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Abstract

In this project, we produce a reverse dictionary, which allows one to find a word that
they can’t remember, by describing its meaning. We compare multiple architectures
to find the most efficient implementation of a reverse dictionary, in terms of
accuracy, computational workload and speed. We observe that an encoder-decoder
model based on a BERT encoder coupled with either linear decoder layers or an
LSTM decoder layer yield the best results.

1 Key Information to include

• Mentors: Gaurav Banerjee, Andrey Kurenkov

2 Introduction

A reverse dictionary takes in a definition as an input query, and returns the top-k candidate words that
are most likely to match this definition. The input can be similar to a dictionary definition, or even a
colloquial description of the desired word. For example, the input “a small vessel propelled on water”
should yield an output of “boat” (Please see Table 1 for more examples).

Reverse dictionaries can be useful in a multitude of scenarios, ranging from tip-of-the-tongue word
recall or as a resource for those learning a new language. Depending on the use case, users providing
queries might be looking to learn common or rare words, so reverse dictionaries should have large
vocabularies that can output both frequent and infrequently used words.

While there are a few reverse dictionaries online[1][2], they often fail to accurately capture the
meaning of definitions. The most popular versions simply search through multiple dictionaries and
find which one has the highest count of similar words, which can work for simple queries but struggle
with anything more complex. For example, searching for “opposite of cold” yields options such as
“colder” and “antonym” but not “hot” in the top-10 results.

Reverse dictionaries should not only take into account the meaning of each individual word, but
also how the meaning of words change when used in combination. Otherwise, queries such as the
one above will return poor results. The size of the problem also poses a challenge, since there are
hundreds of thousands of possible words that could be suggested. Many words also have synonyms,
and it can be challenging to know which specific one matches to a definition. For example, the
input “to come together” could mean “meet”, “gather”, “assemble”, and more. As a result, reverse
dictionaries should not just return one possible word, but several possible options.

Sample Input Sample Output
To come together meet, gather, assemble, rally, reunite
Small amount smidgen, scrap, speck, little, bit
Winter sport skiing, snowboarding, sledding, ice skating, sliding

Table 1: Example of reverse dictionary outputs

Although this could be viewed as a classification task, our approach mainly centered around creating
a model to generate word embeddings based on definitions. We fine-tuned BERT[3] to use as an
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encoder layer, and created different decoder variants to find out the most effective architecture. Part
of our motivation is to also explore the viability of creating and hosting a service online, so we also
consider model size and efficiency in our analysis.

For our variants, we experimented with different decoder architectures such as linear layers and
LSTM[4], as well as different loss functions and training parameters. Finally, we compared using
BERT large models and DistilBERT[5] to analyze trade-offs between speed, computational load and
performance.

3 Related Work

Before the wide use of neural networks, a number of research groups[6, 7, 8, 9] attempted to address
the reverse dictionary problem via "sentence matching" using different similarity metrics. These
attempts mainly returned the words whose dictionary definitions were most similar to the query
description. Although successful in certain scenarios, this method was failing for human-written
query descriptions as their vocabulary was only dependent on the dictionary definitions.

Most interesting among these older approaches is Thorat et al.’s [8] attempt to construct a reverse
dictionary based on a network approach. They create a reverse map, by processing a traditional
dictionary and storing connections in a sparse matrix. In their graph, each node corresponds to a
word, and each node connects to other words that have common parents. Given an input phrase, they
perform a depth one graph traversal search, starting from individual words of the input phrase and
return candidate words.

Inspired by these fist attempts of reverse dictionaries, we have used a word-vector similarity based
approach for our baseline. Please see the Approach section for more detail.

WantWords[10] is one of the more recent and rare neural network based solutions[11, 12] to building
a reverse dictionary. For each input, they calculate a confidence score for every single possible
output word in the vocabulary. They utilize BERT encodings, part-of-speech predictions, and
morphemes/sememes to calculate the confidence scores. The words with the highest confidence
scores are returned as outputs.

Noticing that the performance of WantWords’ architecture was not far better than the baseline
accuracy scores for BERT, we focused our efforts on optimizing BERT without using the other
components (part-of-speech, morphemes, etc.) mentioned in this research paper. Plus, the size of
our vocabulary is larger than the English corpus of WantWords. To calculate confidence scores on
all unique words would be costly from an efficiency standpoint. We sought to create a lightweight
approach.

4 Approach

4.1 Baseline using Word Embeddings

Other related papers reported the results of their own baselines, however we felt it was important
to create our own baseline on our own dataset for two main reasons. First, some of these baselines
were not well described and it was hard to understand what exactly we would be comparing against.
Second, we did not know how the difference in quality and size of datasets would affect baseline
performance, since it would be difficult to take our own models which were evaluated on vocabularies
of over 400 thousand words, and derive useful comparisons to baselines with unknown vocabularies.

We created our baseline solely using word embeddings. Starting with 100-dimensional vectors (60
for FastText[13]), we simply take the mean of word embeddings of all words in the input query and
find the most similar word in the vocabulary by cosine similarity.

We find that the performance of the baseline varied depending on which set of word embeddings we
used. First, we tried using GloVe[14] vectors pre-trained on the gigaword dataset[15]. This gave
good scores, but we had to evaluate on only a subset of our data because our dataset contained some
unknown words. Second, we trained our own vectors using our dataset. Although we did not need
to remove any words from the dataset, the performance was lower likely because our corpus may
not have been large enough. We attempted to solve this problem by augmenting our corpus with text
from Wikipedia, which improved scores somewhat. Finally, we also tried using FastText vectors
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trained on our own corpus. See Table 2 for the results of our baseline experiments, compared to
random guessing on a 400,000 word dataset. Although the accuracy scores of our FastText baseline

Embeddings Accuracy (top1 / top10 / top100)
GloVe w/ gigaword 0.51% / 1.99% / 5.02%
GloVe w/ dataset & Wikipedia 0.07% / 0.3% / 1.6%
GloVe w/ dataset 0.02% / 0.15% / 0.76%
FastText w/ dataset 0.44% / 1.51% / 4.29%
Random Guessing 0.00025% / 0.0025% / 0.025%

Table 2: Word embedding baseline accuracies

was reasonable, our qualitative analysis made us believe that our derived Fastext vectors were not
reliable. FastText vectors make use of n-grams which enables the unseen words to have embeddings
close to similar sounding words. However, with our small dataset, this created a phenomenon where
the n-gram similarity dominated, instead of semantic similarity. As a result, the vectors were too
close to phonologically similar words instead of semantically similar words (please refer to Table 3).
After creating our baseline and analyzing different word embeddings, we decide to proceed with the

Embeddings Most Similar Words to "Red"
GloVe w/ gigaword yellow, blue, green, black, white
FastText w/ dataset pressured, uncovered, weathered, majored, checkered

Table 3: Comparison between GloVe and FastText word embeddings

rest of the project using the gigaword GloVe embeddings since these seem to be the most reliable
and accurate. Although FastText provides good baseline scores, we believe that these would not
work well with our proposed models since the word vectors do not seem to capture much about the
semantic meaning of the words.

4.2 Model Architecture

Given an input query, our model first splits the entire query into a set of tokens using the default
BERT tokenizer. For our dataset which is described below, the maximum length of any definition
input is 291 tokens. However, we truncate to 200 tokens since most queries are not this long.

For our different variants, we either passed these tokens into BERT large or DistilBERT to encode
the tokens. This resulted in an output hidden state of size (200, 768) for each input query, which we
passed directly to our decoder layers. Here, we used various approaches to construct the decoder.

In our first model approach, we use a stack of linear, ReLU, and normalization layers to reduce
the dimensionality to 100 (refer to Figure 1). The first 2 fully connected linear layers reduce the
dimensionality from (200, 768) to (200, 128). Then, we flatten from (200, 128) to 25,600, and add
two more linear layers to reduce 25,600 to 100. Using this architecture, we experiment with different
loss functions and training parameters.

Our second model approach substitutes the linear layers with an LSTM (refer to Figure 2). The
LSTM has 4 layers and a dropout of 0.1.

5 Experiments

5.1 Data

We extracted dictionary-like word (single token): definition (one or more token) pairs from “The On-
line Plain Text English Dictionary (OPTED)”[16] and WordNET[17]. OPTED has 84K unique word:
definition pairs ( 50K unique words associated with 80K unique definitions), whereas WordNET has
207K unique word: definition pairs (~150K unique words and ~120K unique definitions). OPTED
is more likely to provide multiple definitions for a word while WordNET is more likely to provide
synonyms linked with a single definition. WordNET definitions’ lengths may vary between 1 to 64
words, with an average of 9 words. OPTED definitions’ lengths may vary between 1 to 167 words,
with an average of 11 words.

We have combined WordNET and OPTED word-definition pairs and used the resulting dataset (~300K
unique word: definition pairs that consist of ~180K unique words and ~200K unique definitions) with

3



Figure 1: Linear decoder architecture

Figure 2: LSTM architecture

an 80/20 train/validation split. We have used the definitions as the input (independent variable) and
words as the output (dependent variable). Please see Table 1 for more examples from the dataset.

5.2 Evaluation method

5.2.1 L2 Distance

For each query in our evaluation set, we used our model to output the predicted embedding of the
target word. We calculated the L2 distance between the predicted embedding and the embedding
of the actual word, and took the average of this distance over the entire evaluation set. We directly
optimize for this metric via Mean Squared Error loss, which is the L2 distance squared, multiplied by
a constant.

5.2.2 Top-K Accuracy

For each query in our evaluation set, we used our model to output the predicted embedding of the
target word. We found the top-1, top-10, and top-100 nearest words by cosine distance and measured
the accuracy.

5.3 Experimental details

To set up our experiments, we load the pre-trained BERT model from Hugging Face, and we initialize
our own decoders with random values. We also remove word-definition pairs where the target word
did not have a corresponding embedding in our pre-trained vectors. We train with a batch size of
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32 and utilize an AdamW optimizer for gradient descent. Each epoch took roughly 45 minutes on
a TitanRTX GPU. We do not have a pre-set number of epochs, but rather train until the validation
accuracy converges.

While running these experiments, we attempted different variations of the loss function and actual
training technique. One of the things we tried was a Weighted-MSE loss function, where the MSE
loss for each sample was weighted by the rank of its similarity to the ground truth. This weight was
a parametric with respect to the similarity rank, calculated as max(rank, 100) / 100. For example, if
the ground truth word was the top result in the top-100 closest words, then rank=1, so the weight =
0.01. On the other hand, if the ground truth word was the worst result in the top-100 closest words,
then rank=100, so the weight = 1. This way, words that were already predicting well were updated
less than words that were further down in the top-k similarity. This experiment failed to improve
the results by a significant amount.

Another thing we tried was to see if we could hold BERT weights constant in certain epochs. We
found that holding BERT constant until the end (fine-tuning in the last few epochs) made the network
perform significantly worse. However, if the BERT weights were held constant after the first 5
epochs, there was no significant reduction in accuracy, and significantly improved training speed.

5.4 Results

We show the results of our experiments in Table 4. “Common words” refers to the top 2000 words
from the Wikipedia dataset by frequency. Our scores are higher than we expected compared to

Training Set Validation Set
Model Avg. MSE

Loss
Top
1/10/100

Top
1/10/100
(Common
words)

Avg. MSE
Loss

Top
1/10/100

Top
1/10/100
(Common
words)

Linear 12.48 38/61/77% 50/70/86% 20.15 7.9/20/37% 15/29/47%
LSTM 9.62 69/79/88% 79/92/97% 21.11 7.8/20/35% 14/27/44%

Table 4: Experimental results

the baseline (which we only evaluated on the validation set). This is likely because our model is
extracting more semantic meaning about the words in combination than simply taking all words in
the definition and adding them together. The LSTM has higher accuracy scores on the training set
(Figure 3). Our two models perform similarly on the validation data.

Figure 3: Linear vs LSTM

We also experimented with using DistilBERT as the encoder, rather than BERT. With the same
linear-layer decoder architecture, we found that accuracy decreased but not by a significant margin
(Figure 4).

6 Analysis

6.1 Result Analysis

While the linear-layer-based decoder and the LSTM decoder had similar results for the validation
set, the LSTM decoder vastly outperforms the linear-layer-based decoder on the training set.
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Figure 4: Bert Large vs DistilBert.

While it seems the 2 behave the same on average from these aggregate numbers, through some deeper
analysis, it appears that they behave quite differently (Figure 5).

Train Validation

Linear

LSTM

Figure 5: Distribution of loss among samples in training and validation

In these figures, we show the distribution of MSE loss of samples in the training set and validation
set. However, the right-most bin (100) actually denotes a loss of 100 or greater. The linear-based
decoder has significantly more outliers with extremely large loss values (Table 5).

Training Validation
Model Max Loss % of samples with

loss > 60
Max Loss % of samples with

loss > 60
Linear 1776.4 0.52% 731.50 0.75%
LSTM 71.662 0.0024% 110.25 0.16%

Table 5: Outlier statistics for top 2000 words

Note that loss above 60 is more than 3 SDs above the mean, which is why it is considered an outlier.
From these results, the LSTM-based decoder is more robust than the linear-based decoder at handling
outliers or uncommon tokens. The Top-10 tokens in the training set with the largest MSE loss for the
linear-based decoder were all either very uncommon words or had some scientific usage:
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‘galliformes’, ‘tortricidae’, ‘baronetage’, ‘phasianidae’, ‘lanceolate’,
‘nitrogen’, ‘acid’, ‘right-handed’, ‘obovate’, ‘c’

While the Top-10 tokens in the training set with largest MSE loss for the LSTM-based decoder had
no obvious correlation:

‘herein’, ‘untraded’, ‘lxii’, ‘al’, ‘daybook’, ‘yen’, ‘lah’, ‘republish’,
‘expectable’, ‘de’.

The same analysis above can be done on the top 2000 tokens by frequency in the dataset. The overall
loss distribution remains the similar (See Figure 6, Table 7 in the Appendix).

6.2 Training and Runtime Analysis

While training, in order to conserve time to finish before the deadline, we utilized an early stopping
mechanism and stopped the training process if there was no improvement in validation set performance
in the last 5 epochs while training set performance still increased. With this criteria, the linear-based
decoder converged on its validation set performance after 15 epochs (stopped after 20th epoch), while
the LSTM-based decoder converged after 100 epochs.

Loss Accuracy

Linear

LSTM
Table 6: Loss and Accuracies during Training

During training, for both of the models, we noticed a property where the validation top 1/10/100
accuracy would increase, but the validation loss would also increase rather than decrease. One
explanation for this is our formulation to output a word vector and comparing it to GloVe’s pretrained
vectors. Since these are vectors and we are calculating based on a ‘most-similar’ metric, it is possible
that the model can output vectors with either continuously growing or shrinking magnitudes, while
still maintaining the closest vector as the correct one. We can show this for the linear-based decoder
vs the LSTM decoder by outputting the average and largest magnitudes of the output vectors: the
linear-based decoder had an average of 15.8 and a max of 2426.01, while the LSTM-based decoder
had an average of 12.86 and a maximum of 38.

However, compared to the word vectors in GloVe (using GenSim’s glove-wiki-gigaword-100 vectors),
the 2000 most frequent words have an average GloVe vector magnitude of 33.09. However, the
more words that are added into this vocabulary, the smaller the average magnitude: the 10,000 most
frequent words have an average of 30.03, and the top 100,000 have an average of 23.87.
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Since our average vector magnitudes are so much lower in our models, future work would be to see
how the model behaves without weight regularization, or at least a smaller weight regularization
constant, since weight regularization keeps the weight values small, making the actual output values
smaller as well.

Compute-wise, the linear model does run faster with a batch size of 32 on a TitanRTX, with an
average batch-compute time of 7.7ms vs the LSTM with an average batch-compute time of 11.8ms.
However, this was a comparison in the PyTorch native runtime. This 53% difference in runtime can
possibly be alleviated with custom runtime accelerators like OpenVINO or TensorRT.

7 Conclusion

We believe that given the results, the BERT-encoder + LSTM-decoder is the best model variant
from our approaches for the reverse dictionary problem. While it is computationally slower and
requires a longer training period to converge, it has much more robust behavior compared to the
linear-layer-based decoder. In addition to this, hyperparameters may play a bigger part in model
performance than the architecture itself, such as allowing being able to tune the training such that
model can output values in the range similar to GloVe vectors.

There is some limitation due to the data that we used to train - we saw that common words with
many accurate definitions had strong accuracy, but our model struggled to classify rare, scientific
words. Some avenues for future work can include finding more data for either training or validation,
or hosting the service online for anyone to use.
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A Appendix

Train Validation

Linear

LSTM

Figure 6: Distribution of loss among samples in the top 2000 words

Training Validation
Model Max Loss % of samples with

loss > 60
Max Loss % of samples with

loss > 60
Linear 294.26 0.55% 133.81 0.61%
LSTM 56.405 0% 73.038 0.52%

Table 7: Outlier statistics for top 2000 words
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