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Abstract

This project aims to capture widespread sentiment about COVID-19 and
COVID-19 related policies on Twitter—the world’s most popular text-based social
media platform. To accomplish this task, we fine-tuned a pretrained BERT model:
Twitter-RoBERTa-Base-Sentiment [[1] on COVID-19-related Tweets labelled for 3
sentiment classes. After training, this model achieves a test accuracy of 65.47%,
out-performing the baseline Twitter-RoBERTa-Base-Sentiment by 19.47%. Then,
we applied our model to classify Twitter sentiment globally in English speaking
nations (United Kingdom, United States, and Canada) related to two of the most
prevalent COVID-19-related policies: digital contact tracing (DCT) and vaccine
mandates. Our results show that, overall, people viewed digital contact tracing
more favorably than vaccine mandates, and that both DCT and vaccines are more
supported by Twitter users in the United Kingdom than those in the United States.

1 Introduction

As the COVID-19 pandemic has evolved, countries around the world have instated different national
policies to contain the spread of the disease among citizens. Among these strategies are vaccine
mandates and digital contact tracing, both of which impose some restriction and/or surveillance on
citizens. Socially, these policies reveal a balance between individual freedom and sacrifice with the
intent of benefiting the greater good, which we explore in the present paper. While data like case
counts and vaccination rates address the quantitative side of the pandemic, there is a qualitative,
experiential aspect of COVID-19 that is harder to report through these population-level metrics. The
present paper attempts to answer the more nuanced question, "How do people feel about COVID-19
and the policies instantiated to prevent its spread?" which current data fails to comprehensively tackle.
Presenting this problem statement in the form of a classic NLP task, we wish to classify the sentiment
of Tweets related to COVID-19 policies.

Our driving mission was to draw from the opinions of individuals as expressed in Tweets from
throughout the COVID-19 pandemic to fine-tune a model to excel at classifying the sentiment of such
Tweets. We decided to use a Bidirectional Encoder Representations from Transformers (BERT) model
as our baseline, because such models are pre-trained with massive amounts of data, often specializing
in some domain that allows them to outperform more general models on NLP tasks in that domain.
Applying this to our problem, we sought a baseline already pre-trained to handle our data: Tweet text.
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After experimenting with a few different models, we landed on Twitter-RoBERTa-Base-Sentiment
[L], because it showed the highest accuracy in predicting the sentiment of Tweets about COVID-19
vaccines.

We hypothesized that by fine-tuning a Twitter BERT model on a sentiment analysis task with COVID-
19 Tweet data, we would produce a model that would have improved performance over the baseline
when analyzing the sentiment of COVID-19 policy related Tweets. We then used our model to
investigate trends in sentiment about different COVID-19 policies, namely vaccine mandates and
contact tracing, by filtering unlabeled COVID-19 Tweet datasets by relevant keywords. Additionally,
we evaluated the sentiment of COVID-19 Tweets from datasets collected in different nations—the
United States, United Kingdom, and Canada—to see how cultural norms, government structures, and
value systems change ideological trends. Our results answered our research question by representing
how the public felt about their government’s COVID-19 policies through sentiment scores, with some
measure of confidence given by the accuracy reported by our model (65.47%). We intend for this
model to contribute to the growing sphere of COVID-19 data by providing qualitative metrics about
the public’s reception of pandemic-era protocols.

2 Related Work

2.1 Generalized BERT Models

Transformer-based models like BERT [2] provide general language models which can be applied to
a variety of NLP tasks. Because they are pre-trained on unsupervised tasks with billions of words,
they succeed at an array of NLP applications. Importantly, BERT is created using bidirectional
pre-training, which is fundamentally more powerful than left-to-right or combined left-to-right and
right-to-left models for our task, and BERT’s success is attributed to this property [2]]. Models like
BERT [2] and RoBERTza [3] often serve as the basis for models trained more extensively in a domain
of interest, for example biology or science in BioBERT and SciBERT models respectively [2} 13,4} 5]

2.2 Pre-trained Domain-Specific BERT Models

This paper adds to a growing number of domain-specific pre-trained BERT models, and domain-
specific pre-trained transformers in general. Existing pre-trained BERT have offered notable perfor-
mance improvements in their target domains, for example, BioBERT outperforms the baseline BERT
model, achieving a higher F1 score than BERT in biomedical contexts as shown in its introductory
paper [4]. COVID-Twitter-BERT contributes a model that outperforms the baseline in a new domain,
and promises to be valuable tool to analyze COVID-19 data specifically, as the pandemic progresses

[6].

The model showed non-negligible marginal performance improvements in classification tasks on
test datasets that were not COVID-19 focused. Namely, the model’s improvement over the base
BERT arar was 25.27% for a vaccine sentiment dataset, 17.07% for a maternal vaccine stance
dataset, and 10.67% for a general Tweet dataset, and 8.97% for a generic sentiment bank not originat-
ing from Twitter [6]. In comparison to the model’s 25.88% marginal performance improvement on a
COVID-19 dataset, these values suggest that COVID-Twitter-BERT can be more broadly applicable
to health and medical related NLP tasks, as well as tasks performed on Tweet-based datasets.

The present paper aims to make a similar contribution in its domain: sentiment classification of
COVID-related Tweet data. COVID-Twitter-BERT provides a promising example of a baseline BERT
model improved with additional training data, and this paper adopts a similar methodology to address
a new problem.

3 Approach

3.1 Baseline Model

To determine which BERT model to use as a baseline upon which to perform pre-training, we
conducted a small experiment on a set of BERT models and compared their performances. We
selected three BERT models from Hugging Face, the Twitter-RoBERTa-Base-Sentiment model [[1]],



the Sentiment-RoBERTa-Large-English-3-Classes model [7], and the BERTweet-Base-Sentiment-
Analysis Model [8], to evaluate on a sentiment analysis task for COVID-19 vaccine sentiment
data [9]. Based on the resulting accuracy of these models in classifying sentiment, we chose to
proceed with Twitter-RoBERTa-Base-Sentiment model as our baseline model for the final project.
Our baseline model, Twitter-RoBERTa-Base-Sentiment, has 12 hidden layers and was trained on
approximately 58 million Tweets. As shown below, Twitter-RoBERTa-Base-Sentiment outperformed
the other models on COVID-19 related Tweets, and therefore we chose to continue the project with
Twitter-RoBERTa-Base-Sentiment as our baseline.

Model Accuracy

Twitter-RoBERTa-Base-Sentiment 46.09%
Sentiment-RoBERTa-large 38.28%
BERTweet-Base-Sentiment 36.72%

Figure 1: Initial Performance of Baseline BERT Models

3.2 Fine-Tuning Approach

This paper improves the baseline Twitter-RoBERTa-Base-Sentiment-Analysis model [3] by fine-
tuning on COVID-19 Tweets labeled for sentiment analysis. We experimented with different data
collection and distribution methods, batch sizes, number of epochs, and optimizer hyper-parameters.
After formatting our COVID-19 Tweet data so that each example contained two fields - TweetContext
(the text content of each Tweet) and Sentiment (the sentiment score) - we split the examples into a
train, evaluation, and test set using a 70-15-15 ratio respectively. Our best fine-tuned model (with
the highest reported accuracy) used data from both the vaccine sentiment dataset [9] and a general
COVID-19 dataset [10], had 3 epochs, a batch size of 16, and used an AdamW optimizer with a
learning rate of 5¢=5 = 0.0337.

3.2.1 Fine-Tune Data Selection

To select our fine-tuning dataset, we experimented with datasets of different size, content, and
distribution of sentiment. Ultimately, we selected examples from a COVID-19 vaccine sentiment
dataset [9] of 1192 examples and a more general set of 3170 Tweets about COVID-19 [10]] (4362
total Tweets).

We compared how training and evaluating more domain-focused sets of data affected our model’s
accuracy. For instance, we compared our model’s accuracy when trained on the vaccine dataset to a
combined dataset of these vaccine Tweets with more general COVID-19 data. We selected a subset of
160 Tweets from each of these datasets to perform our experiment. After training, the vaccine model
had an dev accuracy of 45.81% accuracy, while the vaccine plus general COVID-19 data model had
an accuracy of 58.32% (both on small datasets without hyperparameter fine-tuning). Therefore, we
used a combination of both datasets.

Finally, we observed that our datasets were skewed towards neutral sentiment. To test whether this
would cause our model to predict neutral sentiment disproportionately based on its frequency in the
training data, we hand-selected a subset of our vaccine dataset by removing some neutral examples
to create a more even distribution. We compared this model’s performance to that of the overall
fine-tuned model, and found no performance improvement.

3.2.2 Fine-Tune Parameters

After creating a combined COVID-19 dataset [[10] to fine-tune our model, we adjusted training
parameters to achieve a higher accuracy.

We experimented with learning rate to fine-tune our model, comparing a learning rate of 2e~>
and 5¢~5 when training the baseline on our vaccine dataset. We saw improved accuracy with the
smaller learning rate, namely 0.7400 (74.00% accuracy) for 2e ~® learning rate and 0.5832 (58.32%
accuracy) for 5e~° learning rate, which corresponded with our knowledge that smaller learning rates
improve performance when training on smaller datasets. Since we were not sure if this learning



rate trend would extrapolate to a larger training dataset, we trained two full models with the other
hyper-parameters fixed and different AdamW optimizer learning rates.

Additionally, we experimented with the number of epochs we trained for, because we noted that our
model’s loss and accuracy tended to decrease after the third epoch of training. Because our model
output the loss and accuracy after each epoch, we used this experimental data to conclude that 3
training epochs was ideal for our use case.

We also experimented with batch size and settled on the standard amount of 16 examples per batch.

3.3 Sentiment Predictions on Real-World Data

After training our baseline model on the full COVID-19 dataset [10] (with no adjustments of
sentiment score distribution) with a batch size of 16 for 3 epochs, using a learning rate of 5e~> for the
AdamW optimizer (our final model with the best accuracy), we applied this fine-tuned model to make
predictions on real-word, unlabeled data. We selected unlabeled Tweet data [[L1]] from three dates
over the course of the pandemic to capture sentiment throughout this global crisis from May 2020
to January 2022. We then split our data into groups of three countries where English is the primary
language (Canada, the United States, and the United Kingdom), and used keywords to identify Tweets
about different COVID-19 policies. Our model outputs its predictions on this real-world data as a
vector of three scores for each example, representing its confidence in the Tweet’s sentiment being
negative, neutral, or positive. We took the argmax of this vector to determine the model’s prediction
for a given Tweet. This allowed us to compute the total number of positive, neutral, and negative
Tweets for each segmentation of data, and examine how these totals changed over time, between
different countries, and how sentiment differed by policy.

4 Experiments

4.1 Data
4.1.1 Training Data

As stated in the fine-tuning section, we combined two COVID-19 Twitter datasets to create our
training repository. More details about training data collection beyond what is included above can be
found in the appendix.

4.1.2 Real World Data

The unlabeled data we classified for sentiment analysis came from a dataset of 1.2 billion Tweets
collected from May 2020 to January 2022 (at approx. 6 month intervals) related to the COVID-19
pandemic [[L1]. Then, we filtered by country code to isolate Tweets from the United Kingdom, United
States, and Canada. Finally, we did keyword filtering on both of the date datasets to isolate Tweets
related to vaccineq']and digital contact tracing?] These datasets allowed us to explore how COVID-19
sentiment changed from May 2020 to January 2022, how citizens of different English-speaking
countries compare in their sentiments about COVID-19, and how sentiment on vaccines and digital
contact tracing differ.

4.2 Evaluation method

Our primary evaluation metric throughout the paper is accuracy, which we computed as:

correct predictions

(D

accuracy =
v total predictions

We used this metric to determine which baseline BERT model to use and our fine-tuned hyperparam-
eters and baseline. After selecting a combined dataset of vaccine and COVID-19 data to fine-tune our

LTS

"Vaccine keywords: “vaccine” “inoculation” “covid shot” “pfizer” “moderna” “johnson and johnson”

’DCT keywords: “covid app” “tracing app” “COVID-19 app” “contact tracing” “privacy” “security” “surveil-
lance” “app security” “app privacy” “contain virus speak” “movement tracking” “contain virus speak” “movement
tracking” “covid application” “DCT” “digital” “bluetooth” “tracing”
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model, 3 epochs, and a batch size of 16, we computed accuracy and F-1 scores for our final model
(these hyper-parameters with an optimizer learning rate of 5¢~°), another fully-trained model with an
optimizer learning rate of 2e5), and our baseline Twitter-RoBERTa-Sentiment-Classification model.

We also used the F1 score for to determine the best model. The F1 score for each category is
calculated as:

2 X precision X recall
F1 score =

2

precision + recall

and we used the sklearn function £1_score to calculate this metric for the baseline and fine-tuned
model. This additional metric was crucial because we found that a model which always outputs 1
(neutral sentiment) managed to score around 50% accuracy on our test sets, since neutral tweets
were more frequent than the other classes. Multi-class F1 scores offer a more holistic assessment of
our model’s performance in comparison to the baseline, since they compute precision and recall for
each class (positive, neutral, negative) to indicate how well the model classifies each of these labels
individually.

4.3 Experimental details: Training the Final Model

After fine-tuning the initial hyper-parameters on the smaller fine-tuning datasets (delineated above
in methods), we trained our combined COVID-19 and vaccine dataset to create two fine-tuned
model versions of Twitter-RoBERTa-Sentiment-Classification. We trained for 3 epochs, with an
instantaneous batch size of 16, and 417 total AdamW optimization steps. The only difference between
these two models was that they had different learning rates: 2e~> and 5e~°.

We determined that our best test set accuracy came from the model with the optimizer learning rate of
5e~°. The overall training runtime was 12126.4449 seconds, with 0.549 samples per second, 0.034
training steps per second, and a training loss of 0.6256. This model achieved a test loss of 0.8777 and
a test accuracy of 0.6547 (65.47%). The test run-time was 103.9735 seconds, with 4.568 samples per
second, and 0.289 test steps per second.

4.4 Results and Analysis

4.4.1 Fine-Tuned Model Results

Overall Results First, as expected, both of our final fine-tuned models achieved a much higher
accuracy and F1 score than the baseline model. This is because they were both fine-tuned specifically
to analyze COVID-19 Tweets, instead of Tweets in general (like the baseline model). While the
baseline achieved an accuracy of 46% and F1 scores of [0.436, 0.575, 0.308] (for negative, neutral,
and positive respectively), the model with the AdamW learning rate of 5e~5 achieved an accuracy of
65.47% and F1 scores of [0.5025, 0.6038, 0.4954], and our model with an AdamW learning rate of
2¢~% achieved an accuracy of 62.74% and F1 scores of [0.6277, 0.6853, 0.5772]. Interestingly, the
model with the AdamW learning rate of 2¢~5 achieved better F1 scores, whereas the model with the
AdamW learning rate of 5e~° achieved higher accuracy.

| B | Fi 2
Fine-tuned #1 Fine-tuned #2
Accuracy 0.46 0.6547 0.6274
F1 Positive 0.308 0.49536 0.57718 0z
F1 Neutral 0.575 0.60377 0.68534
F1 Negative 0.436 0.50246 0.62766 oo Accuracy F1 Positive F1 Neutral F1 Negative
(a) Table Model Results (b) Graph Model Results

Figure 2: Accuracy and F1 Scores for Fully Trained Models



AdamW Optimizer Learning Rate While changing the number of epochs, the batch size, and
changing the data distribution all provided conclusive results that the hyper-parameters we chose were
the best, changing the AdamW optimizer learning rate—controlling how quickly the model optimizes
to the problem—was interestingly not as conclusive. Both of the models with these learning rates
provided results well above the baseline, but we expected the 2e P rate to work better overall because
even though 5e~? is the default AdamW optimizer learning rate, we had a relatively small amount
of training data. This optimizer rate, since it has adapts more slowly, is a preferred hyperparameter
when using a small amount of data. Our smaller fine-tuning experiments (before training our two
large models), reflects this trend. Our small train/evaluation set using a 2e ~® learning rate produced
the best evaluation set accuracy out of the entire experiment: 81.25% accuracy. However, once we
applied our two fully-trained models to the unseen test dataset, the model with the hyper-parameter
of 5e7° as the AdamW learning rate performed much better: 65.47% accuracy compared to 62.73%
accuracy. Below depicted both models’ accuracy over the three epochs and on the test set (which we
included as the last stage):

- 2¢-5 == 5¢-5

Accuracy

Epochs (4 = Test)

Figure 3: Optimizer Learning Rates by Epochs for Fully-Trained Models

Main Takeaways Overall, these results from the two fully-trained models show us that our approach
of performing domain-specific fine-tuning on a BERT model was successful in creating a BERT
model for classifying COVID-19 Twitter sentiment. Specifically, the combination of a baseline
pre-trained for sentiment analysis of Tweets and fine-tuned on COVID-19 datasets yielded a model
that excelled at the intersection of this data. While some fine-tuning decisions delivered conclusive
results in terms of accuracy and F1 scores, other parameters, namely learning rate, were not so clear.
As we’ll explore in the Analysis section, the metrics we use in this paper evaluate different properties
of a model which aren’t necessarily correlated.

4.4.2 Real World Data Results

Overall Sentiment Overall, our model discovered that sentiment on Twitter towards COVID-19
policies was generally positive. For digital contact tracing, 49.9% of people Tweeted positively on
this topic, 40.4% of people posted neutral Tweets, and only 10.6% of people had negative sentiment
towards this policy.

Towards vaccines, people had slightly less positive things to say. For instance, 42.0% of people
posted Tweets with positive-classified sentiment, 33.6% of people posted neutrally, and 24.4% of
people posted negatively.

nnnnnn

(a) Sentiment Distribution for (b) Sentiment Distribution for
DCT Related Tweets Vaccine Related Tweets

Figure 4: Sentiment Distributions by Mandate



Country Comparisons We gathered the following data by country, which showed the UK having
the highest percentage of positive Tweets overall sentiment in COVID-19 related data.

COVID-19 Sentiment by Country

1
0.75 . - .
0 ._-l

UK us Canada

W Positive
Neutral
W Negative

Percent Distribution
o
@

Figure 5: Distributions of Positive, Neutral, and Negative COVID-19 Sentiment by Country

Digital Contact Tracing by Country When comparing digital contact tracing sentiment by country,
we discovered that 42.8% of Americans posted positive Tweets about DCT, 32.0% of Americans
posted neutrally about DCT, and 25.2% of Americans posted Tweets with negative DCT sentiment.
In the United Kingdom, Twitter sentiment towards digital contact tracing was more positive. 56.3%
of people posted positive Tweets regarding DCT, 37.5% of people posted neutral Tweets about this
technology, and only 6.3% of people posted negative DCT Tweets. These findings, for the most part,
corroborate previous research studies that assessed global DCT sentiment through interviews and
surveys, which we discuss in Analysis.

5 Analysis

5.1 Fine-Tuned Models

In the process of fine-tuning our models, we found that a combined dataset of COVID-19 data,
trained for 3 epochs of optimization, produced the best F1 scores and accuracy. This aligned with
our expectation that fine-tuning on a combination of relevant COVID-19 datasets, as opposed to
hyper-specific domain data or general Tweet data, would produce a better model for our task. The
dataset we used was general enough to make accurate predictions about contact tracing sentiment
despite not seeing data overwhelmingly specific to DCT, while still including data specific to our
driving question. The number of epochs that yielded the best accuracy also matched our prior beliefs -
we expected our accuracy to peak around 3 epochs because after a few more iterations we would begin
overfitting to our smaller training dataset. We observed this dropoff in accuracy in our fine-tuning
experiments.

When experimenting with the AdamW optimizer learning rate, we found mixed results: the higher
5e~° learning rate yielded a better accuracy, while the 2¢~5 achieved better F1 scores. As discussed
previously, accuracy provides a measure of overall correct predictions, and this metric can be high
even for a broken or uninteresting model when the training dataset is skewed towards one class. In
our case, a model that always classified Tweets as neutral managed to achieve around 50% accuracy,
while getting every Tweet labeled positive or negative incorrect. We theorize that a similar situation
occurred with our higher learning rate, though not so extreme as to cause the model to always output
neutral. The higher learning rate may have caused the model to learn to predict neutral more quickly,
improving the accuracy because the test dataset was skewed towards neutral, but not the F1 score
which identified the underrepresented positive and negative predictions. Since F1 scores are based
on precision and recall and are calculated for each class separately, outputting neutral more often
will cause lower F1 scores, which penalize over-predicting one class to match a skewed distribution.
These results reveal a potential flaw in this model, despite its promising accuracy score. Thus, the
higher accuracy for the 5¢~° learning rate model doesn’t contradict our expectation that a smaller
2¢~5 learning rate is better for our smaller training dataset, it just demonstrates the importance of
multiple evaluation methods and thoughtful analysis of results.



5.2 Real World Takeaways

Overall COVID-19 Policy Sentiment Our results showed nearly 50% of Tweets pertaining to DCT
keywords labeled as positive sentiment, indicating that Twitter users across the countries represented
had supported this policy. Notably, only 10.6% of DCT Tweets were labeled negative, indicating that
contact tracing policies were largely unopposed in these countries. This result suggests that people
felt comfortable sacrificing some of their personal privacy to support their government’s effort to
slow the spread of COVID-19.

We saw a shift towards neutral and negative sentiment in Tweets about vaccines, with the biggest
change from DCT Tweets appearing in the percentage of negatively classified Tweets. We observed
24.4% of Tweets expressing negative sentiment about vaccines, which suggests both apprehension
about and opposition to COVID-19 vaccination. To reconcile these results with the more positive
sentiment towards contact tracing, we theorize that misinformation surrounding vaccines may account
for a significant portion of the negative Tweets. While digital contact tracing isn’t a huge leap
from the friend maps and location features on social apps, vaccination policies require a physical
commitment that, paired with vaccine misinformation, may cause more users to feel negatively about
their country’s policies.

Digital Contact Tracing in the UK and US Our results showed that Twitter users in the UK
supported DCT more than those in the US, and this aligns with ongoing research beyond Twitter
data. Multiple academic studies found that more people in the United Kingdom supported digital
contact tracing than people in the United States. For instance, in a direct comparison study, Altmann
et al. found that a higher percentage of people that would “probably install” a digital contact tracing
application than the United States population (approximately 80% compared to 71%) [12]. Other
studies suggest that this difference is much higher. For instance, Zhang et al. found that 42% of the
US population supported these apps [13]], and other researchers found support in the US to be as
low as 30%. Conversely, no study conducted in the UK that we are aware of found support below
approximately 80%. Therefore, while our findings demonstrated slightly more positive Tweets than
expected in the United States and slightly fewer positive Tweets in the United Kingdom, our results
follow this same underlying trend: people in the United Kingdom accepted DCT more than people
in the United States. A potential explanation for this difference is the deployment of other digital
monitoring tools in the UK, such as facial recognition software utilized by the police, that might make
citizens more familiar and and comfortable with surveillance technology deployed by the government
for the purpose of public safety.

5.3 Mislabeled Sentiment

For the qualitative analysis portion of this report, we looked at Tweets where our model did not
accurately predict the sentiment score. One example Tweet reads "RT @LukeMones: ill say it: id
love to not get the corona", with a predicted score of 0 (negative) and a true score of 1 (neutral). Our
fine-tuned model likely learned that contracting the virus, or "get the corona", is a negative event and
labeled it as such. The model fails to notice the preceding "not", and therefore misunderstands the
intention and sentiment behind this Tweet.

6 Conclusion

Our fine-tuned ROBERTA-Twitter-Base-Sentiment model achieved significantly increased accuracy
and F1 score compared to our baseline. Our main limitation was the size of our training data set, due
to a Twitter API error. Although our cited datasets include millions of COVID-19 Tweet examples,
we were only able to hydrate a small fraction. We expect that with more training data, the model could
achieve a higher accuracy and F1 scores. Further, we applied this model to yield interesting real-world
results, specifically in relation to DCT—a protocol that could still be useful in mitigating virus spread
today. From our predictions, we found that people regard this system more favorably than vaccine
mandates, and that Twitter users in the UK support DCT more than those in the United States. Since
epidemiologists have found that 60-80% uptake of DCT would have effectively mitigated COVID-19,
the high support we found on Twitter could help guide future government protocol regarding this
technology. [14]
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A Appendix

First, we selected 606 of our training data examples from a repository of Tweets collected from
October of 2019 to March of 2022 [10]. The Tweets were scraped from Twitter using a set of over 90
COVID-19 keywords and hashtags, and scored for sentiment using TextBlob’s Sentiment Analysis
module. This Tweet data was originally formatted as Tweet IDs and sentiment scores of [—1, 0) for
negative sentiment, O for neutral sentiment, and (0, 1] for positive sentiment. To convert this data into
the input format needed by our Twitter-RoBERTa model, we hydratecﬂ these Tweets using the twarc

3"Hydrating" Tweets refers to replacing Twitter IDs with the text content of the corresponding Tweet.



Twitter API, and converted the sentiment scores to [0, 1, 2] for negative, neutral, positive as expected
by our model.

The other part of our training data came from a vaccine sentiment dataset of 2564 hand-labeled
Tweets on Hugging Face [9]. To format this data, we hydrated the Tweets and converted the given

sentiment scores in the dataset where 0, 1, 2 represented positive, neutral, negative to the reverse
scheme used by our model.
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