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Abstract

Images are indispensable to web communication but are often inaccessible to
individuals with blind or low vision. Screen readers use descriptions embedded
in the HTML alt tag, which is often missing in images; while captions are more
plentiful, they are written to supplement the image with context rather than replace
it—and are typically devoid of visual details requisite for accessibility. Furthermore,
existing description generation systems are often generic and agnostic to contextual
implicature. To address this issue, we introduce an image description model using
a novel multi-modal architecture that fuses visual embeddings from an image input
and text embeddings from a caption context input. The description is generated
using a GRU recurrent neural network (RNN) decoder, with Bahdanau attention
units applied over tensors from both spatial image patches and caption tokens to
encourage the RNN to extract from both visual and textual knowledge. We also
develop a novel beam search variant with a brevity penalty to generate thorough
descriptions. We demonstrate that our multi-modal method outperforms unimodal
models with state-of-the-art architectures that do not use context input in BLEU
score on the Wikipedia-based Concadia dataset. Our work represents a contribution
toward enriching visual accessibility through context-aware NLP systems.
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2 Introduction

Generating image descriptions is a challenging task that mandates astute visual and natural language
reasoning over complex and diverse scenes, including recognition and relational knowledge of people,
objects, and terrain—and the ability to convey that semantic information in coherent sentences [1]. A
key motivation for this task is that images are not directly accessible to blind or low vision individuals.
They rely on screen readers that read alt text descriptions of the image, which are often missing,
especially on social media where coverage drops to 0.1% [2]. While captions are more profuse, they
are generally written to supplement the image with context and non-visual knowledge [2], making
them an unreliable standalone proxy. This discrepancy in accessibility creates a need for automated
systems that can substitute images with salient, coherent descriptions.
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Current methods and datasets—such as MS-COCO and Flickr30K—often map images with generic
reference captions or descriptions. Studies illustrate that the text they produce suffers from being
rigid, one-size-fits-all, and contextually agnostic [11,12]. One particular challenge is discerning
what content from the image is relevant to describe, and the lasting question of what makes a
quality description. For instance, given a photograph of a husky sitting on a plush sofa, there would
reasonably be different descriptions depending on whether the image appears on a furniture website
to sell the sofa, or if the image appears on a dog adoption website. Existing unimodal systems such
as Google Show-And-Tell [3] cannot accommodate additional text-based context, which leads us to
propose a multi-modal system that generates descriptions through attention over both deep visual
embeddings of the image and vector embeddings of the context.

Figure 1: (Left) Parts-of-speech tagging and most frequent bigrams of the Wiki-based Concadia dataset. (Right)
Examples from the dataset with Named Entity Recognition (NER) parsing of the captions and descriptions.

The data backbone of our system is Stanford NLP’s Concadia, a corpus engineered by Kreiss. et.
al [2] by mining Wikipedia images along with their alt-text (descriptions) and captions. While
captions and descriptions are often perceived synonymously, this work argues they fulfill distinct
purposes—descriptions are created to replace the image, while captions are created to support and
contextualize the image. As visualized in Figure 1, we performed a linguistic analysis of Concadia
using tools from SpaCy and NLTK. We find that proper nouns and named entities are substantially
more abundant in captions than descriptions, which aligns with their contextual mission, while
adjectives and verbs are more abundant in descriptions.

For accessibility, the goal is for the generated text to supplant the Wikipedia images, so this research
focuses on decoding images into descriptions, with novel multimodal attention and embedding fusion
architectures to robustly incorporate the captions as joint input. Our findings demonstrate that context
embeddings strengthen the quality and detail of synthesized descriptions. We also contribute to
ongoing neural machine translation (NMT) research an original variation of beam search decoding
with a brevity penalty on traversal length to penalize excessively frugal and un-detailed descriptions.

3 Related Work

The image-to-text field has recently blossomed with a wellspring of generative models, vast datasets
with annotated images, and human-computer interaction (HCI) research into visual context.

• CAPWAP (Captioning with a Purpose): To tackle the issue of generic reference descrip-
tions, Fisch et. al [9] used large visual question-answering datasets with reinforcement
learning to optimize generated descriptions to answer specific questions. They demonstrated
with human raters that their generated descriptions tended to be more informative, less
generic, and semantically relevant than traditional image-to-text baselines.

• HCI Approach to Image Descriptions: Stangl et. al [8] interviewed 28 blind or low vision
(BLV) individuals to learn how image scenarios impact the relevant visual content that a
description should have. They find that across different scenarios from news to e-commerce
to travel planning, sub-themes for content that BLV users wanted can substantially differ,
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providing a strong argument for a shift away from one-size-fits-all generic descriptions and
toward improving the quality and responsiveness of descriptions to context.

• Google Show and Tell: Vinyals et. al [3] at Google Brain trained a ML system named Show
and Tell to perform the image → description task with state-of-the-art results, using deep
Inception CNNs to initialize the image encoder and a LSTM model trained to maximize the
Bayesian likelihood of the target description sequence given the input image.

Our work is an organic extension of the aforementioned Concadia dataset paper [2], and incorporates
a contextual framework toward description generation along the vein of HCI research from Stangl
et. al. While CAPWAP works to anticipate and satisfy latent and implicit user needs for image
descriptions, we work with the case where explicit captions are provided but not descriptions, which
is common on social media and image-sharing platforms like Instagram [11]. Finally, we employ at a
high-level the encoder-decoder paradigm for description synthesis from Vinyals et. al, with added
functionality for the inclusion of context knowledge in the new task {image, caption}→ description.

4 Approach

We devise a new encoder architecture in Python that combines trailblazing advances in the computer
vision and NLP fields, namely the VGG-16 CNN model [4] that won the 2014 ImageNet and a widely
popular GloVe model [5] pre-trained over the Wikipedia corpus. We truncate the VGG-16’s final
classification layer so that it generates an embedding of 81 vectors (dimension d = 512) from an
image corresponding to 9 by 9 spatial patches. Image preprocessing was done using the Tensorflow
tutorial [2] for image captioning linked here. We obtain the word sequence from the caption using a
NLTK regex tokenizer, truncate it to length 19 if necessary, and tag each word with its corresponding
vector (d = 300) if it lies in the GloVe vocabularly and a padding vector otherwise.

We concatenate the vectors and map each one injectively to a 512-dimensional hyperspace, forming
19 vectors (d = 512). This leads to a fused embedding tensor of 100 vectors (d = 512), 81 and 19
from the image and context, respectively. We pass each vector through a trainable Tensorflow linear
layer with dropout for fine-tuning with the aim of extracting features relevant for descriptions. The
final 100 by 256 tensor is delivered to the decoder as input, with 100 Bahdanau additive attention
weights so that the model can take a weighted sum of the information in both the 81 image and 19
caption vector embeddings for each generated word.

Figure 2: (Left) Schematic of our encoder-decoder model from {image,context = caption} to description. (Right)
High-level diagram of post-training beam search heuristic that explores promising description sequence branches
based on conditional softmax probability from the RNN.
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The decoder—adapted from the Tensorflow tutorial [3] to apply joint attention over the image and
caption tensors—is a recurrent neural network with Gated Recurrent Units (GRU) cells trained to
maximize the joint likelihood / log-likelihood p(T ) of the target description T given its input tensor
I—combination of the image and context embeddings—from the encoder. Given the target word
sequence T1, · · · , Tn, we are searching for the optimal parameters θ∗ with [3]

θ∗ = argmax
θ

p(T ; I, θ)

= argmax
θ

log(p(T1, T2, · · · , Tn; I, θ))

= argmax
θ

log

[
n∏

i=1

p(Ti | I, θ, T1, · · · , Ti−1)

]

= argmax
θ

n∑
i=1

log(p(Ti | I, θ, T1, · · · , Ti−1))

As the above equation describes a sum of log-likelihoods of individual words Tj{1 ≤ j ≤ n}
in the target sequence, and the GRU at time i ≥ 1 generates a probability distribution Pi+1 to
predict the next (i+ 1)th word (Figure 2)—with T1 being reserved as the <start> token—we can
consider the negative log-likelihood of Ti+1 in the distribution, or − log(Pi+1(Ti+1)), to be the cost
at the particular word Ti+1. Summing over non-start target words T2 to Tn, we get a total loss of
ℓ = −

∑n
j=2 log(Pj(Tj)) for attempting to predict target description T , which is used for training.

For post-training, we use a beam search (Figure 2) of width w = 3, which at iteration k ≥ 1,
considers the top (most probable) w best sequences of length k by joint log-likelihood of their words,
generates new sequences of length k+ 1 from them using the GRU cell, and prunes all but the best w
new sequences for the next iteration. However, we found that in our generated descriptions, the vanilla
beam search was often innately favoring shorter and non-detailed descriptions. We hypothesize this
is due to ranking candidate sequences by joint likelihood of their words, since extending an existing
sequence S1, · · · , Sm with a new word Sm+1 can never increase joint log-likelihood LL as

log(P (S1, S2, · · · , Sm, Sm+1)) = log(P (Sm+1 | S1, S2, · · · , Sm)) + log(P (S1, S2, · · · , Sm))

≤ log(P (S1, S2, · · · , Sm)).

which disadvantages longer descriptions. Consequently, we introduce a novel beam search variant
inspired by BLEU scoring that imposes a multiplicative brevity penalty on each of the sequences in the
last set of candidates. For a candidate sequence S1, · · · , Sm of length m, the modified log-likelihood
score LL∗(S1, · · · , Sm) would be

LL∗(S1, · · · , Sm) = LL(S1, · · · , Sm) ∗max(1, e1−
m
Γ )︸ ︷︷ ︸

brevity penalty

,

for tunable parameter Γ, which is the minimum description word length that leads to no penalty. A
graph of max(1, e1−

m
Γ ) over m is provided below; since LL is non-positive for discrete probabilities,

a higher max(1, e1−
m
Γ ) ≥ 1 due to shorter length decreases the modified LL∗ of a candidate.

Figure 3: Graph of the brevity penalty for different values of parameter Γ.

Furthermore, we note that a low Γ does little to prevent favoritism of shorter candidate branches,
while a too large Γ can encourage ranting behavior in the RNN to avoid the brevity penalty, as shown
below. A good balance we have found has been Γ = 10.
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Figure 4: A sample of description results with sub-optimal selections of parameter Γ.

5 Experiments

5.1 Data

We use Concadia as the primary dataset, which is a corpus from Kreiss et. al composed of 96,918
images with corresponding alt-text descriptions and captions mined across Wikipedia. We also
use the Microsoft COCO (MS-COCO) [7] 2015 dataset, a large-scale computer vision trove of
82,000 images, each with multiple descriptions annotated through crowdsourcing. The models that
we pre-train on MS-COCO are deployed on Concadia as baselines—apart of a transfer learning
evaluation of how description systems perform outside of their trained image domains. The specific
tasks for each dataset are delineated in the table below.

Table 1: We run the uni-modal task of image → description on both MS-COCO and Concadia, while we run the
multi-modal task of {image, caption} → description on just Concadia.

For training, we used 70K {image,caption,description} samples from Concadia and 60K {image,text}
pairs from MS-COCO, as well as 9K samples from each dataset for validation.

5.2 Evaluation method

For evaluation, we used cumulative BLEU scores up to 4-grams—considered the contemporary state-
of-the-art metric for assessing neural machine translation (NMT)—between the reference descriptions
and the model-synthesized descriptions. For the three models we pre-train on MS-COCO, we report
their BLEU scores on our MS-COCO validation set; for all models, we report their BLEU scores on
the Concadia validation set.

5.3 Experimental details

The models were compiled in Tensorflow and training for 40 epochs was dispatched over Google
Cloud GPUs and TPUs with ≥ 12 GB of RAM. For the uni-modal baseline models trained to perform
image → description instead of {image, caption} → description instead, the model encoder consists
exclusively of the VGG-16 CNN and a linear layer over the image embedding, with the caption
embedding sub-system removed. Each model used an Adam optimizer with a learning rate of 0.001
to perform mini-batch gradient descent with a batch size of 64. We run models with encoder dropout
rates of 0%, 25%, 50% for hyper-parameter tuning and determining how to prevent regularization in
the model.

Teacher forcing was used in the decoder during training to help the model stabilize and converge by
supplying the ground truth at time t as input to the GRU at time t+ 1 instead of the GRU’s earlier
prediction at time t. For beam search in the post-training, we used a beam width of 3 and a brevity
penalty parameter of Γ = 10.
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5.4 Results

In the graph below, all of the uni-modal models—which perform image → description—serve as
baselines for the evaluation of the multi-modal model trained on the Concadia dataset, which performs
{image, caption} → description. Additionally, the reason that we do not evaluate the Concadia-trained
models on MS-COCO is that they operate in the domain where caption context is available to produce
descriptions, which is not the case in MS-COCO.

We find that on the Concadia dataset (pink bars), the multi-modal model outperforms all four of
the baselines with a BLEU score of 31.9. This is compared with a BLEU score of 26.5 from the
uni-modal model trained directly on Concadia, which suggests that captions—while they are not
designed to replace the image—can provide useful embedding information alongside the image for
the model to produce better descriptions.

Figure 5: BLEU validation scores (scaled 0-100) for different model architectures and hyperparameters.

For hyperparameter tuning, we also found 25% dropout rate on the encoder to be slightly more
optimal than the other dropout rates of 0% and 50% on the validation sets. We note that the unimodal
models that were pre-trained on MS-COCO perform quite well on MS-COCO validation (teal bars),
with BLEU scores in the 45− 49 range. One reason is that while the MS-COCO dataset has at least
5 descriptions annotated for each image, the Concadia dataset has a one-to-one pairing of images and
their captions and descriptions. Although their BLEU scores degrade considerably when evaluated
on the Concadia dataset, they all score at least 20, which suggests that there is a promising path of
transfer learning—likely with some fine-tuning on the new image domain—toward image description
systems being effective on new image datasets, which can be crucial due to the massive global
diversity of image domains on the Web that is growing at unparalleled rates.
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6 Analysis

A sample of images from the Concadia validation dataset are provided below, with the model’s
generated sequences—using the beam search variant with width 3—on top of the image and the input
caption with NER tagging provided below.

Figure 6: Synthesized descriptions alongside the image and input captions in the Concadia val dataset.

We find that generally, the model is able to synthesize informative descriptions that adequately
capture the people, objects, and terrain, as well as their relational dynamics, present in the image.
We also notice that the generated descriptions contain visual information that is not present in the
caption, suggesting that the model is able to cogently extract and write about attributes on the image.
On the top right example above, we observe that the model is able to incorporate the "byzantine"
information available in the context into the synthesized description. We highlight some errors with
visual reasoning or poor language generation in the images below.

Figure 7: Synthesized descriptions with red error boxes showing visual reasoning or language mistakes.

We see that in the leftmost image, it mis-identifies the two binary stars in the image as planets, while
in the second left image, it manufactures a "city wall" that is not present in the image although the
other details are descriptive and correct, which can be due to regurgitating descriptions from the
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training set. On the second to right image, we see an example of decoder breakdown where the model
continually repeats "of the", which, which can be attributed to the RNN attending over "of" and
"then" several times; a potential future alleviation strategy is to penalize repetitive words or bigrams
in the decoder. The rightmost image makes a visual error of miscounting the number of individuals.

To help provide transparency and understanding into why the decoder makes its word choices at each
step of the description generation process, we provide a new program that extracts the 100 attention
weights from each time t the GRU cell runs and builds both visual and textual heatmaps over the
image and caption tokens, respectively. The first 81 weights represent attention over 9 x 9 spatial
patches of the image, while the last 19 weights represent attention over the word embeddings in the
caption. We demonstrate the use of this program on an image of a beach that inspired the movie Jaws.

Figure 8: Brighter patches on the image had higher attention when the GRU cell generated the corresponding
word. To the right of each image heatmap are the top three caption tokens ranked by attention weight.

From the heatmap, we see that when the GRU generates "sloping" and "hill", the brightest areas on
the image are appropriately the patches containing the grassy hill with an ascending band of bright
spatial patches. We also see that when the GRU generates "beach", the highest patches of attention
on the image are generally the water and sand areas, and the most salient word is intriguingly "shark".
While the attention heatmaps do not fully capture why the RNN makes each word choice, it can help
provide a degree of transparent insight that can help the effort toward understanding how context and
image features specifically impact the word descriptions generated by deep learning algorithms.

7 Conclusion

We find that image descriptions benefit from the multi-modal inclusion of context caption embeddings
when they are available, which can provide salient signal information to the decoder. On the
Wikipedia-based Concadia dataset, we found that our multimodal image description system that
map from {image,caption} → description outperforms uni-modal baselines in BLEU score with the
state-of-the-art Show and Tell architecture. Our results suggest a promising and auspicious deep
learning approach toward improving visual accessibility in domains where captions are significantly
more prevalent than alt-text descriptions, such as social media or e-commerce sites. While the author
has come to the conclusion, alongside many others, that automatic systems remain far from fully
imitating human quality descriptions, the author believes that building context-sensitive models
represent a worthwhile contribution toward advancing visual accessibility.

One major limitation of our multi-modal model is its dependence on the availability and quality of
caption context, while uni-modal models require just an image to produce descriptions. Furthermore,
while the multi-modal model was trained on the diverse corpus of Wikipedia images, captions, and
descriptions, we have not empirically assessed its performance in other image domains like Instagram
or Facebook. Angles for future work include experimenting with different embedding strategies
for the caption, such as using Bidirectional Encoder Representations from Transformers (BERT)
or word2vec representations. Also, we would want to potentially assess human judgement and
evaluation on the quality and features of the synthetic descriptions—in comparison with the ground
truth descriptions—through human participant trials.
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