
Improving Trope Detection with Crowdsourced
Examples

Stanford CS224N Custom Project

Jean-Peïc Chou
Department of Computer Science

Stanford University
jeanpeic@stanford.edu

Abstract

Tropes are cultural narrative conventions that shape our expectations of stories.
They thoughtfully encompass our understanding of the world and the representation
of our culture. The use and comprehension of tropes require advanced human
language skills such as causal, motivational, or pragmatic inferences. Detecting
them is still an open and challenging research question that might be key to build
‘intelligent’ machines. In this regard, we propose to leverage the knowledge
gathered by thousands of passionate people about tropes on tvtropes.org. Our
contribution is twofold. First, we provide a dataset of specific examples for each
trope extracted from the tropes wiki. From this scraped data, we propose the
original task of the classification of tropes’ examples. It offers the main advantages
of being more workable and interpretable due to the concision and relevance of the
examples annotated by the community of tropers. Second, we present attempts to
tackle this new challenge based on a word and sentence-level analysis and show the
potential applications of such models on the more general task of detecting tropes in
larger texts such as synopses. The proposed models outperform the state-of-the-art
network when trained on individual tropes by making use of different levels of
cues (word, sentence, or full context) based on the nature of the trope studied.
This confirms the need to adapt the detection method or to build a multi-level
comprehension model.

1 Key Information to include

• Mentor: Anna Goldie

• External Collaborators (if you have any): None

• Sharing project: No

2 Introduction

Stories are the pillars of human cultures. They shape our imagination, forge our understanding of the
world, and ensure our cultural heritage. As such, the exploration of stories has been fascinating many
philosophers and scientists since the beginning of the 20th century. Russian formalist Vladimir Propp
was one of the firsts to systematically attempt to break down tales in a few categories [1]. Many other
derived models and substantial story grammars were later conceived to decompose stories. However,
most of them have been discredited because of the finiteness of the elements in their lexicon [2],
because of their high and intricate abstraction in computational contexts, or their lack of data and
examples.

Overcoming these deficiencies, a whole vocabulary of narrative units called tropes has been imagined
and inventoried by a community of thousands of enthusiasts on the website tvtropes.org. Tropes are

Stanford CS224N Natural Language Processing with Deep Learning

narrative devices or storytelling conventions. They are recognizable patterns found in all kinds of
media. Tropes can describe every level of a wok: the story and its discourse, characters and their
interactions, location, time. . . For instance, the Save the Princess trope depicts the universal story
plot in which a character, often portrayed by the Damsel in Distress trope, is kidnapped, and later
rescued by the Hero. Tropes are highly sophisticated as they can hold abstract concepts related
to morals, behaviors, or motivations. In this regard, the study of tropes can give access to human
representations of the world and implicit knowledge they carry.

In this paper, we will tackle the challenge of trope detection in movie synopses introduced by Chen-
Hsi Chang et al. [3]. We will work on the dataset TiMoS, containing 5,623 movie synopses as well as
the trope appearances in each of the movies for 95 hand-picked tropes. In their work, the authors note
the extreme difficulty of this task, requiring advanced linguistic, cognitive, and social skills, even
for humans. A system able to achieve good results on this challenge could better tackle real world
tasks such as recommendation systems, chat-bot, or opinion mining. With this dataset, the authors
proposed MulCom, a multi-level comprehension network conceived for this task. If MulCom’s
performances are very limited as the authors admit, it opens many avenues for improvement. In this
regard, we propose to exploit external examples scraped on the website tvtropes.org where media
works were thoroughly annotated, and preprocessed them to obtain more than 560,000 examples for
89 tropes. We then introduce the new closely related task of trope identification based on examples.
Adapting binary classifiers based on word-level features and trained on this task to TiMoS notably
yields largely better results than MulCom. Eventually, we propose a derived model of MulCom
directly applicable to TiMoS and some leads to harness examples in this task.

3 Related Work

Stories have largely been exploited to assess machine comprehension performances. More specifically,
movie synopses were analyzed through the lens of tags created by Sudipta Kar et al. in order to
classify or compare them, as well as analyze their flow of emotions [4]. However, these tags remain
quite shallow compared to the rich and dense library of tropes. Another way to probe movie synopses
was proposed by Tapaswi et al. who introduced MovieQA [5], a dataset of plot synopses and multiple-
choice questions aiming at evaluating story comprehension. Unfortunately, MovieQA’s possible
answers were shown to be biased by B. Jasani et al. who demonstrated that the plot synopsis was not
necessary to achieve satisfying results [6].

As of today, publications mentioning tropes are quite rare. In their study in trailer generation,
Smith et al. were one of the firsts to cast light on tropes, describing weak tropes as visual elements
characterizing genres [7]. Tropes have mostly been used as fuel for story generation [8] or social
analyses [9]. They have only recently been considered as a vocabulary for advanced story grammars.
In this regard, the website tvtropes was thoroughly examined [10, 11]. Its structure was shown
to provide a thoughtful backbone for such a grammar as well as rich information about tropes
interactions. Trope detection was mentioned a few times but was tackled first by Chen-Hsi Chang et
al. [3]. They conceived a Multi-Level Comprehension Network (MulCom) backed by a Multi-Step
Recurrent Relational Network (MSRRN). The model aims at combining word-level information from
Word2Vec, sentence-level information from a BERT encoder coupled with a RNN, and relation-level
information from their MSRRN, a GNN based on characters’ interactions. Although the network
architecture was built to be interpreted quite naturally, the role of some layers and operations remains
unclear in the learning process. Besides, the authors note that even human evaluators were unable to
detect some of the tropes when relying on the synopses alone. With commonsense inferences, the
evaluators increased their final score by 30%, showing that additional cultural facts about stories and
tropes are crucial in this task.

4 Approach

Trope Identification. In the first part of our work, we collected examples for each of the studied
tropes by analyzing the structure of the website. Based on this new dataset, we propose the new
original task of identifying the trope with examples as input. In practice, this task can be handled in
two different ways.

2

(i) This can be considered as a multi-class classification problem (MC). For each example, the model
needs to decide which trope it is an example. This is the most natural way of using the dataset.
However, in practice, sentences can be cues for several tropes at the same time. For instance, the
Would Hurt a Child trope that characterizes someone who is so evil that they might hurt a defenseless
person is often found with the Big Bad trope which corresponds to the main villain in a plot. (ii)
Therefore, we can divide this task into as many binary classification tasks as there are tropes studied.
The problem can then be considered as a multi-label classification one.

The perks of this challenge over the more global trope detection in synopses are that it is more
workable and interpretable. Indeed, examples from tvtropes are generally a few sentences long and
straightforward whereas synopses generally have 50 to 100 sentences and require wild guesses based
on commonsense to detect some of the tropes.

To tackle the MC and ML tasks, we use and compare 3 different models on the dataset:

• A Support Vector Machine (SVM) trained on TF-IDF features
• A neural network with two BiLSTM layers followed by one dense layer using pretrained

word vectors from GloVe as input [12]
• The pretrained encoder BERT [13] with a classification head on top

Once these models are trained, we want to apply them to TiMoS whose texts’ nature are different
from the crowdsourced examples. Based on the models trained for the MC and ML task:

• SS (Sentence by Sentence): We predict the probabilities of each class (trope) for each
sentence of the synopses. For each class, we choose the final predicted probability as the
maximum one over all sentences.

• FT (Full Text): We predict the probabilities of each class on the whole synopses.

The best threshold of the probability for each class if found on the training set of TiMoS.

Trope Detection. In this second part, we propose a derived model from MulCom [3] aiming at
removing some of its layers and operations and at making it more straightforward. We will call it
MulCom2.

The task is a multi-label classification problem. Given a synopsis, the model predicts the appearance
of each trope in it. The output is a binary vector T = t1, t2, . . . where ti corresponds to the appearance
of trope i and |T | is the number of tropes studied. Following the intuition of authors of MulCom, we
want to combine different levels of cues in order to detect tropes. Indeed, some tropes depend on
single sentences or even words such as Would Hurt a Child whereas Big Bad might need more hints
about a character throughout the story. The model is divided into 3 similar main parts: Knowledge,
Comprehension, Classification.

Knowledge. The model stores a learnable embedding matrix representing the embeddings of tropes
E ∈ R|T |∗dT where T is the trope set and dT is the dimension of the embeddings. E is randomly
initialized and is used to as queries to perform attention without needing prior knowledge.

Comprehension. The model extracts information from the text with different level of comprehension
in each stream. For each of them, it uses tropes knowledge as queries of a multiplicative attention
mechanism to keep the most valuable information.

• At the word-level, keys and values are word vectors from the pretrained GloVe model.
• At the sentence-level, keys and values are sentence embedded by the encoder BERT.
• At the paragraph-level, keys and values are paragraphs with the maximum length embedded

by the encoder BERT (512 tokens).

Classification. In this last step, the output of each stream is concatenated for each trope to obtain the
output matrix M ∈ R|T |∗(dGloV e+dBERT+dBERT). It is then sent to a linear classifier that will give
the final prediction. We use Binary Cross Entropy as our loss function to train on:

1

B

B∑
b=1

1

T

T∑
t=1

−[yb,t · log(ŷb,t) + (1− yb,t) · log(1− ŷb,t)]

3

where B is the batch, yb,t and ŷb,t are the ground truth and prediction of the model of trope t in batch
b.

Figure 1: MulCom2 is designed after MulCom [3] to deal with different levels of cues in movie
synopses with multiple streams.

5 Experiments

5.1 Data

From the wiki tvtropes, we extracted over 760,000 examples from films, character pages, books,
anime, comic books, manga, and TV shows for 89 tropes. Each example (text) is associated with
exactly one trope (class/label). The scraped dataset was split into train, validation, and test sets.

TiMoS analyzed 93 tropes whereas we were only able to extract examples for 89 tropes. This is due
to the fact that some tropes have been removed, renamed, or subdivided into multiple tropes. The
results of our work will thus not be exactly equivalent. We also note that the level of information
provided by each scraped example is very inconsistent. Some don’t give enough context (e.g. “Big
Bad: Voldemort”) or on the contrary too much (e.g. by giving hundreds of inextricable lines of
dialogue). In addition, the level of abstraction of the examples varies a lot making the dataset hard to
read from the model’s perspective (e.g. “Voldemort is the main antagonist”, versus why or how he is,
versus the description of a specific scene that depicts him like that. . .). We curated examples that we
deemed appropriate for the model to learn properly by culling examples containing less than a certain
number of words or examples that were incomprehensible without their context. The word clouds
in Figure 2 demonstrate the relevance of the remaining examples. The Would Hurt a Child trope
word cloud is mainly composed by the words “children”, “killing”, “try” or “threaten” for instance.
Naturally, the Alcoholic character trope is described with alcohol-related words such as “drunk”,
“alcohol’, or “liquor”.

Figure 2: Word clouds of the examples of Would Hurt a Child (left) and The Alcoholic (right)

4

We are left with about 560,000 examples with a median of 6,032 examples per trope. The minimum
number of examples is 1,003 (Cluster-F Bomb trope) while the maximum is 25,165 (Foreshadowing
trope). Classes are therefore very imbalanced. For MC and ML task, we balance them by randomly
sampling each class based on the minimum number of tropes.

For the individual binary classification tasks (ML), we also randomly sample the same number of
tropes than the trope studied for each of them. In addition, we create for each trope a hard dataset
(HD) that only comprises examples of tropes which are close to the trope studied. The closeness of
two tropes is assessed based on the similarities of their word frequencies. Figure 3 shows a t-SNE
visualization of tropes relying on the GloVe embedding of their 100 most frequent words. We can
observe that Bittersweet Ending and Earn Your Happy Ending are close as they both relate to the end
of a story (in blue on the left). Same thing goes for Big Bad and The Dragon (the Big Bad’s right
hand) for instance (in read toward the middle).

Figure 3: t-SNE visualization of tropes based on the embedding of their frequent words.

5.2 Evaluation method

Trope Identification. The performances on the MC and ML tasks are evaluated with F1 and Area
Under the ROC Curve (AUC) scores to determine how well the models can distinguish the classes no
matter the threshold.

Models trained on MC and ML tasks are mainly compared to the best and worst performance of
MulCom on individual tropes, i.e. respectively the Chekhov’s Gun trope and the Would Hurt a Child
trope.

Trope Detection. On TiMoS test set, the performance is based on the F1 and mean average precision
(mAP) metrics used by Chen-His Chang et al. [3] in order to compare our models with MulCom and
the other baselines provided by the authors (Random, BERT [13] fine-tuned and Folksonomication
[4]). In addition, We compare the models with the strategy of always detecting every trope as another
baseline.

5

5.3 Experimental details

For MC and ML tasks, SVM and BiLSTM classifiers would take seconds to minutes to train and
predict. For the first model, we tried several classifiers on tf-idf features (xgboost, random forest,
MLP. . .) but SVM is the one that gave us the best result. For the second model, we tested different
sizes of hidden layers and finally kept 64 for all of them. We also tried various pretrained word
vectors such as Google’s Word2Vec or tried training it ourselves, but GloVe was the best model. We
used Hugging face implementation of BERT pretrained model on uncased vocabulary for the last
model. For each individual trope classifier, finetuning the full model would take 1 to 2 hours based on
the evolution of the validation loss. For the MC version, the training runtime was around 12 hours as
the dataset was much larger. We used batches of 16 examples over 3 epochs and stopped the training
early if loss was not going in the right direction when evaluated. The learning rate was fixed to 2e− 5.

The adaptation of the MC and ML models to TiMoS could be achieved in a lot of different ways.
Instead of keeping the maximum probability predicted over all sentences, we tried using the whole
average or the average of the N best (which would make sense for certain tropes). We tried also
working by batch of sentences and by only considering some part of the synopses. The selected
methods are the ones that gave the best results.

MulCom2’s trope embedding size was determined after a few tries and fixed at 64. In order to
leverage the additional examples with this model, the goal was to use previously fine-tuned BERT
model for the MC task or train it on TiMoS as well as the crowdsourced examples. Unfortunately,
we were short on time as each training would take up to 8 hours. The slowest part of MulCom2’s
process was the encoding of words by BERT which we would do externally (as BERT is only used as
a feature extractor and not fine-tuned). We would then directly train the network by feeding it the
vector representation of the synopses rather than the texts. Lacking time, MulCom2 was only trained
and tested on synopses from TiMoS which took over 11 hours. It was supposed to be pretrained and
trained on the examples as well as on synopses augmented by trope examples which would have
required a day of computing.

Eventually, the process of scraping data from all media on tvtropes took approximately 15-20 hours.

5.4 Results

Results of the classification of the Woud Hurt a Child trope on the balanced dataset of examples and
the hard one are shown in Table 1. We observe that BERT model is the one that performs the best
with a F1 score of 92.41 and AUC of against 87.33 for SVM and 85.27 for the BiLSTM network.
However, when applied to TiMoS to detect the same trope, the SVM model surprisingly outperforms
all the other models including state-of-the-art MulCom with a F1 score of 21.67 when applied to the
full text against 12.36 for MulCom. For both BERT and SVM, predicting on the full text returns
better results than sentence by sentence which is not intuitive based on the nature of the trope. Indeed,
a sentence describing a child being hurt or threatened should be a sufficient cue. Otherwise, SVM on
hard examples struggles a bit more than on the randomly balanced dataset but this method does not
make it more robust as its performance on TiMoS drops a bit.

Examples SVM BiLSTM BERT SVM HD

F1 87.33 85.27 89.41 83.21
AUC 93.42 92.12 97.7 91.36

TiMoS SVM SS SVM FT BiLSTM SS BERT SS BERT FT SVM HD SS SVM HD FT MulCom [3]

F1 16.91 21.67 15.62 16.9 18.35 14.71 20.54 12.36

Table 1: F1 and AUC Scores on the models trained on the dataset of examples for Would Hurt a Child
(balanced and hard dataset) and F1 score on TiMoS

The results of the classification of the Chekhov’s Gun trope on the balanced and hard dataset shown
in Table 2 are similar with BERT outperforming the other models on the binary classification task
for both metrics. Here, BERT gives the best results with a F1 score of 40.61 against 38.58 for
MulCom. This time, predicting the trope appearance sentence by sentence gives the best result which

6

is surprising as well as Chekhov’s Gun trope depicts "a plot device that is not significant until later in
the story". A broader grasp of the context would therefore be needed to detect it. Finally, we observe
the same behavior for the model trained on the hard dataset.

Examples SVM BiLSTM BERT SVM HD

F1 84.46 74.62 89.2 74.81
AUC 92.15 82.2 94.36 83.18

TiMoS SVM SS SVM FT BiLSTM SS BERT SS BERT FT SVM HD SS SVM HD FT MulCom [3]

F1 39.93 39.35 37.95 40.61 37.53 39.16 38.36 38.58

Table 2: F1 and AUC Scores on the models trained on the dataset of examples for Chekhov’s Gun
(balanced and hard datasets) and F1 score on TiMoS

As for the results on the full list of tropes based on synopses shown in Table 3, BERT and SVM
multi-class classifiers trained on examples are achieving correct results which are smaller but close to
other baselines BERT fine-tuned and Follksonomication. We note here that our 3 proposed models
are largely dominated by MulCom, especially for MulCom2 with a F1 score of 18.57 compared to
25.00 for its original counterpart.

The F1 score for each trope given by the multi-class models BERT and SVM are shown in Appendix
for more details. While some tropes are barely detected, others such as Impaled with Extreme
Prejudice or Eye Scream show very good results.

Baseline F1 mAP

Random 13.97 8.14
Always Detect 14.75 8.09
BERT [13] (fine-tuned) 23.97 17.26
Folksonomication [4] FastText 22.53 16.35
MulCom [3] 25.00 18.73
Our models F1 mAP

SVM (trained on examples) 21.02 14.69
BERT (trained on examples) 22.71 16.14
MulCom2 (trained on synopses) 18.57 13.3

Table 3: F1 and AUC Scores on the models trained on the dataset of examples for Chekhov’s Gun
(balanced and hard) and F1 score on TiMoS

6 Analysis

The results show that word-level features such as simple tf-idf based on relevant examples can be
very valuable in the detection of tropes. We note that the models’ performance varies a lot based
on the trope detected and that one model does not dominate all the others. This makes sense as
tropes describe different abstraction levels of a work. The detection of certain tropes significantly
depends on the appearance of specific words such as Would Hurt a Child or The Alcoholic, while
others require the full context such as Big Bad or the Chekhov’s Gun. Chen-Hsi et al. already noted
that trope detection will need knowledge adaptation [3] depending on the trope by using different
models. These results are overall a strong confirmation of this assessment.

The best results found by predicting sentence by sentence or on the full text for Would Hurt a Child
and Chekhov’s Gun are surprising. For the first trope, the reasons could be that the synopses are
not precise enough and the model needs to find cues from different parts of the full text, or that the
model is easily tricked by specific words in some sentences as it only relies on tf-idf features. As for
Chekhov’s Gun, if the plot device works at a high level, cues might be very specific and be found in
certain sentences.

7

Some tropes such as Irony or Hypocritical Humor demand a deeper understanding of languages that
might be too challenging for multi-class models. For all these quite abstract tropes or many other
specific tropes, none of our models perform well, giving F1-scores rather low (down to 9.25 and
10.15 for Exact Words) compared to the worst F1-scores of MulCom (12.36) as observed in Figure 5
in Appendix. This important disparity of results explains why the overall F1 and mAP scores are
lower than MulCom’s one. Overall, it should be remembered that these multi-class models were only
trained on external examples having therefore no knowledge about the actual structure of synopses
and their cues to certain tropes which is remarkable.

Finally, MulCom2 did not yield the expected results which is explainable by the fact that it is very
rapidly overfitting due to its relatively high number of parameters compared to the number of synopses
it was trained on as we can see if Figure 4. As it might need more data, the use of the additional
examples for pretraining and training as it was planned might give better results. More importantly,
MulCom2 does not extract character interaction features (out of the scope of this study) which the
original MulCom heavily relies on according to its results [3].

Figure 4: The validation loss of MulCom2 keeps increasing after only 1 epoch while the model keeps
overfitting the training set.

7 Conclusion

In this project, we have collected and preprocessed a dataset of more than 560,000 precise examples
for 89 tropes that we make available for future research on tropes. We showed that this dataset could
be leveraged to achieve satisfying results on the trope detection in movie synopses challenge by
training classifiers on the original task of trope identification alone. In addition, we demonstrated
the ability of these models to beat the state-of-the-art model when trained as binary classifier on
single tropes rather than as multi-label classifiers. Eventually, we proposed a derived model of the
state-of-the-art multi-level comprehension network which is a simpler and more straightforward
model that still needs some adjustments.

We believe this work opens many avenues of research on tropes. This project is far from assessing
the full potential of these examples in the task of trope detection. One lead could be to analyze
these examples in their context by probing all the other trope examples, synopses, and metadata
from the original work they come from. Furthermore, classifiers trained on trope identification are
more interpretable than the other proposed networks for trope detection as they enable to break down
synopses and give the location of the cues it found in the text. Such findings could be a crucial
property to understand how tropes are sequenced, how they interact, or in which part of the stories
they mostly intervene, which could lead to the foundations of a tropes grammar. Among many other
applications, this new rich dataset could also be used to create stories by asking a decoder model to
generate text based on tropes chosen by a user. Eventually, these leads might also be combined with
the tropes knowledge graph extracted from tvtropes’ structure [11].

8

References
[1] Vladimir Iakovlevich Propp. Morphology of the folktale. University of Texas Press, 1968.

[2] Alan Garnham. What’s wrong with story grammars. Cognition, 15(1):145–154, 1983.

[3] Chen-Hsi Chang, Hung-Ting Su, Jui-Heng Hsu, Yu-Siang Wang, Yu-Cheng Chang, Zhe Yu
Liu, Ya-Liang Chang, Wen-Feng Cheng, Ke-Jyun Wang, and Winston H. Hsu. Situation
and Behavior Understanding by Trope Detection on Films, page 3188–3198. Association for
Computing Machinery, New York, NY, USA, 2021.

[4] Sudipta Kar, Suraj Maharjan, and Thamar Solorio. Folksonomication: Predicting tags for
movies from plot synopses using emotion flow encoded neural network. In Proceedings of the
27th International Conference on Computational Linguistics, pages 2879–2891, Santa Fe, New
Mexico, USA, August 2018. Association for Computational Linguistics.

[5] Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba, Raquel Urtasun, and
Sanja Fidler. MovieQA: Understanding Stories in Movies through Question-Answering. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[6] Bhavan Jasani, Rohit Girdhar, and Deva Ramanan. Are we asking the right questions in
movieqa? pages 1879–1882, 10 2019.

[7] John R. Smith, Dhiraj Joshi, Benoit Huet, Winston Hsu, and Jozef Cota. Harnessing a.i. for
augmenting creativity: Application to movie trailer creation. In Proceedings of the 25th ACM
International Conference on Multimedia, MM ’17, page 1799–1808, New York, NY, USA,
2017. Association for Computing Machinery.

[8] Andrea Guarneri, Laura Anna Ripamonti, Francesco Tissoni, Marco Trubian, Dario Maggiorini,
and Davide Gadia. Ghost: a ghost story-writer. Proceedings of the 12th Biannual Conference
on Italian SIGCHI Chapter, 2017.

[9] Stacey Svetlichnaya staceys. Trope propagation in the cultural space. 2011.

[10] Rubén Héctor García-Ortega, Pablo García-Sánchez, and Juan Julián Merelo Guervós. Tropes
in films: an initial analysis. CoRR, abs/2006.05380, 2020.

[11] Jean-Peïc Chou and Marc Christie. Structures in tropes networks: Toward a formal story
grammar. Proceedings of the 12th International Conference on Computational Creativity (ICCC

’21), 2021.

[12] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, 2014.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

9

A Appendix

Figure 5: Results of SVM and BERT muti-class models

10

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Appendix

