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Abstract

Loneliness is a multidimensional experience. It is crucial to understand and char-
acterize young adults’ expressions and copping strategies with various forms of
loneliness. In this project, we rethink previous efforts on building language models
using hierarchical distributional learning for fine-grained loneliness characteri-
zation. To improve it, we first adapt a pre-trained language model to the data
distribution we are interested in by pre-training it on 190K loneliness-related Red-
dit posts using unsupervised objectives. We then attempt to mitigate the negative
transfer identified in previous work by learning to adaptively weight different
sub-tasks. Our experiments show that the second pre-training stage greatly helps to
improve the performance of characterizing fine-grained loneliness. By looking into
learned loss weights, we analyze how different sub-tasks are weighted during the
training and discuss various ways that are potentially more efficient to reduce the
negative transfer.
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2 Introduction

Loneliness is a multidimensional experience and encapsulates different manifestations and forms
[1]. Understanding fine-grained loneliness expression has a wide range of applications, from mental
health screening to intervention and prevention of severe consequences including depression, bipolar
disorder, or even mortality. It has been a goal for long time to enable machines to understand emotions
such as loneliness [2].

Large-scale pre-trained models have become prevalent in the research of natural language processing
(NLP) since the introduction of the Transformer model [3, 4, 5, 6, 7, 8]. Previous work leverage
pre-trained language models for fine-grained emotion classification [9], emotion measurement during
the pandemic [10], affective response detection [11], multilingual sentiment analysis and emotion
detection [12], and so on. Despite the growing interest in examining emotion expressions in online
discourses using large-scale language models, research on loneliness classification is limited [13],
not even to mention fine-grained loneliness characterization. [14] introduces a dataset based on
Reddit posts, annotates loneliness-related posts with different fine-grained categories, and builds a
BERT-based [4] model for fine-grained loneliness characterization. Nevertheless, we argue that it
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is worth rethinking [14] in terms of ways to improve performances and mitigate negative transfer
[15, 16, 17] that is present but not investigated or analyzed.

Built on the top of [14], we improve it by pre-training the language model on loneliness-related
Reddit posts using unsupervised objectives and attempt to alleviate the negative transfer by learning
to weight different sub-tasks. Our contributions are twofold:

1. We improve the original performance by a large margin by pre-training the language model
on 190K loneliness-related Reddit posts using unsupervised objectives.

2. We investigate the phenomenon of negative transfer and attempt to reduce it by learning to
adaptively weight different sub-tasks. Based on that, we analyze how sub-tasks are weighted
during the training and discuss various ways that are potentially more efficient to alleviate it.

3 Related Work

3.1 NLP for Emotion Analysis

There is a growing interest in NLP to study emotion analysis since the introduction of the first
emotion recognition benchmark [18]. [19] summarized and unified several emotion datasets before
the era of Transformer models [3]. [20] used automatic weak labeling to build an emotion dataset
based on Twitter hashtags and proposed a model based on gated recurrent neural network [21] that
achieved a state-of-the-art in classifying fine-grained emotions. With the success of large-scale
pre-trained language models such as BERT [4], top-performing models in the EmotionX Challenge
all leveraged feature representations from pre-trained BERT models [22]. [9] introduced a manually
labeled dataset containing 58k English Reddit comments annotated for 27 emotion categories or
Neutral. They proposed a BERT-based model and suggested room for improvement. Despite the
granular emotion taxonomy in [9], loneliness-related emotion still requires comprehensive studies. A
recent work instead studies the granular categories of loneliness emotion [14]. They built a dataset
using Reddit posts annotated manually for binary and fine-grained loneliness. They also proposed
two BERT-based models for loneliness classification and characterization. Our work is built on the
top of it with improved performance and investigation into negative transfer.

3.2 Multi-task Learning and Negative Transfer

Multi-task learning [23, 24, 25] is a learning paradigm in which machine learning models are trained
with data from multiple different tasks simultaneously. Common ideas behind various related tasks
can be learned by using shared representations. It is prevalent in many machine learning areas such
as computer vision [26, 27, 28, 29, 30, 31, 32], reinforcement learning [33, 34, 35, 36, 37, 38, 39],
and NLP [40, 6, 41, 42, 43, 44]. In the thread of using language model for fine-grained loneliness
characterization, Jiang et al. [14] uses a model that simultaneously learns six sub-tasks. One is the
binary loneliness classification task. Each of the remaining five tasks corresponds to characterize one
fine-grained category of loneliness.

The phenomenon of negative transfer [16, 25] (also named destructive interference) refers to the
decrease of model’s performance on a task caused by the increased performance on another task
with different needs. How to mitigate negative transfer remains an active area in the research of
multi-task learning. Numerous efforts have been made on neural network architecture [45, 46, 47, 48],
optimization [26, 49, 50, 51, 52, 53, 54], and the design of better learning curriculum [55, 56, 57, 58,
59, 60].

As for multi-task learning for fine-grained loneliness characterization, although results from [14]
show the evidence of negative transfer, they do not investigate in details. Therefore, in this work we
rethink the method in [14] by examining the cause of negative transfer.

3.3 Hierarchical Multi-label Classification

In the hierarchical multi-label classification (HMC) problem, classes are structured hierarchically.
An object can be assigned to multiple paths of the hierarchical tree [61, 62]. Algorithms designed
to solve HMC problems either optimize losses globally or locally [63]. [64] proposed a method
in which each local classifier predicts a particular node in the hierarchy tree. On the other end of
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global optimization, [65, 66] designed global classifiers that can process the entire hierarchy and
all nodes as a whole. To leverage advantages of both global and local optimization, [67] proposed
a novel nerual network architecture named HMCN for HMC problem. HMCN includes both local
and global classifiers and incorporates label hierarchy into the model architecture. Each local and
global classifiers are independently learned during training. The predictions used in evaluation and
inference are linear combinations of these two types of classifiers. [14] built on the top of HMCN
and proposed a similar model for hierarchical fine-grained loneliness characterization.

4 Approach

In this section, we first formulate the problem of hierarchical distributional learning for fine-grained
loneliness characterization as introduced in [14]. We then describe the neural network model we
used. Finally, we elaborate two ways we rethink the work in [14]. One is to improve it by adapting a
pre-trained language model to the data distribution we are interested in through fine-tuning on 190K
loneliness-related Reddit posts using unsupervised objectives. The other attempts to mitigate the
negative transfer by learning to adaptively weight different sub-tasks.

4.1 Hierarchical Distributional Learning for Fine-grained Loneliness Characterization

The problem of fine-grained loneliness characterization is essentially a text classification problem.
Each sentence is associated with a structured label hierarchy as shown in Figure 1. Concretely,
there are two degrees of granularity for each Reddit post. The coarse one measures if a Reddit
post expresses loneliness or not. The fine-grained one measures the loneliness in multiple different
dimensions, namely “duration", “context", “interpersonal", and “interaction". Table 1 shows labels
associated with fine-grained categories.

Figure 1: Structured label hierarchy.

Category Labels
Duration Transient, Enduring, Ambiguous, NA

Context Social, Physical, Somatic, Romantic, NA

Interpersonal Romantic, Friendship, Family, Peers, NA

Interaction Seek Advice, Provide Support,
Seek Val. & Aff., Reach Out, Non Directed

Table 1: Fine-grained loneliness categories and their labels [14]. “Seek Val. & Aff.” denotes "Seek
Validation & Affirmation". NA indicates not applicable because posts can be irrelevant to such
categories or labels.

Following literature [14], we formulate this problem under the framework of label distributional
learning (LDL) [68]. Instead of learning models to predict one-hot labels, we learn models that are
able to predict distributions over labels. Recent advances also show that adopting distributional labels
yields better generalization performances in natural-image classification, image-based diagnostic,
and age estimation [68, 69, 70]. For a concrete example, given a Reddit post as shown in Figure 2,
the model is supposed to first predict that this post expresses loneliness (the coarser loneliness), then
for the fine-grained dimension of “context", it should predict a distribution over five labels of that
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category (namely “social", “physical", “somatic", “romantic", and “NA" as shown in Table 1) and
assign probabilities of 2

3 to label “social" and 1
3 to label “romantic". The model repeats the same

procedure for other three fine-grained categories.

“Have you ever feel bad when your friend talking about her crush? I think I am a introvert but I have being alone.
I want someone beside whom I can go out or brag everything. But after I break up with my girlfriend, I feel like
no one beside me anymore. And now there’s that friends and they are sharing their feeling about their crush.

And it make me feel something I don’t know. I know I am not in love with them but hearing them talking about
someone make me feel hurt. What should I do? Is there something wrong with me?”

Figure 2: An example Reddit post.

With the goal of characterizing fine-grained loneliness under the LDL framework, we now formulate
this problem. Formally, we denote the i-th Reddit post as x(i) and corresponding (tree) labels
as P(i). Note that P(i) includes P(i)

lonely and P(i)
f.g., where P(i)

lonely represents the distribution of

loneliness itself (i.e., lonely or non-lonely) and P(i)
f.g. instead represents fine-grained ones. P(i)

f.g.

contains four parts with each part P(i)
c corresponding to each fine-grained category c ∈ C =

{duration, context, interpersonal, interaction}. Denoting model predictions as P̂ and total number of
samples as N , we learn models by minimizing

1

N

N∑
i=1

ℓ(P(i)
lonely, P̂

(i)
lonely) +

1

|C|
∑
c∈C

ℓ(P(i)
c , P̂(i)

c ). (1)

Note that ℓ(·) measures the distance between two distributions. It can be KL divergence or Hellinger
divergence or simply the cross-entropy.

4.2 BERT-Based Hierarchical Distributional Learning Network

We follow [14] to use a BERT-based hierarchical distributional learning network (HDLN). It is built
on the top of HMCN for HMC problem as proposed in [67]. As shown in Figure 3, leveraging text
representation extracted from pre-trained BERT model [4], HDLN incorporates the label hierarchy
and graph of conditionality into model architecture and learns one global classifier and five local
classifiers to predict distributions we are interested in. The global classifier predicts the concatenation
of all distributional labels P̂G without any hierarchy imposed. Instead, five local classifiers model
the graph of conditionality and individually predict one out of five distributions P̂L with hierarchy
imposed. Final predictions P̂F are linear combinations P̂F = βP̂L + (1− β)P̂G, where β ∈ [0, 1]
is a hyperparameter.

Figure 3: Architecture of HDLN. Symbol ⊕ denotes vector concatenation.
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4.3 Rethinking Hierarchical Distributional Learning for Loneliness Characterization

4.3.1 Unsupervised Adaptation of Pre-trained BERT

Literature suggests that the performance of a BERT model can be improved by simply training for
longer time using more data [71]. We hypothesize that performances in [14] can also be improved in
such a way by pre-training a pre-trained BERT model on loneliness-related Reddit posts. As labels
are not available for large-scale Reddit posts, we instead propose to use unsupervised objectives such
as masked language modelling (MLM) [4, 71]. For a certain input Reddit post sequence, one token is
randomly sampled and replaced with the special token [MASK]. Then BERT model is then trained to
predict those masked tokens by optimizing the cross-entropy loss.

4.3.2 Learn to Weight Sub-tasks

One line of previous efforts towards mitigating negative transfer centers around loss weighting.
Researchers have proposed to weight losses of sub-tasks by uncertainty [26], by learning speed [50],
by performance [53], and so on. Here we explore a simpler method to learn to weight adaptively. In
[14] losses from multiple sub-tasks are equally weighted globally and locally. Then aggregated global
and local losses are equally weighted again. We argue that this may not be a proper weighting scheme.
Instead, we propose to use three learnable weight vectors ΓG, ΓL, and Λ to weight sub-losses of
global classifier and local classifiers and aggregated global and local losses. To prevent degenerated
case in which all weights are optimized to zero, we impose the following constraints.

∥ΓG∥1 = 1 (2)

∥ΓL∥1 = 1 (3)

∥Λ∥1 = 1 (4)

5 Experiments

In this section, we start with discussing the dataset we used. We then elaborate our evaluation metrics.
We then provide experimental details. Finally we report results.

5.1 Data

We use the FIG-Loneliness dataset1 introduced in [14]. In the first experiment of pre-training a
pre-trained BERT model, we use 190K unlabeled loneliness-related Reddit posts. For the second
experiment of investigating the negative transfer, we use the same training set, dev set, test set, and
splitting as in [14]. The entire labeled dataset includes 6K posts cross-annotated by six raters. A
concrete example of an input and its expected outputs is given in Section 4.1.

5.2 Evaluation method

For binary loneliness classification (i.e., the first level in Figure 1), we use “Accuracy", “Precision",
“Recall", and “F1". For fine-grained loneliness characterization, we use distributional metrics adopted
from [68] including “Clark distance", “Canberra metric", “Cosine similarity", and “intersection
similarity". Defining P ∈ RK and P̂ ∈ RK as the ground-truth and predicted distributions with K
supports, Table 2 summarizes the computation of distributional metrics. Note that the distributional
version of metric “Accuracy" is similar to “mode matching".

5.3 Experimental details

There are two stages involved in the first experiment of pre-training a pre-trained BERT model,
i.e., 1) pre-training using MLM on 140K loneliness-related Reddit posts and 2) fine-tuning on FIG-
Loneliness labeled dataset. In the first stage, we pre-train a bert-base-cased model for 3 epochs

1https://huggingface.co/datasets/FIG-Loneliness/FIG-Loneliness
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Metric Formulation

Accuracy ↑ 1
(
argmax(P̂ ) ∈ argmax(P )

)
Clark ↓

√∑K
k

(Pk−P̂k)
2

(Pk+P̂k)
2

Canberra ↓
∑K

k
|Pk−P̂k|
Pk+P̂k

Cosine ↑
∑K

k PkP̂k√∑K
k P 2

k

√∑K
k P̂ 2

k

Intersection ↑
∑K

k min
(
Pk, P̂k

)
Table 2: Distributional metrics calculation. ↑ indicates higher values are better. ↓ indicates lower
values are better.

on 190K loneliness-related Reddit posts. We use AdamW [72] with Cosine schedule [73] of learning
rate warm up to 5× 10−5. We use a mask probability of 0.15. We train with 2 NVIDIA V100 GPUs
with an effective batch size of 16. Training takes approximately 4 hours. In the second stage, we train
our model for 3 different random seeds. We use AdamW again with a learning rate of 2× 10−5 to
train for at most 20 epochs. The model for evaluation from each run is chosen to be the checkpoint
with the highest dev score. We train using a NVIDIA P100 GPU with a batch size of 16. The training
takes approximately 5 hours.

The experimental details in the second experiment of investigating negative transfer are similar to the
second stage of fine-tuning as described above, except that we use learnable loss weights to balance
the learning of different sub-tasks.

5.4 Results

Tables 3 and 4 shows results on binary loneliness classification and fine-grained characterization,
respectively. We denote our method with the adapted BERT as “Ours w/ Adapted BERT" and our
method with the adapted BERT and learned sub-loss weights as “Ours w/ Learned Weights". We
highlight values in row “Ours w/ Adapted BERT" if they are better than values in row “Baseline
(HDLN)" because of the same model architecture used. We highlight values in row “Ours w/ Learned
Weights" if they are better than values in row “Baseline (BERT + MLP)" because we are interested in
if negative transfer is mitigated.

Our method with the adapted BERT generally outperforms the baseline. It is expected because
by pre-training the pre-trained BERT model on unlabelled loneliness-related Reddit posts using
MLM objective, we adapt it to the data distribution we are interested in and it hence can provide
better text representations for downstream tasks. As for the thread of reducing the negative transfer,
improvements are not consistent. Some results only improve over the baseline marginally and some
do not improve at all. We thus analyze the effects of the learned weights in the next section.

6 Analysis

We now analyze how learned loss weights adapt during the entire training to shed light on the cause
of negative transfer. Figure 4 shows the change of learnable loss weights during the entire training.
Regarding learning loneliness expression with different degrees of granularity, we find that the model
tends to learn the coarse one, i.e., lonely vs non-lonely in the first level of hierarchy as shown in
Figure 1. The learning signal from coarse loneliness gradually dominates over learning signals from
fine-grained loneliness. This phenomenon happens in both global and local classifiers. Regarding
the learning of global classifier and local classifiers, the learning signal from the global classifier
gradually dominates. It raises two questions: 1) “Does the label hierarchy really exist?" and 2) “If the
label hierarchy exists, does the model architecture properly model the conditionality?". We leave the
answering to these two open-ended questions as future work.

Regarding more efficient way to mitigate negative transfer, we hypothesize that weighting losses by
performances is a promising direction. Instead of imposing naive constraints that weights sum up to
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Acc. ↑ Precis. ↑ Rec. ↑ F1 ↑
Baseline

(BERT + MLP)
0.9722

± 0.0046
0.9538

± 0.0117
0.9870

± 0.0036
0.9700

± 0.0048

Baseline
(HDLN)

0.9763
± 0.0041

0.9609
± 0.0045

0.9883
± 0.0063

0.9744
± 0.0045

Ours w/
Adapted BERT

0.9763
± 0.0008

0.9632
± 0.0044

0.9857
± 0.0048

0.9734
± 0.0009

Ours w/ Learned
Weights

0.9781
± 0.0008

0.9634
± 0.0044

0.9896
± 0.0036

0.9763
± 0.0008

Table 3: Results for loneliness binary classification. “Acc.": Accuracy. “Precis.": Precision. “Rec.":
Recall. ↑ indicates higher values are better.

one, we can adaptively change the contribution of each sub-task to the model update such that all
tasks have similar impacts on the learning dynamics [53]. Another promising but computationally
expensive method is to leverage population-based training [74], where loss weights are adjusted in
the direction of maximizing the overall performance. Admittedly, searching for better neural network
architectures that are more suitable for multi-task learning is still a feasible direction. Future work in
this thread can leverage tools from neural architecture search [75, 76].
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Figure 4: Change of learnable loss weights.

7 Conclusion

In this work, we rethink previous efforts made for fine-grained loneliness characterization. We
improve the baseline method by a large margin by adapting a pre-trained language model to the
data distribution we are interested in and then leverage it for downstream tasks with the same data
distribution. We then investigate the phenomenon of negative transfer and attempt to reduce it by
learning to adaptively weight different sub-tasks. Analysis on experiment results raises open-ended
questions that are worth studying in the future. We then shed light on more approaches that are
potentially helpful to mitigate the negative transfer.
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