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Abstract

Despite the great performance improvement on various tasks with pre-trained
language models (PTLMs) in recent years, it remains unclear how much the
models understand human languages. Motivated by the psycholinguistic fact that
humans show great capability in concluding and describing concepts, we propose to
examine the PTLMs’ ability to understand the definitions with a novel generalized
word-sense matching task. Through proposing a novel task, word sense matching
(WSM), we require PTLM-based models to find the alignment between embedding
space of word-in-context and descriptive sentences capture the word senses. With
extensive experiments, we further show that PTLMs can understand definitions
through finding the semantic relevance between the contexts and definitions and
fail when the negative samples have similar contexts or the definitions are abstract.
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2 Introduction

Recently, pre-trained language models (PTLMs) have demonstrated significant improvements over
multiple downstream natural language classification and generation tasks [1, 2, 3]. However, it
remains unclear to what extent the models capture the training data distribution and understand the
languages. Besides writing sentences or answering questions, which have been largely explored using
PTLMs, humans can also give definitions to words and concepts from what they learn in daily life.
Motivated by this, in this work, we aim to examine the PTLMs’ ability to find correct definitions
for words in context. In the area of natural language processing (NLP), the model ability to identify
senses has long been explored by the classic task word sense disambiguation (WSD) [4]. WSD is
commonly formed as an entity linking task that requires models to choose the correct sense of a word
in its context from multiple choices defined in a given knowledge base as the sense inventory (e.g.,
WordNet [5])). Despite the great improvement in the recent years in the community [6, 7, 8, 9], there
are some potential limitations of such task formation:

1. the dynamic semantics of words may not be captured precisely by pre-defined explicit senses;

2. models are only required to choose from a set of senses for each word locally and senses from
other words, which can form global disambiguation, are excluded;

3. the multiple-choice format relying on a single knowledge base limits the potential downstream
or real-world application. For example, the models can not handle the case when we have a
descriptive sentence and intend to find its potential target from our whole vocabulary, where the
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Figure 1: The differences between WiC, WSD, and our task. WiC studies how to project tokens in
context to a representation space of word senses. WSD studies matching the word representation to a
particular set of senses defined in a provided inventory, such as WordNet. In contrast, in our word
sense matching task, we aim to align the space of word senses and descriptive sentences.

case can be commonly observed when searching items on e-commerce platforms or detecting
objects from outputs of video captioning models.

Various literature emphasizes the importance of dynamic word senses regarding contexts. [10] has
shown a strong effect of sense sharing for polysemous words in the same context. To capture implicit
dynamic word senses related to the context, corresponding datasets and models are proposed [11, 12].
More recently, WiC [13] is proposed to ask models to compare if a target word shows similar senses
in two sentences. In this project, we intend to further align the dynamic senses with their potential
descriptive sentences. We propose a novel task, word sense matching (WSM), which requires the
models to decide if a candidate sentence can correctly describe a word in context. WSM provides
multiple interesting characteristics: (1) the descriptive sentences are collected from multiple sources
and not limited by a single sense inventory; (2) as a binary classification task with three factors:
word, context, description, it is suitable for evaluating various objectives (e.g., contextualized word
representation and sentence representation) and methods. The difference in focus among WSD, WiC
and our task is shown in Figure 1. WiC focuses on finding the correct projection from token to
embedding space representing dynamic semantics, WSD focuses on matching the word embedding
space to the embedding space of some particular pre-defined senses, and our WSM focuses on finding
the general alignment between word representation and descriptive sentences.

Upon the creation of the task, we conduct extensive experiments to probe the PTLMs’ capability
in matching words with their sense descriptions through various different approaches and settings
(details in Section 5). We find that: (1) null prompts with all parameters tuned is the best way to
conduct prompt-based baselines; (2) PTLMs can solve the task reasonably well by forming it as
semantic similarity task (referred to as disjoint in the later sections); (3) definitions from words’
antonyms and abstract definitions are hard to be understood by PLTMs.

3 Related Work

3.1 Representation Learning

Learning the representation of languages has been an important task in NLP. Replacing the one-
hot vector representation, word embedding methods [14, 15] have gained huge success through
representing the tokens by their context. Recently, various contextualized pre-trained language
representation models [16, 1, 2, 17] are proposed and further boost the model performance over
various downstream. Dynamic word semantics is captured in the representation generated from these
models since the token representation varies as the context differs. Besides token-level (or sub-token-
level) embedding, entity embedding and sentence embedding have also been widely studied, with
methods beyond simply averaging the embeddings for each token. For example, [18, 19] are proposed
to represent the entities in probabilistic distribution to capture the dynamic semantic relations among
entities. On the other hand, [20, 21] are proposed to acquire improved sentence representation by
learning the sentence-level relation (such as semantic textual similarity or inference) in a contrastive
learning manner. The essence of our proposed WSM can be considered as finding the alignment
of two kinds of representation: the representation of words in context and the representation of
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Split Instance Avg. Context Length Avg. Definition Length # Adjective # Noun # Verbs

Training 6,240 5.91 7.78 2,698 1,584 1,364
Validation 780 6.04 7.92 332 228 162

Test 780 7.93 9.76 168 294 278

Table 1: Statistics of different splits of WSM. #X denotes the number of X in the split.

Label target context definition

1 bother He is a bit of a bother. Something or someone that causes trouble.
1 bank Who do you bank with? To keep your money in a particular bank.
0 bank There are steep banks of snow. An organization providing financial services.
0 perceivable It is perceivable through the mist. The act of looking for someone or something.

Table 2: Sample positive and negative examples from the dataset.

descriptive sentences. The projection from raw languages to the representation space is largely related
to the representation learning methods introduced above.

3.2 Word Sense Disambiguation

The origin of the task of word sense disambiguation (WSD) can be sourced from [22], where the
use of word senses in machine translation is recognized. Through the years, various related datasets
and tasks are proposed [23, 24, 25, 26]. Conventionally, the task is formulated as a entity linking
task where the models are required to choose a sense for each target word from its possible senses
contained in a pre-defined sense inventory. With the rise of PTLMs, performance has been largely
boosted with exploration on different ways to utilize them, including treating the sense definition as
apposition [7], adding masked-sense prediction task [27], and directly using the hidden layers from
PTLMs as the representation [8, 9]. In this work, we propose a novel task word sense matching that
focuses on a different aspect of understanding definitions. We relieve the reliance on explicit sense
labels from the inventories and ask the models to generally decide if a sentence can precisely describe
the sense of a word in context.

4 Approach

Specifically, we aim to extend the classic word sense disambiguation task [4] from classifying the
senses for every single word to general word-sense matching over multiple senses and words. In
detail, the binary classification task is defined as follows: given a target word w in a context sentence
c, the models are required to detect if a sentence g can be considered as a description to the definition
of w and gives a prediction 1 (correct) or 0 (wrong).

The following part of the section will be organized as follows: first, we introduce the creation of
the dataset for the task, then, we will introduce the motivation and design of proposed methods and
baselines. Since it is a newly proposed task, most of the baselines will all be written from scratch,
with the help of Hugginface Transformers [28]. The use of other models and techniques will also be
specified in the following subsections.

4.1 Dataset Creation

The closest previous task with ours is the classic WSD [4, 29], where the models are required
to distinguish the definitions of the words in context from a limited set of senses from common
knowledge bases (e.g., WordNet). To further capture the dynamic nature of word semantics, we
follow two guidelines to create our WSM dataset: (1) multiple sources: we do not rely on the sense
definitions from any particular source, since the meaning of the target word can be dynamic and does
not yield to any explicit sense name or definition. We extract the word-definition pairs from multiple
sources including previous human annotations (i.e., SemCor [25]), which has widely been used in the
community, WordNet [5], and commonly used dictionaries (e.g., Oxford, Webster, and Cambridge
dictionaries); (2) multiple samples: to sample the negative examples, we consider both the local
(senses of target words) and global samples (senses of other words). Besides, to further analyze how
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Parameters Manual Trigger Sep Null

Bitfit - 53.59% 57.81% 54.62%
All 50.32% 61.92% 60.13% 71.41%

Table 3: Performance on our WSM task with different prompt designs on the validation set with
32 examples per class. Manual, Trigger, Sep, and Null denote the performance (accuracy) with
corresponding prompt pattern design introduced in Section 4.2. Bitfit and All denote training either
the bias terms only or all parameters in the PTLMs.

PTLMs understand the general word sense matching, we tag the target words of the examples with
the Part-of-Speech tags and report these categorical results in the later sections. At this stage, the
dataset is based on English. Possible extensions to other languages can be implemented since most
languages have their own dictionaries providing definitions and examples.

Statistics and examples of the created dataset are presented in Table 1 and Table 2, respectively. Upon
the creation of the dataset, we check the effectiveness of the dataset with human evaluation. We invite
three college students who speak English fluently to do a sampled sub-task with 50 questions. The
average inter-annotator agreement (IAA) of their annotations is 92.67%, which suggests that humans
can finish the task with good agreement.

4.2 Methodology and Baselines

As a newly proposed task, we intend to explore and compare the performance of various models on
WSM. We show the ablation study for different design choices to inspire future research so that these
models can be considered both as our methods and baselines. Besides ablation, we also implement
an N-gram matching based Lesk Approach [30, 31] as the baseline, where the score of a definition is
given by its n-gram coverage over the word context. The design choices are compared as follows:

1. Disjoint vs. joint: since our task can be considered as an extension of the original WSD, following
its state-of-the-art models [9, 8, 32], the first set of baselines can be designed as bi-encoder-based
disjoint models. Specifically, for each question, we use PTLMs to encode the context sentence
and the definition (i.e., the gloss in WSD) as W and G , respectively, with average pooling on the
embedding of each token. The score of the definition can then be extracted as the cosine similarity
of W and G. We explore both BERT [1] and RoBERTa [2] as the backbone.
Unlike the multiple-choice setting in the original WSD, WSM is formed as a binary classification
problem, so that we are able to explore the use of prompt-based tuning that shows good perfor-
mance over various tasks [33, 34, 35]. Specifically, we organize the factors (word, context, and
definition) for each example into a single meaningful sentence (i.e., prompt pattern) and then
conduct the prediction. Since only a single sentence will be passed to the PTLMs, we denote this
line of baselines as a joint approach. An example of the organization is as follows “In <context>,
the <target> <label word> be described as <definition>”, where the label word is can or cannot
for the label 1 and 0, respectively. The prediction can then be given by training a classifier with
the sentence representation from PTLMs as features. Similarly, we experiment on BERT and
RoBERTa with different sizes.
One reason to distinguish disjoint and joint models is the consideration of time complexity in the
real-world application. Suppose that we deployed the model and receive M queries (descriptions),
with N candidate targets, the computation time of disjoint and joint models will be O(M +N)
and O(MN), respectively (if constant time is required to feed one sentence to the PTLMs).

2. Prompt Design: Following the literature in prompt-based tuning, three factors are important
towards its success: the pattern (manually designed or from generative models [34]), the verbalizer
1, and parameters to tune (all PTLM parameters, embedding layers only [36], or bias only [37]).
Specifically, we explore four kinds of patterns (manual, trigger, sep, null) and two kinds of
parameters to train (all parameters and bias only2). The details of the patterns are as follows: (1)
manual: we manually create a sentence to link the context, word, and definition; (2) trigger: we

1A module converting original labels to meaningful words, such as 1 to happy for sentiment classification.
2This technique is known as Bitfit [37], which has been shown to be similarly effective as fine-tuning the

whole PTLMs in previous work on prompt-based tuning [33]
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put triggers as soft words between context, word, and definition and tune the embeddings of these
triggers; (3) sep: we put a <sep> token between each pair of context, word, and definition; (4)
null: following [33, 38], we simply form the prompt by joining word, definition , and context with
blanks in-between. For the experiment on prompt design, we uniformly use RoBERTa-large as the
backbone PTLM. To guide our later experiment, the results on the validation set are presented
in Table 1. We could observe that fine-tuning on all parameters generally outperforms the Bitfit
technique. One possible reason is that the task is comparatively harder than the normal few-shot
learnable task, such as sentiment classification [39], and more training steps are needed. On the
other hand, we could observe that the best strategy is using no extra words for the pattern at all.
The reason behind this can be that the relations between word, definition, and context can already
be learned implicitly with attention layers if we have enough parameters and additional tokens
introduce extra noise.

3. Zero-shot, Few-shot, and Full Fine-tuning: The recent progress in PTLMs has led to the
advance of learning a task with only a few examples [16, 40, 41, 42] (i.e., Few-shot Learning)
to overcome the challenges in solving tasks that are not rich in data. Label collection can be
extensively expensive for sense annotation (often requires experts to distinguish and annotate
the detailed senses [13]). In some particular domains, such as when we try to match terms and
definitions from medical reports, the data scarcity further increases. Motivated by this, we compare
the model behavior with different sizes of training data: no fine-tuning example (zero-shot), 32
examples per label class (few-shot), and using the whole training data defined in Section 4. For
zero-shot approaches, we explore the n-gram based Lesk-style approach, zero-shot classification
of a large-scale pretrained language model (GPT-J [43]). In addition, we utilize cosine similarity
of representation generated from PTLMs as another zero-shot approach by using the median of all
calculated similarity scores in the validation set as the threshold.

5 Experiments

5.1 Experimental Setup

1. Data and Evaluation: The data preparation step has been discussed in Section 4. In the zero-shot
setting, we directly apply the models to our test set. In the few-shot learning, we generate a
few-shot training set with 32 examples per class and report the performance on the test set. In the
full fine-tuning setting, we use the whole training set introduced previously.
As for the evaluation method, since WSM is formatted as a binary classification task, we report
the accuracy for the overall dataset and subset for each category (e.g., noun, verb).

2. Experimental details: For the model fine-tuning, we set the learning rate as 1e-5, batch size as
2, and epochs as 30. For other model configurations, we use the default ones from the original
packages or repositories. To run the experiment, we use one NVIDIA TITAN X with 8 G ram.
Extracting embeddings from PTLMs typically takes 30 seconds per 100 examples. The zero-shot
evaluation with GPT-J typically takes 20 minutes per 100 examples. Other required steps (e.g.,
generating categorical performance report) take less than 10 seconds.

3. Baseline details: In Section 4.2, we have introduced the motivation and ideas behind the baselines
to be included in comparison. In this section, we introduce some necessary implementation details
of the baseline. For disjoint models, we separately encode the contexts and the definitions
with “<target>: <context>” and “<target>: <definition>” as the raw inputs. For joint models,
following the findings from Table 1, we use “<target> <definition> <context>” (i.e., null prompts)
as the inputs. Considering its great success on various downstream tasks, we acquire pre-trained
weights of BERT and RoBERTa from the contrastive learning based sentence embedding method,
SimCSE [21]. If not specified, BERT, RoBERTa denote the supervised SimCSE models using
them as the backbones. We use SimCSE-unsup to denote the unsupervised SimCSE model with
RoBRETa-large as the backbone. More detailed comparison of these pre-trained weights can
be found in the original github repository 3. We also follow the original work to use Logistic
Regression as the classification head with the inputs as the cosine similarity of the embeddings
(for disjoint) and representation of the prompt generated by SimCSE models (for joint) .

3https://github.com/princeton-nlp/SimCSE
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Method
Source Part-of-Speech OverallWN Collins Longman Webster Oxford Cambridge adj noun verb other

(400) (56) (90) (78) (90) (66) (204) (268) (254) (54) (780)

Zero-shot

Lesk 55.5% 71.43% 73.33% 67.95% 74.44% 72.73% 55.95% 63.64% 69.92% 52.63% 63.59%
GPT-J 49.75% 57.14% 61.11% 62.82% 61.11% 56.06% 45.55% 57.50% 57.66% 56.52% 54.74%
SimCSE-unsup 77.75% 80.36% 90.00% 85.90% 74.44% 80.30% 80.95% 79.87% 79.70% 78.95% 80.00%

Few-shot

joint - BB 54.75% 55.36% 57.78% 57.69% 51.11% 53.03% 52.98% 57.14% 52.63% 60.53% 54.87%
joint- BL 52.75% 62.50% 67.78% 71.79% 61.11% 65.15% 54.90% 61.19% 62.99% 46.30% 59.10%
joint- RB 52.50% 50.00% 52.22% 56.41% 47.78% 54.55% 52.98% 54.22% 50.75% 44.74% 52.31%
joint- RL 56.00% 55.36% 55.56% 51.28% 44.44% 51.52% 55.95% 53.57% 51.88% 57.89% 53.72%

disjoint- BB 71.25% 69.64% 76.67% 82.05% 67.78% 66.67% 73.21% 73.38% 70.30% 68.42% 72.05%
disjoint- BL 71.75% 82.14% 90.00% 79.49% 76.67% 74.24% 70.83% 76.95% 79.70% 68.42% 76.15%
disjoint- RB 75.25% 80.36% 90.00% 85.90% 70.00% 69.70% 75.60% 79.87% 75.94% 73.68% 77.31%
disjoint- RL 74.75% 69.64% 85.56% 83.33% 73.33% 77.27% 74.40% 77.60% 77.82% 68.42% 76.54%

Full Fine-tuning

joint - BB 73.25% 73.21% 75.56% 82.05% 74.44% 74.24% 70.83% 74.35% 77.44% 73.68% 74.62%
joint- BL 75.25% 73.21% 83.33% 79.49% 64.44% 72.73% 76.79% 74.35% 73.31% 84.21% 75.00%
joint- RB 69.50% 76.79% 73.33% 73.08% 68.89% 72.73% 69.05% 69.16% 74.06% 73.68% 71.03%
joint- RL 70.50% 73.21% 72.22% 66.67% 71.11% 71.21% 76.19% 67.53% 71.05% 68.42% 70.64%

disjoint- BB 73.25% 73.21% 75.56% 82.05% 74.44% 74.24% 70.83% 74.35% 77.44% 73.68% 74.62%
disjoint- BL 71.75% 78.57% 86.67% 83.33% 73.33% 74.24% 70.83% 75.97% 78.57% 71.05% 75.51%
disjoint- RB 75.50% 78.57% 90.00% 85.90% 68.89% 69.70% 76.19% 79.55% 75.56% 73.68% 77.18%
disjoint- RL 75.00% 67.86% 85.56% 84.62% 72.22% 75.76% 74.40% 78.25% 76.69% 68.42% 76.41%

Table 4: The statistics and performances of different methods over our test set. WN denotes that the
example sentences come from WordNet. The rest columns under source denote the corresponding
dictionary. other under POS denotes other part-of-speech tags including adverb, phrase, etc. The
numbers in bracket denote the numbers of examples of the corresponding columns. disjoint and
joint denote whether we encode the contexts and definitions separately, as described in Section 4.2.
BB, BL, RB, RL denote the use of BERT-base, BERT-large, RoBERTa-base, RoBERTa-large as the
backbone PTLMs, respectively.

5.2 Results and Analysis

The results are presented in Table 4. We could observe that:

1. Zero-shot learning works well: From Table 4, we could observe that some simple zero-shot
baselines achieve good performance on our dataset. For example, n-gram overlapping-based
Lesk approach achieves better performance than most few-shot joint models. On the other hand,
surprisingly the unsupervised SimCSE model gets the best performance over all models.
The reason can be that the unsupervised SimCSE sees more data (more than 1 million words) than
the supervised ones and shows better capability in linking deeply related sentences. Similarly,
in the original paper, we could observe that the unsupervised models outperform the supervised
models on the text retrieval task TREC [44], which is formed as retrieving the entities from
question describing them 4. The success of the zero-shot models suggests the essence of our task
as finding the relevance of heterogeneous sentences. However, we could also observe that GPT-J
does not perform well with a joint prompt, which suggests that the inductive bias embedded in the
PTLMs is not enough to find the complex relevance without further fine-tuning.

2. Joint models only work after fine-tuning: Comparing rows under few-shot and full fine-tuning,
we can observe that with around 100 times more data, Joint models get a significant performance
boost for 15-20 % accuracy. With only a few examples, though still perform better than a 50%
accuracy majority baseline, Joint models fall far behind even the simplest Lesk model. The gap
between joint models and the best-performing models largely shrinks with the large training set,
which suggests that the inductive bias in the PTLMs is not necessary to give the prediction of
WSM directly in a joint format so that training is necessary in this case.

3. Fine-tuning is not necessary for disjoint models: Similarly, if we compare rows with disjoint
models, we can observe that the model performance for few-shot models is very close and even
better than fully fine-tuned models. The performance differences mainly come from different
choices of the backbone PTLMs, where the best performance comes from RoBERT-base for both

4An example is to find the location with the question: where is the oldest living thing on earth?
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Label Pred. Context Definition

0 0 It aroused the tiger in me Time for Earth to make a complete rotation.
1 1 Black smoke coiling up into the sky To wind or move in a spiral course.
0 1 You cannot compartmentalize your life like this! Make uniform.
1 0 Minor back roads Of lesser importance or stature or rank

Table 5: Correct and wrong predictions from the best-performing unsupervised SimCSE model (target
words in italics). Pred. denotes the predicted labels.

Target Emphasize

Context You emphasized the high prevalence of mental illness and alcoholism.

WN Labels to stress, single out as important (correct) ; Give extra weight to (a communication) (wrong)

Table 6: An example of the standardized WSD dataset [25], WN refers to WordNet, which contains
the sense labels and corresponding definitions.

training size settings. The intuition behind this can be that, in a disjoint setting, the essential
objective of our task as finding the deep semantic relation of two kinds of text can be nicely
fulfilled already by the PTLMs. With only a small size of examples, the disjoint models are
already specialized enough and a larger size of data may lead to over-fitting and causes a slight
performance drop.

4. Performance differs on data from different sources: From the table we can observe that there
is a clear gap between different columns representing test examples from different sources, for
example, examples from Longman and Merriam-Webster dictionaries are generally easier to be
solved than those from Oxford and Cambridge dictionaries. Though fine-tuning usually leads to
performance boost over data from multiple sources, the consistent gaps among the columns still
suggest that the potential styles of writing the definitions can cause a difference of around 15%
accuracy for the best-performing models. However, the original WSD usually only collects the
senses from a single sense inventory, which may limit the performance in real-world application
as the styles of writing descriptive sentences can differ a lot. The comparison of the columns
suggests that we should include the performance on different test subsets from different sources to
clearly reveal the real performance of the models under different scenarios.

6 Analysis

6.1 Qualitative Study

We have revealed some interesting findings in Section 5.2 when discussing the results. The most
surprising fact is that, the zero-shot unsupervised SimCSE model, which is pre-trained with self-
supervised signals, performs the best among all the included models. To further understand the reason
behind this, we conduct a qualitative evaluation on the correct and wrong predictions as presented
in Table 5. From the first examples where both the label and prediction are 0, we could observe
that the model has a good understanding of finding unrelated sentences. In the second row of the
examples, we find that the model can surprisingly capture sentences that are semantically connected
(e.g., sky and wind). For the wrong predictions, the third row shows an example that the model can
not distinguish one word from the sense of its antonym. The reason can be that words and their
antonyms can often be used in similar contexts. The final example shows that the model fails to
capture the relation between abstract and concrete objects.

The above examples show that, despite the great performance achieved by aligning the contexts,
some potential hard cases remained challenging: antonym senses and abstract definitions, which can
motivate future work in creating a more challenging dataset.

6.2 Application to Original WSD

To further understand the performance of our models, we extend our experiment to the original WSD.
One example of WSD is presented in Table 6. We experiment our best performing model on SemEval-
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Systems noun verb adj other SemEval-15

WordNet S1 67.6 50.3 74.3 80.9 67.8
MFS 67.7 49.8 73.1 80.5 67.1
HCAN 72.7 58.2 77.4 84.1 72.8
GlossBERT 79.8 67.1 79.6 87.4 80.4
BEM 81.4 68.5 83.0 87.9 81.7

SimCSE-Unsup 71.2 53.0 87.5 82.5 70.2

Table 7: Performance on SemEval-15 dataset with the original WSD task. MFS denotes the most
frequent senses of each word in SemCor [25].

15 [23]. We compare our model with common WSD baselines including the first sense in the WordNet
(denote as WordNet S1), Most frequent senses of each word in SemCor [25], HCAN [45](which
includes definitions in a neural WSD classifier), GlossBERT [46] (which constructs context- definition
pairs for fine-tuning), and BEM [9]. Notice that HCAN, GlossBERT, and BEM are supervised
models trained on 37,176 sentences with 802,443 target tokens, while ours can be considered as an
unsupervised approach. The results are presented in Table 7, from which we can observe that our
method performs reasonably on the data and outperforms the WordNet S1 and MFS baselines, yet
other supervised baselines still perform better than ours. One reason behind this can be that senses
from WordNet are extremely fine-grained [47]. Without extensive fine-tuning, it is hard for our model
to distinguish the detailed differences among senses of a single word. In the future, we will explore
on how models perform with merged senses.

7 Conclusion

In this project, we present a novel benchmark, Word Sense Matching, for evaluating the PTLMs’
capability in understanding definitions. WSM is created from context-definition pairs from various
sense inventories with both local and global negative sampling, which forms a solid base to validate
different models in their ability to align words with their meanings. The relief from target-centered
multiple-choice format of the original WSD to binary classification also potentially en-powered
simple downstream application.

We compare various strategies for solving the task and find the performance gain for PTLMs comes
from scoring the contextual similarity between contexts and definitions, which reveals potential
challenges for the PTLMs to understand human languages: distinguishing senses from words and
their antonyms and understanding abstract senses.

In the future, we plan to first explore more complicated architectures for applying PTLMs than the
current methods. Then, we explore forming the dataset as a ranking or generation task to test the
characteristics of alignment acquired from different objectives. Finally, we seek to test on potential
downstream application with our proposed task formation, including text simplification with human
annotation, conceptualization (e.g., detect how likely a “dog” in a sentence can be replaced by a
“mammal”), and novel object detection with video captioning models.
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[33] Robert L. Logan IV, Ivana Balažević, Eric Wallace, Fabio Petroni, Sameer Singh, and Sebastian
Riedel. Cutting down on prompts and parameters: Simple few-shot learning with language
models, 2021.

[34] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Association for Computational Linguistics (ACL), 2021.

[35] Derek Tam, Rakesh R Menon, Mohit Bansal, Shashank Srivastava, and Colin Raffel. Improving
and simplifying pattern exploiting training. 2021.

[36] Guanghui Qin and Jason Eisner. Learning how to ask: Querying LMs with mixtures of
soft prompts. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 5203–5212,
Online, June 2021. Association for Computational Linguistics.

[37] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. CoRR, abs/2106.10199, 2021.

[38] Leandra Fichtel, Jan-Christoph Kalo, and Wolf-Tilo Balke. Prompt tuning or fine-tuning -
investigating relational knowledge in pre-trained language models. In 3rd Conference on
Automated Knowledge Base Construction, 2021.

[39] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics.

[40] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[41] Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification
and natural language inference. In Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, pages 255–269, Online, April
2021. Association for Computational Linguistics.

[42] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
NeurIPS, 2021.

[43] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

[44] Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics, 2002.

[45] Fuli Luo, Tianyu Liu, Qiaolin Xia, Baobao Chang, and Zhifang Sui. Incorporating glosses into
neural word sense disambiguation. In Proceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 2473–2482, Melbourne,
Australia, July 2018. Association for Computational Linguistics.

[46] Luyao Huang, Chi Sun, Xipeng Qiu, and Xuanjing Huang. GlossBERT: BERT for word sense
disambiguation with gloss knowledge. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 3509–3514, Hong Kong, China, November
2019. Association for Computational Linguistics.

11

https://github.com/kingoflolz/mesh-transformer-jax


[47] Rion Snow, Sushant Prakash, Daniel Jurafsky, and Andrew Y. Ng. Learning to merge word
senses. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 1005–
1014, Prague, Czech Republic, June 2007. Association for Computational Linguistics.

12


	Key Information to include
	Introduction
	Related Work
	Representation Learning
	Word Sense Disambiguation

	Approach
	Dataset Creation
	Methodology and Baselines

	Experiments
	Experimental Setup
	Results and Analysis

	Analysis
	Qualitative Study
	Application to Original WSD

	Conclusion
	Acknowledgements

