
open drawer 60 20
turn faucet left 0 0
turn faucet right 0 30
move black mug right 20 60
move white mug down 0 30

Table 10: Rephrasal-wise success rates (in %) on LOReL Sawyer.
Rephrasal Type Flat LISA

seen 15 40
unseen noun 13.33 33.33
unseen verb 28.33 30
unseen noun+verb 6.7 20
human 26.98 27.35

E More experiments

E.1 Can we leverage the interpretability of the skills produced by LISA for manual planning?

Since our skills are so distinct and interpretable, its tempting to try and manually plan over the skills based on the
language tokens they encode. In the LOReL environment, using the same composition tasks as section above, we
observe the word clouds of options and simply plan by running the fixed option code corresponding to a task for
a certain horizon and then switch to the next option corresponding to the next task. This means we are using a
manual (human) skill predictor as opposed to our trained skill predictor. While this doesn’t work as well because
skills are a function of both language and trajectory and we can only interpret the language part as humans, it still
shows how interpretable our skills are as humans can simply observe the language tokens and plan over them to
complete tasks. We show a successful example and a failure case below for the instruction “close drawer and
turn faucet right” in figure 21. We first observe that the two skills we want to compose are Z = 14 and Z = 2 as
shown by the word clouds. We then run skill 14 for 20 steps and skill 2 for 20 steps. In the failure case, the agent
closes the drawer but then pulls it open again when trying to turn the faucet to the right.

E.2 Do the skills learned transfer effectively to similar tasks?

We want to ask the question whether we can use the skills learned on one task as a initialization point for a similar
task or even freeze the learned skills for the new task. To this end, we set up experiments where we trained LISA
on the BabyAI GoTo task with 1k trajectories and tried to transfer the learned options to the GoToSeq task with 1k
trajectories. Similarly we trained LISA on GoToSeq with 1k trajectories and tried to transfer to BossLevel with 1k
trajectories. The results are shown in figures 22 and 23 respectively.

As we can see from the GoToSeq experiment in figure 22, there is no major difference between the three methods.
We notice that we can achieve good performance even by holding the learned option codes from GoTo frozen.
This is because the skills in GoTo and GoToSeq are very similar except that GoToSeq composes these skills as
tasks. We also notice that finetuning doesn’t make a big difference – once again probably because the skills are
similar for both environments.
In the BossLevel case in 23, however, we do notice that the frozen skills perform slightly worse than the other two
methods. This is because the BossLevel contains more skills than those from GoToSeq. We also notice that the
performance of finetuning and starting from scratch is nearly the same. This could be because the meta-controller
needs to adapt to use the new skills in the BossLevel environment anyway and there is no benefit from loading
learned options here.

E.3 State-based skill-predictor

We have already spoken in section 4.2 about the fact that our method using two transformers doesn’t necessarily
mean its more compute-heavy than the non-hierarchical counterpart. But to test whether we really need two
transformers, we perform an ablation study that replaces the skill predictor to be just a state-based selector MLP as
opposed to a trajectory-based transformer. Our results show that the performance is only slightly worse when using
a state-based skill predictor in this case, but once again this may not be the case in more complex environments.
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Figure 21: We show a successful manual planning and unsuccessful manual planning example for the instruction
“close the drawer and turn the faucet right”

However, we notice that the skills collapsed in this case and the model tends to use fewer skills than normal as
shown in figure 24. This is expected because the skill predictor is now predicting skills with much less information.

Table 11: Comparing state-based MLP skill predictor vs trajectory-based transformer skill predictor. We fixed the
number of options to be 50 and horizon as 10 for these experiments

Skill Predictor Architecture Success Rate

State-based MLP 46%
Trajectory-based Transformer 47%

E.4 Continuous skill codes

We also compare to the non-quantized counterpart where we learn skills from a continuous distribution as opposed
to a categorical distribution. We expect this to perform better because the skill predictor has access to a larger
number of skill codes to choose from and this is what we observe in table 12. However, this comes at the price of
interpretability and its harder to interpret and choose continuous skill codes than discrete codes. We also observe
that on the LOReL with states environment, using discrete codes performs better than using continuous codes
(table 13). This could be because learning a multi-modal policy with discrete skills is an easier optimization
problem than learning one with continuous skills (see the end of section 5.3).
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Figure 22: Transferring skills on the BabyAI GoToSeq environment

Figure 23: Transferring skills on the BabyAI BossLevel environment

Table 12: Ablation on Quantization on BabyAI BossLevel. We fix number of options to 50 and horizon to 10
Skill codes Success Rate (in %)

Continuous 51
Discrete 47

22



Figure 24: State-based skill predictor heat map shows that the model tends to use fewer options compared to
figure 7

Table 13: Ablation on Quantization on LOReL with states on seen tasks. We fix number of options to 20 and horizon to 10
Skill codes Success Rate (in %)

Continuous 60.0
Discrete 66.7
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