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Abstract

Undergraduate students’ success in coursework is associated with persistence along
a degree trajectory. The ability to predict future courses given a past sequences
of courses is, therefore, of great value to educators and universities, as it can help
degree-seeking students select which courses to take and when to take them. To
add to qualitative findings from the major forecasting field, the following study
uses LSTM and RoBERTa models to predict students’ future courses given their
freshman course histories, as well as make predictions on the degree of naturalness
of a freshman course trajectory. To accomplish these tasks, we drew upon 26,892
undergraduate students’ enrollment decisions data from Carta, a Stanford web-
based course exploration tool. Students freshman-year courses and grades were
represented as one-hot encodings and modeled at the character level. Results
suggest that the pre-trained RoBERTa model was substantially more accurate
(89.01%) in future course predictions, that bidirectional representation of course
names is important for course prediction tasks, and that students naturally enrolled
in courses in a larger number of distinct subjects than in a lower number of
distinct subjects during their freshman years. These findings, while consistent with
students’ course exploration trends at liberal arts schools, merit future exploration
to determine the impact of students’ grades on their decisions to explore and
commit to a degree trajectory.

1 Key Information to include

* Mentor: Kathy Yu

2 Introduction

Course selection is a high-stakes endeavor for college students. Students’ experiences in early,
freshman-year courses are likely to determine a number of future outcomes, including academic
success, satisfaction, and persistence along a degree trajectory [1]. However, many universities
(particularly, liberal arts schools) encourage exploration and breadth in student coursework as core to
their academic program. Given students’ need to balance exploration with persistence to complete
degree programs, this study examines the composition of freshman-year course histories at a medium-
sized liberal arts university and leverages them to predict future (sophomore-year) courses, used as a
proxy for academic trajectory persistence.

Though degree trajectory forecasting and course predictions have been explored from sociology
perspectives ( [2], [3]) and through various quantitative, language-modeling techniques ( [4]), results
from these studies are often presented at a large grain size. Our approach builds on course prediction
as a language modeling task and differs from prior studies by (1) measuring the "naturalness" of
students’ course histories, which measures the likelihood that a student would take on a particular
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course history, (2) by taking into account grade-level performances in students’ freshman year courses,
and (3) by making course predictions at the character level rather than by words or subwords.

To accomplish this task, we developed character-level course and grade embeddings and compared
course prediction performance between a stacked LSTM model and a fine-tuned RoBERTa (citation
to the ROBERTa paper) encoder model. Training at the character-level afforded the opportunity
to examine model accuracy in course prefixes (e.g., “CS”) and course levels (e.g., “CS124” vs.
“CS224n”). Through this approach we address the following research questions:

* What improvements in course-prediction accuracy can be made by modeling and predicting
students’ future courses (1) at the character-level and (2) using grade-level embeddings?

* What can we learn about the naturalness (likelihood) of freshman year course sequences
and the natural number of subjects taken?

3 Related Work

3.1 Pre-training Models’ Inspirations: BERT and RoBERTa

Large encoder models, such as BERT, and RoBERTa, serve as the foundation for our study’s
overarching task. Both are pre-trained on masked language modeling and next-sentence prediction,
which corresponds to the course sequences and course characters this paper aims to analyze. BERT [5]],
Bidirectional Encoder Representations from Transformers, is the original conceptual model for this
project because it achieves state-of-the-art performance on both sentence-level and token-level tasks.
Its use of a Masked Language Model(MLM) pre-training objective fuses contexts on the left and
right sides of masked tokens in a deeper representation level than other unidirectional models. Its
bidirectionality also helps integrate adjacent courses’ information, which facilitates the pre-training
process on a character level.

Our experiment imports ROBERTa [6] as it improves the performance of BERT on GLUE (General
Language Understanding Evaluation) tasks by modifying some design choices. Since RoOBERTa
was pre-trained with a 160-GB, uncompressed English data set, the transformer already contains
some information features of the characters. This coverage could help facilitate connections among
characters, such as understanding the string "CS" as it semantically relates to "Computer Science"
instead of a simple concatenation of letter "C" and "S."

3.2 Forecasting Students’ Academic Trajectories with Previous Courses

Our work shares a data set with and builds from the findings of Lang and colleagues [7], who used
word vector embeddings to represent courses and a shallow-learning algorithm to forecast student
majors. Lang and colleagues reported that students’ first 25 courses predicted their eventual major
thirty times better than random guessing. We aim to create deeper representations of course names
using RoBERTa and hope to further improve the accuracy of course predictions using character-level
specificity.

Using neural architectures to predict course sequences, make recommendations, and forecast majors
are not uncommon. Shao, Guo, and Pardos [4] built upon BERT’s encoder base and introduced
PLAN-BERT, which addresses a need for multiple consecutive course recommendations (e.g., a
term’s worth of courses). A number of studies have also incorporated students’ grades into prediction
models, although these studies have predicted grades as outcomes rather than utilized grades as input
embeddings [8] [9]. Regardless, this growing body of literature suggests that forecasting academic
trajectories is a relevant and timely problem space given the predictive power of encoder models.

4 Approach

Task Summary: We aim to do the following:

(1) to predict future course, given sequence of past freshman year courses (+sequence of past grades)
(2) to predict the negative log-likelihood (cross-entropy loss) of a given course sequence, which
measures the degree of “naturalness” of a sequence, as well as the number of distinct course subjects
taken in freshman year.



Data-cleaning and pre-preprocessing: We were given access to the data by Stanford’s Carta
Decision Pathways Lab in a 1.5 million-row, 37-column CSV file, organized by student-enrollment
decision pairings. 33,257 students over 20 years (2000-2020) are represented in the data. The original
file contained extraneous columns that were not directly related to our research question. As such, we
eliminated all but 6 columns and converted them into a 1,500,000 by 6 data frame using the Pandas
library. The retained columns contained (1) a unique student identifier, (2) the course enrollment term
and year, (3) the course subject and (4) catalog number, (5) the student’s final grade in the course,
and (6) the student’s degree plan. We concatenated the course subject and catalog number to support
our models’ character-level embeddings where both letters and numbers are significant; for instance,
"PEDS" and "216" became "PEDS216".

For the data to be pliable with our baseline model, we organized it into a master list of 33,257
dictionaries, where each dictionary represented one student’s enrollment history. Each dictionary
contained four keys: ’course-year’, paired with a list of all years when courses were taken;
"course-list’, paired with a list of all courses taken by the student; ’grade-list’, paired with a list of all
grades received by the student; and ’degree-plan’, paired with the degree declared by the student. All
lists were constructed such that order was preserved. For example, if a student’s dictionary contained
the following: Course-Year: [2019, 2018...], Course-List: [SOC102, PEDS216...], Grade-List:
[A, B+, ...], this would indicate that the student took SOC102 in 2019 and received an "A", took
PEDS216 in 2018 and received a B+, and so forth. Students represented in the data frame with empty
dictionaries were removed. Finally, we extracted students’ first sophomore-year courses as labels for
the course prediction task.

Feature Representation: We created sequences of courses where each course represented
a Course subject + Course Catalog Number (for instance, "CS" + "106A" -> "CS106A"). We then
created one-hot encodings for each character in the sequence of course catalog numbers. In order
to convert the characters to numbers, we created a char2int dictionary that mapped each character
to its corresponding integer value. We modeled features at the character level because the one-hot
embedding dimensions would be smaller and less sparse than course-level one-hot embeddings.

To make the feature representation of each student uniform in length, we found the maxi-
mum number of characters in all students’ course sequences and padded the other course sequences
to equal the length of the maximum course sequence (252 characters). Our character space contained
39 possible characters: 26 English letters, 10 numeric digits, 1 comma, an ’> symbol, and 1 *%’
padding character.

In order to include information about students’ grades in freshman courses, we created one-
hot embeddings representing grades that students earned in each course in their course list. There
were 49 possible grade options: CCR’,’S’, °’C+’,’B+’, ’C-",’B’, ’B-", ’A’, ’A-",’D’, ’C’, A+’ '+,
'NC’, ’**,°W’,’RP’, "HP’, ’P-’, 'NP’, °’L’, ’D-’, °’D+’, "GNR’, '"H’, ’P’, "MP’, ’N’, ’I’, ’3.3*, ’3.4,
2.9’,’LP’,’U’, ’P+7,’3.6°, 'N-", ’4.1°, "KM, ’K’, *-*, ’3.7°,°4.3°,°4.0°,’3.5",°3.2°,’3.9°, ’3.1", %’).
Thus, we created each grade representation to be a 49-component, one-hot encoding.

Baseline Model: Stacked LSTM with Course Sequence Embeddings.

We created a baseline model: a character-level sequence model that comprised of 2 LSTM layers and
one Linear layer. The first LSTM layer outputted a hidden state with dimensions that represented
(sequence length)*(first hidden size) where we set return sequences = True. The second LSTM’s
hidden state had dimensions equal to the second hidden size and again, we set return sequences =
True. This was smaller than the first hidden state’s size. We used ReLU activation functions between
these layers. Further, we employed the Adam optimizer and used the Cross-Entropy Loss function as
our training objective. Importantly, our approach and implementation were completely original. The
feature representations and baseline models were generated entirely from our own efforts.

Stacked LSTM with Course Sequence and Grade Embeddings. We created a grade embedding
matrix for each student by finding the maximum number of courses taken (and hence, grades received)
by any student in the training data. Then, we padded all other embeddings such that the sequence
length was uniform. Thus, the dimensions of this matrix were (number of students, max number
of courses, grade embedding dimension). Since we had to concatenate this matrix with the course
sequence input matrix and wanted the first and second dimensions to match, we padded the grade
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Figure 1: Baseline Model Summary

embeddings further such that the second dimension represented the maximum number of characters
in any course sequence. Then we concatenated the grade embedding matrix to the course sequence
embedding matrix in the last dimension. Finally, we used Truncated SVD to extract the most important
39 components of the last dimension, so as to reduce the last dimension size to the embedding size of
the course sequence matrix (since this was the shape required by the model).

Encoder Model: In accordance with the second aim of this project, we wanted to use a technique to
measure the naturalness of a freshman course sequence. Thus, we used a pre-trained language model
and fine-tuned it on our data, as our data consists of courses that are different than English language
words that language models are pre-trained on. Since RoBERTa was trained on Masked Language
Modelling and Next Sentence Prediction tasks, we used it to determine the negative log-likelihood
through the cross-entropy loss of a course sequence. This, in turn, allowed us to determine the
naturalness score of each course sequence.

5 Experiments

5.1 Data

The data are described in the section above. Before running the experiments, we randomly sampled
90% of the data as our training data and left the remaining 10% as the test data. Data for the grade-
level LSTM model were split into batches of 128 in order to be processed by Google Colab, as the
high dimensionality of the embeddings matrix made modeling with the entire data set computationally
intractable.

5.2 [Evaluation Method

For the two LSTM experiments, we compared the number of characters that matched ground truth
outputs and hence computed character-level accuracies of model outputs. Thus we defined the
following evaluation metrics:

Fraction of Matching Characters: We compared the fraction of common characters in the model
output course sequences and their corresponding ground truth labels.

Character-Level BLEU Score: We computed the BLEU scores of each of the models’ output course
sequences, where we took a course sequence to represent a sentence of characters. This took into
account the number of matched character-level n-grams in model outputs and data labels, just as a
character-level BLEU score would.

We also used course-level accuracy and negative log-likelihood(cross-entropy loss) as mea-
sures of accuracy of course prediction and unnaturalness (unlikeliness) of a course sequence,
respectively.

5.3 Experimental Details

For the Baseline LSTM Model and LSTM with grade embeddings, we used ReLU activation
functions between both hidden layers, the Adam optimizer, as well Cross-Entropy Loss as our
objective function. While the number of training examples (students) was 33,196, the number of
validation examples was 3,329. Batches of the size of 128 for the training process in the grade-level
LSTM due to the computational expenses imposed by high-dimension embeddings.



The plots below represent the training loss over time for the Baseline LSTM model (see
Figure 2) and for the LSTM model with grade embeddings (see Figure 3) respectively:
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Figure 2: Baseline LSTM Training Loss Plot
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Figure 3: LSTM with Grade Embeddings Model Training Loss Plot

For the RoBERTa encoder, we fine-tuned our model on our data by using and modifying the
Huggingface transformers run mlm.py and running the training process for 10,500 epochs. The
hyperperameters in our setting were:

* hidden size: 768

* hidden droput probability: 0.1

* number of attention heads: 12

* number of hidden layers: 12

* vocabulary size: 50,265

* position embeddings: 514
After applying finetuning with the encoder model, we ran an evaluation on the validation data set.

The plot displayed below (see Figure 4) shows the validation cross-entropy loss over time for this
model setting.

5.4 Results

Table 1 contains the course-level accuracies and cross entropy losses for our three experiments.

As shown in Table 1, the Finetuned RoBERTa model performs significantly better than the simpler
LSTM models. While this result is expected due to the high performing ability of a robust pre-trained
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Figure 4: Fine-tuned Encoder Model (RoBERTa) Validation Loss Plot

Table 1: Accuracy and Cross-Entropy Loss Score for Our Models

Model Accuracy Cross Enropy Loss
LSTM Model with Course Sequence Embeddings (Baseline ) 20% 95.0

LSTM Model with Course Sequence + Grade Embeddings 10% 140

Finetuned RoBERTa Model 89.01% 0.4593

encoder, we did not expect the character-level LSTMs to perform so poorly. We had expected that
character-level information would help capture important nuances of course strings, such as the
subject department and course level, and hence improve predictions on course sequences. These
results may suggest a deeper bidirectional representation of course names is important for course
prediction tasks, and that there are longer range dependencies between courses taken by students than
we might expect.

While we wrote a custom character-matching evaluation method and used character-level BLEU
scores, many predictions ended up having all characters that were completely different from course
string labels. Thus, these metrics did not give us more representative results than the course-level
accuracy that we had previously computed.

6 Analysis

As mentioned previously, there are reasons to expect that the Finetuned RoBERTa model would
significantly outperform the simple LSTM model. However, it is interesting that the encoder model’s
pre-training on English language Masked Language Modeling tasks is helpful also for Masked
Language Modeling tasks for course strings, even though course strings are unlike English words, in
that they have different types of characters and combinations.

On probing the outputted cross-entropy losses (negative log-likelihoods) for each of the test examples
for the Encoder model, we see the following:

The most unnatural (unlikely) course sequence - with the highest cross entropy loss - was:
ATHLETIC2,ATHLETIC134,CHEM33,HUMBIO4S,IJHUM30B, PSYCH11N,CHEM33,
DANCE46,IHUM30A,PSYCH1,CHEM31,JHUM19,STS50A,WCT3B

The most natural (likely) course sequence - with the lowest cross entropy loss - was:
MATHS51,ATHLETIC132,CHEM24N,POLISCI140,JHUM38B,ATHLETIC78,CHEM33,
SPANLANG22B,INTNLREL191,PWR1,JHUM38A,CHEM31,SPANLANG21B,INTNLREL191,
[HUM19,HISTORY53N

As we can see in the above sequences, the most natural sequence involves courses in more
subjects (9) than that in the least natural sequence (5). Further, on examining the results from the
fine-tuned encoder for each test example, we observed that it was more natural for students to take



courses in a larger number of distinct subjects than in a lower number of distinct subjects. While this
could seem counterintuitive, it probably demonstrates the variation in courses being explored by
freshmen, which is typically encouraged at liberal arts colleges such as Stanford.

The plot below displays the number of different subjects taken for test course sequences, shown in
increasing order of cross-entropy loss.

5 Subject-Wise Analysis of Encoder Results
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Figure 5: Number of Different Subjects Taken for Test Course Sequences with Increasing Cross
Entropy Loss

7 Conclusion

The main takeaways from this work, are the following:

* A deep bidirectional pretrained encoder model performs much better on course prediction
tasks than a character-level simple stacked LSTM model.

It is more natural for students to take courses in a large number of distinct subjects in
freshman year at Stanford than in a small number of distinct subjects.

Some limitations of our work are that the LSTM model outputs predictions that do not necessarily
look like valid Stanford course strings. This does not allow us to make any claims about how
students’ grades impact course trajectories, as we had originally hoped to analyze. Time and resource
constraints restricted our analysis to all freshman-year course trajectories at once rather than a subject-
by-subject deep dive. It is likely that different degree plans vary in their relationship between the
naturalness of course trajectories, number of distinct subjects taken, and persistence along a degree
path. Future analyses will address this research space.

Future work can focus on analyzing and comparing the naturalness (likeliness) of course sequences
for other academic years, and whether it is more likely for students to take courses in a large number
of distinct subjects than a lower number of distinct subjects. Further, future work can also analyze
the influence of grades on course trajectories.
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