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Abstract

Sentiment analysis refers to automatically recognizing affects from natural lan-
guage. Since people use different words in each context, it leads to the domain
shift problem, which can cause a significant decrease in training and testing dif-
ferent domains. In this work, we proposed an adaptive center contrastive learning
(ACCL) method to tackle the problem. First, to learn semantically meaningful
features and minimize inter-class variance, we introduced representation centers
learned by center contrastive learning (CCL). Second, to reduce the representa-
tion discrepancy between the source and target domain, we proposed an adaptive
contrastive learning (ACL) strategy, which used entropy-based pseudo-labels gen-
eration for high confidence target domain samples and trained them with the CCL,
which can learn a shared representation between source and target domain. We
conducted experiments on a widely-used cross-domain sentiment analysis dataset
- the Amazon review dataset. The ablation study demonstrated the effectiveness
of the proposed method. Compared with other methods, our methods also showed
satisfactory performance on many source and target domain pairs.
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2 Introduction

Sentiment analysis refers to automatically recognizing affects from natural language [[I]. It has a
wide range of applications in business, education, healthcare, manufacturing, and many other fields
for understanding reviews and recommendations. In recent years, deep learning based methods have
dramatically improved sentiment analysis performance. However, some methods perform poorly
in real-world applications, because their training data comes from a different domain than the de-
ployment scenario. This problem is called domain shift [J]. Such domain shift problem makes a
significant decrease of performance for the model trained on one domain (source domain), but ap-
plied in another domain (target domain) [B]. Therefore, there is a great need to solve this problem
by making the model trained on the source domain perform well on the target domain, which is also
called the domain adaptation (DA) task.

There are a few approaches designed to tackle the DA task. The main idea of most approaches is to
learn domain invariant features, i.e., making the distribution of features from the source and target
domain similar [B]. To achieve this aim, [A] proposed a method to reconstruct target domain inputs.
More recently, self-supervised contrastive learning (CL) has been proposed, which does not require
the model to reconstruct the input but explicitly minimizes the discrepancy of the representations.
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However, the self-supervised learning approaches do not utilize the semantically meaningful labels,
which are available, during the representation learning. Another way to solve the DA task is to
improve the model’s generalization. A powerful pre-trained language model, bidirectional encoder
representations from transformers (BERT), has been proposed in [8]. It forms language modeling
tasks using masks and lets the BERT model learn general knowledge of the languages. However, this
knowledge may not help the DA task because the learned knowledge is domain and task agnostic.

Therefore, we proposed an adaptive center contrastive learning (ACCL) method to tackle the prob-
lem. First, to learn semantically meaningful features and minimize inter-class variance, we intro-
duced representation centers learned by center contrastive learning (CCL). Second, to reduce the
representation discrepancy between the source and target domain, we proposed an adaptive con-
trastive learning (ACL) strategy, which used entropy-based pseudo-labels generation for high confi-
dence target domain samples and trained them with the CCL, which can learn a shared representation
between source and target domain. We conducted experiments on a widely-used cross-domain sen-
timent analysis dataset - the Amazon review dataset. The ablation study demonstrated the effective-
ness of the proposed method. Compared with other methods, our methods also showed satisfactory
performance on many source and target domain pairs.

The rest of the report is organized as follows. Related work is discussed in Section 2. The proposed
approach is introduced in Section 3. We talked about experiments in Section 4, and qualitative
analysis in Section 5. Finally, we conclude the report and point out future work in Section 6.

3 Related Work

3.1 Sentiment Analysis

The sentiment can be measured in various ways, while the sentiment classification problem considers
the sentiment as discrete classes, such as positive, negative, and neutral [6]. There are fine-grained
sentiment classification studies for identifying happiness, sadness, anger, disgust, surprise, and fear,
but these tasks are usually called emotion classifications [B]. Regarding different formats, there are
sentence-level sentiment classification and document-level sentiment classification. For sentence-
level sentiment classification, Kim [[] first introduced the convolutional neural network (CNN) to
the field, while Wang et al. [R] applied a disconnected recurrent neural network (RNN). For the
document-level sentiment classification, [9] proposed a gated recurrent neural network (GRNN)
using CNN or RNN at the low level and hierarchically combining the representations to obtain
the document representation. However, because of the differences between domains, a sentiment
classifier trained on one domain may not perform well on new domains, necessitating the research
to bridge this domain gap.

3.2 Domain Adaptation

Since people use different words in each context, it leads to the domain shift problem [2]. Such do-
main shift problem makes a significant decrease of performance for the model trained on one domain
(source domain), but applied in another domain (target domain) [3]. Therefore, the DA problem is
proposed to alleviate the domain shift problem and maintain a relatively satisfactory performance
on the target domain. The DA task can be classified into unsupervised and semi-supervised do-
main adaptation. In particular, we focus on the unsupervised domain adaptation (UDA) problem,
where the model can access the labeled source domain data, and unlabeled target domain data. In
terms of discrepancy-based approaches, deep domain confusion (DDC) [I0U] used maximum mean
discrepancy (MMD) to pull together the source and target domain features, and then deep adapta-
tion network (DAN) [T] improved it by considering multiple kernels. Domain adversarial neural
network (DANN) introduced the adversarial idea training idea to fool the domain classifier so that
it cannot distinguish the inputs from the source and target domain [I2]. [Z] proposed a method to
reconstruct target domain inputs. [I3] designed an easy-to-hard strategy to select reliable pseudo-
labels progressively. Our method is inspired by the idea of generating pseudo-labels.

3.3 Contrastive Learning

CL has been a very popular representation learning method in recent years. [I4] proposed
the instance discrimination task and the memory bank strategy. Contrastive predictive coding



(CPC) [I5] regarded the future input features as positive samples, while contrastive multiview coding
(CMC) [I6] treated the different views of the same input as positive samples. In addition, CPC sug-
gested using the Info Noise-Contrastive Estimation (InfoNCE) loss, which is called the contrastive
loss in many studies. Momentum contrast (MoCo) [I7] used a momentum encoder to update the
encoder and a queue to decouple the batch size. The simple contrastive representation learning
(SimCLR) framework [I8] unified the CL framework by using data augmentation for creating mul-
tiple views, and proving the usefulness of adding projection layers. [] applied the SimCLR to
learn useful representations from both source and target domain, so that the domain discrepancy
can be minimized automatically. However, SImCLR does not use labels, which may push the rep-
resentations of the same class away from each other. Therefore, supervised contrastive learning
(SCL) was proposed to pull together features for the same class, and push apart features for different
classes [T9]. Our work will use the idea of SCL to learn semantically meaningful representations.

4 Approach

To solve the domain shift problem for the sentiment classification, we proposed an ACCL method
in Fig. M. First, to learn semantically meaningful features and minimize inter-class variance, we
introduced representation centers learned by CCL. Second, to reduce the representation discrepancy
between the source and target domain, we proposed an ACL strategy, which used entropy-based
pseudo-labels generation for high confidence target domain samples and trained them with the CCL,
which can learn a shared representation between source and target domain.
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Figure 1: The pipeline of our framework. The blue lines indicate the labeled data flow, while the

orange lines indicate the unlabeled data flow. B stands for the batch size, and B is the portion with
confidence predictions.

4.1 Problem Formulation

For the cross-domain sentiment classification task, a source domain dataset Dy = {(x%, yf)}f\il

and a target domain dataset D; = {(xf)}f\il are provided. The two datasets are sampled from

two different distributions: ps(X,Y’) and p¢(X,Y"). Each sample from the source dataset x{ has a
corresponding label y$, while the samples from the target dataset % do not have labels. A learned
model is expected to perform well on the target dataset.

4.2 Baseline

The feature extractor is a pretrained BERT [S] with a few projection layers f. Two different views
x; and zj(;) of the same input sample i € I are generated by data augmentation in advance, and fed

into the model. The output representation is denoted as z € R<. In particular, the representations



are z; = f(x(i)) and z;;) = f(z(j(i))). The model computes contrastive loss for unlabeled data as

exp (2 + 2j(i)/Tet)
L:cl = - IOg \ (1)
; ZaEA(i) €Xp (Zl . Za/Tcl)

where 7, is a temperature parameter, and A(i) = I'\{i}.

4.3 Center Contrastive Learning

Since the standard self-supervised CL does not use available labels to learn semantic representations,
we leverage the SCL framework with labels to learn semantic representation. Furthermore, to mini-
mize intra-class variance, we introduced representation centers. In detail, we created K (the number
of classes in the dataset) learnable representation centers ¢ € RY, and applied supervised contrastive
learning for pulling samples of the same class to the corresponding centers as

_ -1 exp (ci . Zp/chl)
Lea = ZGZ] m Z log )

G pepien > ven €xXP (¢i - 2 /Teat)’

where P(c;) is the set for instances with ¢; labels, and B is a batch. Here, an instance means a
sample, while a center is an embedding where all instances from the same class should be close to.
Note that there are two differences between the original CL and our CCL: one is that our CCL has
learnable center embeddings. The second is that we used labels.

4.4 Adaptive Contrastive Learning

To reduce the representation discrepancy between the source and target domain, we proposed an
ACL strategy. First, we obtained entropy for all target domain samples. Then, we selected the
high confidence target domain samples, and generated pseudo-labels for them. Finally, we train the
samples with labels from the source domain, and the samples with pseudo-labels from the target
domain jointly using CCL.

To achieve this, it is based on the assumption of [20] that the model can make confident predictions
by showing low entropy, while not confident predictions by showing high entropy. Therefore, we
calculate the entropy as

E; = Z—zflog(zf), €)]

where 2! = f(x!) is the representation computed from the target set samples.

tc . . . . . .
Then, we use a threshold Tr = %, where |x?| is the cardinality of images in the target domain,

|zte| is the cardinality of images with confident predictions in the target domain. Note that this
threshold is not a hard number, but is based on the number of images in the target domain. The
advantage of it is that it can be generalized to other domain case. Since we used the minibatch-based
optimization, we denote the |z'¢| as B for the high confidence predictions portion in a minibatch
B. For the high confidence potion, we denote their representations as z}°. These representations are
used to compute the similarity with the class centers, and obtain the pseudo-labels from the higher
scores as

.
gy = argmax,{c1 - Zp,...,Ck - Zpy .-, CK * Zp}- 4

After obtaining these pseudo-labels, we can use them to compute the CCL. Note that the source
domain and target domain share the same center embeddings for the same class, so the domain gap
is minimized.

4.5 Data Augmentation

Besides the back translation used by [2], we used (1) random augmenter by substituting characters
randomly by WordNet synonyms, (2) contextual augmenter for word substitution using RoBERTa
as used in [21]]. The probabilities of both augmentations are set as 0.3. We provide a comparison for
using these data augmentation techniques in Section 5411



5 Experiments

5.1 Data

The Amazon review dataset [27] contains reviews of 4 products, books (B), DVD (D), electronics
(E), and kitchens (K), as four domains. Each domain has 1000 positive and 1000 negative reviews,
and a few unlabeled reviews. We followed the training and testing settings as [] by having 1400
samples for training and 600 samples for testing. Furthermore, we consider all 12 possible domain
pairsasD -B,E—+B,K—+B,B—+D,E—+-D,K—+D,B—-E,D—-E K—EB—K D—K,
E — K, ranther than picking 6 pairs only as [Z].

5.2 Evaluation method

For evaluation, we calculated the overall top-1 accuracy on the target domain test set as

N,

Accuracy = FC, (5)
where N, is the number of correct predictions, /V is the total number of samples on the target domain
test set. It is worth noting that we are not allowed to use the target domain labels during training due
to the DA task setting.

5.3 Experimental details

Our model was built using the PyTorch deep learning framework. We employed an adaptive momen-
tum decoupled weight decay (AdamW) optimizer with an initial learning rate of 2 x 10~° and 1/10
total steps for the learning rate warm up. The model was trained with batch size 6 for 20 epochs on
a computer with 2 NVIDIA 2080Ti 11G GPU cards and 8 CPU logical cores. We set the entropy
threshold T as 0.3, the temperature 7.; of L as 0.05, and the temperature 7., of L. as 0.07.

5.4 Results

In order to validate the effectiveness of the proposed method, we conducted ablation studies, and
compared our performance with other methods. In addition, we also investigated the performance
using different data augmentations.

5.4.1 Quantitative results for data augmentations

We show the accuracies on the target domain test set for

different data augmentations discussed in Section B3 in Table 1: Quantitative results (K — E)
Table [. It shows that the back translation has the best per- for different data augmentations.
formance. One possible reason is that the back-translation

needs to translate the sentence to another language and

: | ! Data augmentation Accuracy (%)
then translate it back, so it creates more variants for the

sentences, while keeping the same semantic meaning. The Back trans. 92.41
contextual augmentation method achieved a slightly lower Random aug. 91.74
but similar accuracy as the back-translation method, but Contextual aug. 92.35

the random augmentation method has the worst result.

5.4.2 Quantitative ablation study

We show the quantitative results on the target domain test
set for adding new modules in Table . It shows that we
have slightly improved the accuracy by adding the CCL
loss to the baseline. This improvement may come from us-
ing labels to extract more semantically meaningful repre- CCL  ACL  Accuracy (%)

Table 2: Quantitative results (K — E)
for the ablation study.

sentation during representation learning. Then, we can ob- X X 92.27
serve that it has a relatively larger improvement by adding v/ X 92.30
the ACL strategy, since we can reduce the source and tar- v/ v/ 92.41

get domains’ discrepancy by using the generated pseudo-
labels in the target domain as guidance.



5.4.3 Qualitative comparison with other methods

We compare our method with other widely-used methods on the cross-domain sentiment analysis in
Table B. The methods include the domain adversarial neural network (DANN) [23], the pivot based
language model (PBLM) [24], the hierarchical attention transfer network (HATN) [?5], the adver-
sarial category alignment network (ACAN) [26], the interactive attention transfer network [277], fine-
tuned BERT [S], domain-aware and adversarial BERT (DAAT) [?8], and the CLIM implemented by
us.

For the averaged accuracy of 12 domain pairs, we can see that our ACCL method achieved the best
performance, exceeding the DAAT and CLIM by about 1% and 0.1%, respectively. In general, we
find the results are higher when the target domains are electronics or kitchens rather than books or
DVDs. We think this phenomenon is caused by the fact that these reviews in these two domains
have very general words and rarely use specific terminologies. However, reviewers mentioned many
terms for the books or DVDs domains that may only be used in those domains, which makes them
hard to be understood for the models trained in another domain.

Table 3: Comparison with other methods on the Amazon review dataset.

Accuracy (%)
DANN PBLM HATN ACAN IATN BERT DAAT CLIM ACCL

D—B 81.70 82,50 8630 8235 87.00 89.40 90.86 91.25 91.53
E—B 78.55 7140 81.00 79.75 81.80 86.50 8891 89.08 89.24
K—B 79.25 7420 8330 80.80 84.70 87.55 8798 8852 88.4l
B—D 8230 8420 86.10 8345 86.80 88.96 89.70 90.21 89.97
E—D 79.70  75.00 84.00 81.75 84.10 8795 90.13 9153 91.42
K—D 8045 79.80 8450 82.10 84.10 8730 8881 89.90 89.37
B—E 771.60  77.60 8570 8120 86.50 86.15 89.57 9192 9274
D—-E 7970 79.60 8560 8280 86.90 86.55 89.30 90.15 91.03
K—E 86.65 87.10 87.00 86.60 87.60 9045 91.72 9227 9241
B—+K 7610 8250 8520 83.05 8590 89.05 90.75 9320 92.67
D—-K 7735 8320 8620 78.06 85.80 87.53 90.50 91.89 92.38
E—K 8395 87.80 8790 8335 8870 91.60 93.18 93.21 93.50

Average 80.29 8040 85.10 82.15 8590 8825 90.12 91.09 91.22

S—>T

6 Analysis

Qualitative evaluation of our method is provided in Table B, where we have shown some sample
review’s results obtained with (w/) our ACCL or without (w/0) our ACCL method. Most of these
reviews are selected from the electronics domain with the model trained in the kitchen domain.

From Table B, we can see that when the reviews have explicit sentiment-related words, like excellent,
it is easier to obtain the correct prediction (as shown in the first row). However, it becomes harder
when there are no explicit words like in the second row. Our method with ACCL can correctly
predict it as a positive result. When the review becomes longer, like in the third and sixth rows, it
becomes tough to predict the correct sentiment. Since the sentiment may change from one sentence
to another sentence across the whole review, our model may get confused from part of the review.

7 Conclusion

In this work, we proposed an ACCL method to tackle the DA task in sentiment analysis. First,
this study has shown that the CCL is useful for learning semantically meaningful representations.
The second major finding is that the pseudo-labels can minimize the domain discrepancy through
learning shared centers between source and target domains. The ablation study and comparison with
other methods proved the effectiveness of ACCL by showing satisfactory performance. In the future,
we will further improve the method by using better initial states for the centers rather than randomly



Table 4: Qualitative analysis of reviews. + means a positive review, while - means a negative review.

Review w/o0 ACCLL. w/ACCL Ground truth

It certainly did.

Excellent color qualit * * *

I purchased this for my wife

who wanted a case for her ) + +
I bought these speakers some time back.
I was a bit skeptical because the sub woofer + +

looked a little wierd. but once I plugged it
in they sounded really good

Only thing I did not care for was
the design on the top of the disk. - + +
Other than that, these are quality DVD

I like the features. I’'m satisfied with the sound.
The user interface could be more intuitive.

I bought this machine based on

the good reviews I found here.

I have had it for one month and

it does nothing but jam. + + -
Now the two week return policy

at the store has expired and I am left

with a jamming piece 0’ junk.

initializing them. In addition, we should run multiple experiments to reduce the stochasticity of the
results when there is more time available.
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