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Abstract

In this paper, we aim to improve word embeddings (both static and contextual) by
explicitly leveraging syntactic information such as part of speech (POS) tagging
and dependency parsing (DP). We can model this information as a graph as in [1] to
auto-encode the dependency information in the word embedding. Particularly, we
implement a Equivariant GNN version [2] of the SIWR model to further improve
downstream performance by considering a given sentence context as a vector back-
bone. This embedding model is pre-trained using a small amount of data ( 30,000
samples) to encode dependency and part of speech information. We test the model
performance on three downstream Named Entity Recognition Tasks: Nested Entity
Recognition, Binary Relationship Extraction, and N-Ary Relationship Extraction.
The EGNN embeddings outperform the SIWR embeddings on all three of these
tasks when using the same benchmark downstream models. [[]

1 Key Information to include

Mentor: Angelica Sun

2 Introduction

Word embeddings have played a critical role in the advancement of deep learning application in
Natural Language Processing. These embeddings provide a dense vector representation of word-
meaning in rela-valued numerical form, that has been empirically easier for models to understand.
Much of the work in deep learning based natural language processing tasks is dependent on having
high quality vector embeddings. These embeddings (such as Word2Vec [3]]) have often been static,
with a singular vector representation. However, recent work, like BERT [4]] has shown the efficacy of
contextual word embeddings that are dependent on the local context to which a word is embedded.
Such models, dubbed Large Language Models (LLMs), do not incorporate syntactical information
and, instead, rely on training a large number of parameters (100s of millions) over huge data corpora.

Further work has shown the propensity for using graph based architectures to improve these
static/contextual word embeddings by leveraging syntactic structures like part of speech tagging and
dependency trees [1]], with a small amount of additional pre-trainig data. Our work builds upon [[1]
by considering sentences as vector chains and applying a Equivariant Neural Network architecture
[2] in place of the standard GCN. This is motivated by existing work in the proteomics space where
proteins are modelled in a vector space invariant to translation, reflection, and rotation operations.
This allows the incorporation of vector features compared to just scalar ones, which seems like an
intuitive extension for word embeddings. If we consider the words in some latent vector space defined
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by their embedding features, some operation composed of translations, reflections, and/or rotations
should not change the interpretation of the features overall.

As in Tran et al., we test the syntactically aware embeddings produced by the model on hree
downstream Named Entity Recognition Tasks: Nested Entity Recognition (NER), Binary Relationship
Extraction (RE), and N-Ary Relationship Extraction (N-Ary). We measure performance using F1-
scores for NER and RE and accuracy for N-Ary. Due to the scope of this paper, we only boost
embeddings for Word2Vec initial embeddings. We then use these to train downstream reference
models. The embeddings provided by the EGNN model outperform those provided by SIWR with
the same initial embeddings for all three tasks.

3 Related Work

3.1 Word Embeddings

While there has been a desire to model language computationally, there has been a need to represent
words in numerical form. Representation as continuous vectors rather than one-hot elements of
a vocabulary have become dominant [33 5, |6} [7, [8]]. There has been a particular interest in using
Neural Networks to model such representations. Recent efforts into improving embeddings follow the
strategy of leveraging vast amounts of data against very large models to attempt to learn the breadth
of embedding space [4,19, 110, [11]. While the performance of these models has been excellent, most
only present one embedding for a given word regardless of context. Furhter, they do not incorporate
any kind of explicit syntactical information. This information has been shown to be potentially
useful as obtained from dependency parsing tools [[12,|13]]. Given such dependency arcs, the natural
representation for such information has been in the form of a graph [[1, [14]].
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Figure 1: In a GCN architecture, at each layer, messages from each of a node’s neighboring nodes
are pooled to get the new hidden state. Repeating across all hidden layers gives output features at
each node. [[15]]

Graph Neural Networks (GNNs) have performed very well on protein-like structures due to the
natural sparsity of such structures lending to their representations as graph objects [16} 17, [15]. As a
graph, the protein structure is represented as far as relations [18]]. As such, there is only an implicit
understanding of position. Equivariant Neural Networks and 3D CNNs present the opposite end of
the spectrum with methods that operate on explicit point spaces but are susceptible to perturbation
by geometric transformations [[19} 20]. Combining these methods to represent a vector space in a
graph model is where the Equivariant Graph Neural Network comes into play as a way to combine
the important features of both of these methodologies [2, [18]].

This study aims to combine these two lines of thought to use an EGNN architecture for word
embeddings.



Dependency Arc

Self-Loop

4 Node Encoding

* (200) Base Encoding
Edge Encoding * (1) Forwards Vector
* (16) Positional Encoding '-\_ + (1) Backwards Vector
« (16) Distance RBF Ay

* (5) One-hot of edge type Backwards Edge, From Head
* (1) Unit Vector A

.__\'

Figure 2: Summary of encoding process. Each node receives scalar embedding from the static
Word2Vec model. The remaining scalar and vector channels are established from these. Edges are
drawn between neighboring words, dependency arcs, and self-loops. Vector features are bolded for
convenience.

4 Approach

For word w in sentence ¢, we wish to construct a vector embedding v,,|.. We first construct graph
embedding ¢g(w, ¢) from the original document as described in Section These graph features are
then passed to a EGNN model as described in[4.2] To train this model, we adapt the methodology
from [T]] as described in Section[d.3] We can then use this pre-trained model to generate improved,
syntactic context-aware embeddings as in Section 4.4}

4.1 Graph Embeddings with Vector Features

To generate the improved embeddings, we start by first encoding the sentence as a graph. For node
embeddings, we use the original scalar features but also add forward and reverse unit vectors in the
direction between words: w;4+1 — w; and w; — w;_1.

For edges, we take the construction in [1] and augment the edge features. We draw an edge from
vertex i to j if one of the following conditions are true: |j — ¢| = 1,0 or there is a depndency arc
from i to j or vice-versa. Thus, we have five types: the prior word, the subsequent word, self-loop,
head of dependency arc, dependent of dependency arc. For each edge, e*7, we take the following
features: the unit vector in the direction of w; — w;, an encoding of the distance between w; and w;
in the form of Gaussian radial basis functions, and the sinusoidal positional encoding of j — ¢ as

described by [21]], consisting of the ¢ pairs [sin(wy, - (i — j)), cos(wg - (i — 5) )], where w), = ——
10000 d
0 < k < d =16, 2|k. We also encode a one hot representation of the five edge-types above. This is

summarized in Figure 2]

b}

4.2 Equivariant Graph Neural Network Model

If we wish for vector features to remain equivariant, we cannot use any off the shelf model, as in

the GCN used by Tran et al. [1]]. Instead, we replace the two standard graph convolution layers

of the GCN with Graph Vector Perceptron convolution layers [2]. For each GVP layer, we make

updates to the scalar and vector features as shown in Algorithm[I] With g representing a successive

GVP layers for the message-passing layers and f representing b successive GVP layers for the

point-wise feed-forward, we have the following update for each GVP convolution, where hg,z) is the
J—>i)

node-embedding at ¢ and h¢ is the edge-embedding between j and 4 [18]):



h 7Y = g (concat( ), hI 7))

. , 1 L
h{" « LayerNorm | h{") + ————Dropout Z h{=?)
|7 s.t. ebd| =
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We then do a feed-forward point-wise update at each node.

h{) « LayerNorm (hgf) + Dropout (f (hﬁ,”)))

Algorithm 1 GVP update step. [2]]
Input: (S,V)
Output: (S', V')

GVP:
h > Hidden dim size
VW,V
Sk« V] > Taken row-wise

S < concat(sp, S)

Sm = WS + by,

S’ ReLU(S,»)

V'« Sigmoid(W,Sigmoid(S,,) + b,) © V > Taken row-wise

4.3 Pretraining Algorithm
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Figure 3: Pretrain process for SIWR model from [1]]. For a given sentence, the base embeddings
are used as node features for a word graph. These are then fed into a GCN to provide a new word
embedding for each word. For the POS task, these are then fed into a softmax classifier to predict the
POS for each word. For the dependency task, we use a biaffine attention mechanism to predict the
dual probability of every (head, dependency label) pair for each word. This work replaces the graph
features to include vector information and the GCN architecture with an Equivariant Graph Neural
Net.

As mentioned in Figure [3] we take the two subtasks of POS prediction and dependency arc
prediction. The following equations are adapted from [I. For both subtasks, we take the
output from [, and project using a GVP layer to get latent vectors h*, where x €
{POS, arc_head, arc_dependent, label_head, label_dependent}. hP©S ¢ R? and the rest € R,
where d,, = 16 and d,, = 100. We then get p(y*°5-P4) = softmax(WhFOS + b). Now to get the



probability of the dependency arc, we first take p(y2-Pd) = softmax (Hc-headyarc parc_dep) Then
for each arclabel I, we take s' = Hlbel-headyyiplabeldep  Concatenating, we get p(y'abel-pred) =
softmax(Concat;s'). Thus, we have probability distributions for the arc and the label for the
arc. We take the element-wise product to get the combined distribution: p(y?rc-labelpred) —
p(ylubel_pred) ® p(yarc_pred).

We utilize a L2 regularized loss combining the Negative Log Likelihoods of the POS prediction and
the DP prediction. Thus we take:

J = Jpos+Jpp+A[W]l2 = = log(p(yr25F") ros e ) +log (p(yar"P0) e et e )+ A [ W]

veEe

Thus, we not only encode the part of speech information, but we also auto-encode the dependency
information as that signal is incorporated into the original graph encoding.

4.4 Constructing Embeddings

Let the two convolution layers be /1,2 and the initial embedding be v,. Then we have v, =
v, + V1 + v2, Where vs, vo represent the scalar portion of the output from [y, I3 respectively. We have
vy = scalar(l; (g(w, ¢))) and vy = scalar(l3(l1(g(w, c)))). In this way, the output is a combination
of the inital base embedding and two layers of pooled embeddings that carry the signal of the syntactic
features.

5 Experiments

5.1 Data

5.1.1 Pretraining

In the pre-training step, we take sentences and then aim to predict the part of speech, dependency arc,
and dependency label for each word. Thus, we simply need corpora with sentences to construct the
semi-supervised task given the labels are generated through the sentence parser. We train two models
over two different datasets.

The N-Ary dataset for the downstream task is not general (Drug Gene Mutation [14], biomedical
focused). As such we train over the PubMed dataset [3]] to get a better representation of the
vocabulary/syntax of the downstream dataset. For the PubMed dataset, we download a data dump
provided by PubMed and then extract 30000 samples, consisting of article titles and abstracts, for
each of the train and validation sets.

The NER and RE tasks both use a general dataset (ACE2005 [22]). As such, we use a general dataset
to train. As above, we take 30000 samples from the Billion Word Benchmark dataset for each of the
train and validation sets [23]].

5.1.2 NER

As stated above, for the NER task, we use the ACE2005 dataset [22]]. The dataset consists of sentences
with associated entity tags. For NER, we wish to predict entities from inside to out. For example, we
can have a span such as [the [U.S.] government], where the inside span is U.S., tagged as a country
entity, and the outside span is the U.S. government, tagged as a government entity. For this study, we
only utilize the English corpus of the dataset and take train/validation/test splits of 8:1:1.

513 RE

For the RE task, we use the ACE2005 dataset [|22]]. For this task, we take a sentence and wish to
predict the relationship between pairs of entities. For example, we have the entities "Iraqi" and "Iraq",
where the relationship is the people of a country. For this study, we only utilize the English corpus of
the dataset and take train/validation/test splits of 8:1:1.

5.1.4 N-Ary

For the N-Ary task, we use the Drug Gene Mutation dataset [14], where we take documents and
attempt to predict relationships across sentences. Particularly, we consider triples of drugs, genes,
and mutations, and the pairwise permutations thereof.



5.2 [Evaluation method

We measure performance using F1-scores for NER and RE and accuracy for N-Ary. This is based off
previous work as in [1]].

5.3 Experimental details
5.3.1 Pretraining

For the model configuration, we set each of the GVP Convolution Layers to take in and outputs
node features with size ([200], [2,200]) and edge features with size ([37], [1, 200]), where the pair
represents the scalar and vector dimensions, respectively. Each of the GVP convolution layers uses
a = 3 GVP layers for message passing and b = 2 GVP layers for point-wise feed-forwarding.

As stated previously, the N-ary task uses a scientific dataset, so we us a scientific sentence parser as
provided by SciSpaCy [[13]] and Word2Vec embeddings trained on the PubMed dataset [3]]. For the
general pre-training, we use the Stanford Stanza parser [12] with Word2Vec embeddings trained on
the Wikipedia corpus [24]. We take hyperparameters as shown in Table[I] Both Word2Vec models
have dimensionality 200, which gives an overall model size of just over 1.5 million parameters.

Hyperparameter  Value

Batch Size 1000 nodes
Dropout Rate 0.1
Learning Rate 0.001

Table 1: Hyperparameters for pretraining

5.3.2 NER

For the NER task, we use a Layered Bi-LSTM [25]]. The hyperparemeters used are default as shown
in Table

Hyperparameter Value
Character Embedding 25
Batch Size 10
Learning Rate 0.0001
Weight Decay 0.0001

Table 2: Hyperparameters for NER

533 RE

For the RE task, we use the Walk-based RE model [26]. The model uses a fully-connected graph across
all the entities in a sentence, and the edges are position-aware. Instead of the default embeddings, we
utilize the EGNN ones. We use the default hyperparameters provided as shown in

Hyperparameter  Value

Batch Size 10
Learning Rate 0.002
Weight Decay 0.000057

Table 3: Hyperparameters for RE

5.3.4 N-Ary
For the N-Ary task, we use a BILSTM as in [14]. We use the hyperparameters as shown in[4]



Hyperparameter  Value

Batch Size 8
Learning Rate 0.0001

Table 4: Hyperparameters for N-Ary

5.4 Results

5.4.1 Main Results

NER RE N-Ary

F1-Score F1-Score Accuracy
Word2Vec Embedding  71.26 64.45 77.1
ELMo 75.93 65.74 75.8
SIWR 77.54 67 79.3
EGNN 79.44 69.56 80.3

Table 5: Experimental results

As we can see in Table[5] the embeddings for the EGNN model outperform the embeddings for the
SIWR model/other embeddings. This is consistent with expectations given that the model leverages
additional feature representations in the form of the vector channels that STWR simply does not have
access to.

5.4.2 Parameter Scaling

Of particular note is how the parameters of the EGNN model scale. Including the vector features
actually does not introduce a lot of overhead as far as number of parameters. In fact, removing the
vector features altogether only leads to a reduction of about 20000 parameters of a total of over 1.5
million. However, we do note that there is a quadratic scaling of the model parameters to the size of
the base embedding dimensionality as shown in Figure 4] This is notable due to the assessment of
model training time. Graph Neural Networks are notoriously hard to train as far as compute time, and
increasing the base dimensionality to something like 750, which is approximately that of BERT [4]],
would be expected to take over 10 times longer than for the 200 dimensional Word2Vec embeddings
used in this study.

Number of Parameters Versus Base Embedding Dimension
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Figure 4: Comparison of model parameter count versus the base embedding dimensionality. Note the
quadratic scaling.



6 Analysis

To perform a qualitative analysis, we look at a toy sentence with variations to determine how well the
model is able to differentiate localized contexts and the degree to which it does so. To do this, we first
take a sentence, and pass it through the embedder. We then select the word embeddings of interest
and perform a PCA dimensionality reduction to visualize the pattern of the resultant embeddings. We
also compare to the embeddings produced by the baseline model. We perform this analysis in lieu of
something more typical such as looking at attention maps or specific dataset examples to assess some
general examples of model patterns outside of the original training dataset. The four sentences we
test are "he leaves the pile of leaves in disarray”, "he leaves the pile of sticks in disarray"”, "he finds
the pile of leaves in disarray", "he finds the pile of sticks in disarray." We have three goals here: are
the meanings of the two forms of leaves embedded differently, how does the embedding change for
one word if we swap another word, and how does the embedding compare for words occuppying the
same role. The PCA plot is shown in Figure[3]
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Figure 5: Two dimensional PCA plot of word embeddings. Class 0 is the first "leaves”, class 1 is the
second "leaves", class 2 is "finds", class 3 is "sticks", class 4 is "leaves" from the base embeddings,
class 5 is "finds" from the base embeddings, and class 6 is "sticks" from the base embeddings.

In all, we can see that the base embeddings, (classes 4,5,6), are already differentiated. But for
something like "leaves", there is only one vector representation. However, we see that classes 0 and 1,
the two different EGNN "leaves" representations are ever so slightly off from the parent distribution.
Further, we see the vector differences between classes 0, 2, and 3 are very similar to those between
classes 4, 5, and 6, respectively. This indicates that the embeddings are primarily a result of the
original base embedding, but can be modified slightly by the context as seen by class 1. Further, as
seen by class 1, changing the context slightly does in fact cause a slight change in the embedding
as evidenced by the small separation between the points. However, given a desire to model not just
what a word is but also how it functions within a sentence, it can be expected that the embeddings for
"leaves" as a verb is closer to that of "finds" and "leaves" as a noun is closer to "sticks" than what is
observed.

7 Conclusion

Overall, this study contributes a novel EGNN model architecture for boosting word embeddings
by incorporating syntactical information. The model outperforms similar previous work [1]] using
symmetrical downstream tasks of Nested Entity Recognition, Binary Relationship Extraction, and
N-Ary Relationship Extraction. As the applications of deep learning in NLP grow, the importance
of good word embeddings grow as well. The proposed method enables learning from syntactic
information in the form of vector features as a possible avenue for improving embeddings in a



relatively efficient manner compared to Large language models. For future work, there is still space
to apply the methodology to base-embeddings for models that already give contextual embeddings
such as BERT [4] and other large models [9]. Further, introducing mechanisms to weigh the balance
between originally encoded information and new syntactic information is important to understanding
how to optimally construct embeddings for downstream tasks after pre-training.
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