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Abstract

While overparametrized large language models achieve state-of-the-art NLP perfor-
mance, they raise concern about environmental impact, training cost, and feasibility
of deployment in edge devices. Model compression promises to alleviate these is-
sues, and multiple approaches have recently been successful in decreasing the num-
ber of parameters. We seek to determine whether these methods are complementary,
and can be used in conjunction. Starting with a pretrained distilGPT-2 model, we
apply progressive low-rank decomposition and weight pruning. Our engineering
contributions include the implementation of weight pruning for decoder-based mod-
els, and the first architecture-agnostic implementation of low rank decomposition.
We develop theoretical intuition for the proposed combinations of compression
methods, revealing a deeper connection through matrix rank, and an impact on
generalization error. We achieve a perplexity exceeding GPT-2 Medium (355M
params) with only 37M parameters (≈ 10× compression).

1 Key Information to include

• Mentor: Eric Anthony Mitchell

2 Introduction

Transformer-based language foundation models have achieved state-of-the-art performance on a
variety of NLP tasks. However, this comes at the cost of exponentially increasing their size. This
raises several concerns, including their environmental impact, the engineering challenge and cost
of training them, and the impracticality of their deployment in edge devices and other production
environments. As seen in (Table 1), these massive language models are only growing larger in size.
In fact, in just four years, model sizes have increased by four orders of magnitude.

It is because of this rapid growth in parameter count that compression of large language models has
become a particularly relevant field of study. In this paper, we examine the interaction between existing
techniques for the compression of large language models, and evaluate how they can most optimally
be combined. There currently exists a wide variety of methods, e.g. Kronecker decomposition
[Edalati et al., 2021, Tahaei et al., 2021], progressive low-rank decomposition [Hajimolahoseini
et al.], undivided attention [Sridhar and Sarah, 2020], and weight quantization [Yang et al., 2019].
Specifically, we aim to investigate the question:

What combination of approaches minimizes the performance degradation after
compressing up to a certain ratio?

Starting with a pre-trained distilGPT-2, we applied various compression and sparsity techniques
by first independently implemented the methods and interpolating the combinations of interest. We
motivate the particular combinations of methods we chose in the approach section. Following the
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Model Organization Date Size ( params)
ELMo AI2 Feb 2018 94,000,000
GPT OpenAI June 2018 110,000,000
BERT Googled Oct 2018 340,000,000
GPT-2 OpenAI Mar 2019 1,500,000,000
Megatron-LM NVIDIA Sep 2019 8,300,000,000
T5 Google Oct 2019 11,000,000,000
GPT-3 OpenAI May 2020 175,000,000,000
Megatron-Turing NLG Microsoft, NVIDIA Oct 2021 530,000,000,000

Table 1: Increasing Model Sizes.

application of compression methods, we evaluate the models for perplexity via the HuggingFace
API. The perplexity is calculated via a sliding-window strategy.

Our contributions can be summarized in two categories:

Research

• Quantitative compression results. We show that our pruned distilGPT-2 achieves perplexity
on par with GPT-2 Medium, while having 8× less parameters

• Theoretical Intuition. We provide mathematical intuition and show that the compression
techniques are complementary and achieve tighter bounds on generalization error, indicating
better generalization performance.

Engineering

• Pruning for GPT-2. We provide the first pruning method for autoregressive, decoder-based
models.

• Architecture-agnostic Progressive Low Rank implementation. We provide generalized
implementations of Progressive Low Rank Decomposition with full integration with the
HuggingFace API.

3 Related Work

The field of language model compression has seen greater research attention as models continue to
grow in size. Given their resource-intensiveness, compression is a valuable asset in terms of model
deployment. Li et al. [2020] showed that training a large model first then compressing to a smaller
model is advantageous to training a smaller model when working with transformers.

Quantization It has been shown [Hubara et al., 2017] that the full 32-bit float precision in NNs is
not always necessary. By applying quantization on weights of the model, float precision is reduced,
which improves memory footprint and execution speed. An example of quantization in the context
of large language models is with BERT: Fan et al. [2020] show that truncating the bits in the BERT
weights to a certain bitwidth yields better compression at the expense of a drop in accuracy, which is
referred to quantization noise.

Quantization-aware training (QAT) involves more steps to adjust weights when training with quanti-
zation. Figure (1) below summarizes naive quantization and the need for QAT.

Other forms of quantization dependent on QAT include fixed-length integer quantization [Zafrir et al.,
2021, Boo et al., 2021], Hessian-based mixed-precision quantization [Shen et al., 2020], adaptive
floating-point quantization [Tambe et al., 2020], and noise-based quantization [Fan et al., 2020].

Weight Pruning Pruning involves progressively setting the least meaningful weights in a model
to zero, hence making the weight matrix sparse. This has many advantages from a computational
perspective, since it allows the use of highly-efficient sparse matrix multiplication algorithms.
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Figure 1: Quantization-aware training treats each matrix of weights as a Gaussian distribution and
decreases the variance such that quantization noise is reduced. Ganesh et al. [2021]

Figure 2: Structured pruning removes chunks of the weights, while unstructured pruning reduces
weights via sparsity. Examples of structured pruning include embedding size pruning, attention head
pruning, and encoder unit pruning. Ganesh et al. [2021]

Curiously, pruning is the foundation of the famous lottery ticket hypothesis [Frankle and Carbin,
2018].

Formally, pruning can be divided into two classes: structured and unstructured pruning. Structured
pruning ablates structured blocks of weights. [Anwar et al., 2017] Unstructured pruning (also known
as sparse pruning) identifies the set of the least important weights (smallest gradient) as proposed by
Gordon et al. [2020]. A comparison of pruning methods can be found in the diagram on Figure (2).

Knowledge distillation Distillation involves transfer of knowledge from a large “teacher” model
to a more compact “student” model. The student model is “fine-tuned” to match the internal
representations and outputs of the teacher model on a particular task, so that both models have the
same “knowledge”. For example, DistilBERT is a smaller, faster, and cheaper version of BERTBase
that runs 60% faster with with 40% less parameters while preserving 95% of performance on the
GLUE benchmark.

Distillation during both pre-training and fine-tuning can help recover lost performance after some
weight ablation. The compression methods we use in this work all share a knowledge distillation step.

Kronecker Decomposition Tahaei et al. [2021], Edalati et al. [2021]

Recall the definition of Kronecker product in eq. 1,

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (1) (Â, B̂) = argmin
(A,B)

||W −A⊗B||22 (2)

where A ∈ Rm×n, B ∈ Rp×q, and A ⊗ B ∈ Rmp×n. This technique computes and applies
Kronecker decomposition to all weight matrices of the model, which for a matrix W is computed by
estimating the Kronecker factors Â and B̂ via the solution to the nearest Kronecker problem 2.

Upon some rearrangement of items in W , we can derive the solution to the nearest Kronecker problem
using a rank-1 SVD approximation (view Van Loan and Pitsianis [1993] for additional details).
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Kronecker decomposition can be used on a pretrained model by decomposing all weight matrices of
a network, and then performing knowledge distillation to recover performance, propagating gradients
to the Kronecker factors instead of the original matrix. For compression of LLMs, Kronecker
decomposition uses a small matrix size (i.e. 2× 1, 2× 2) to compress matrices 2-4 times and impose
explicit block structure in the weight matrices.

4 Methods

We have identified two techniques which all, in their own way, decrease the number of model
parameters in a way, such that performance is not significantly impaired. We seek to combine
the improvements in a way that maximizes compression while maintaining good performance and
high-quality internal representations. We outline the two methods below.

Pruning once and for all Zafrir et al. [2021]

This technique introduces sparsity in the weight matrices of the model, so that it running it is less
computationally expensive. It does so in 2 steps: (i) pruning weights and performing knowledge
distillation; (ii) fine-tuning while keeping pruned weights at 0. Importantly, as the title suggests, the
pruning step is done only once, which greatly alleviates resource cost for adapting to downstream
tasks. Prune once for all also aims to keep the sparsity pattern of the sparse pre-trained model in
place while fine-tuning. The authors employ a method known as pattern-lock: this technique prevents
the zeros in the weights from changing while training the model.

Progressive Low Rank SVD decomposition Hajimolahoseini et al.

Recall the definition of Singular Value Decomposition for a weight matrix W ∈ RC×S ,

W = UΣV ⊤ =

r∑
i=1

σiuiv
⊤
i

This method progressively applies a low rank estimation (W ′ = W0W1 where W0 = U ′
√
Σ′ and

W1 =
√
Σ′V ′⊤) to the weight matrices of a transformer model, truncating smallest eigenvalues.

Knowledge distillation is applied after each rank reduction, such that model performance recovers.

5 Experiments & Results

5.1 Data and Evaluation

There are two datasets that we are applying in this work. The first is the WikiText corpus (2,500
million words). We use this dataset for both the pretraining and distillation processes. The second
dataset that we use is wikitext-2 (100 million words). This corpus is used for evaluation, specifically
to measure perplexity of our compressed decoder-based models. These datasets were chosen because
they are standardized for use by HuggingFace and these integrate well with our distilGPT-2 model.
For background, HuggingFace is the API that provides infrastructure and scripts to train and evaluate
large language models.

5.2 Implementation

We build on an open-source framework for compression of language models [Zafrir et al., 2021],
which implements Knowledge Distillation, Prune-once-and-for-all, and Quantization. However, the
framework was designed for encoder-only BERT-style models.

As we are working with GPT-2, we reverse-engineered the framework and modified it to support
pre-training with Causal Language Modelling, which is what decoder-based models use. Additionally,
we created two add-ons to the framework, namely an implementation for Kronecker Decomposition
and Progressive Low Rank Decomposition. It is worth noting that, to the best of our knowledge, this
is the first public open-source implementation of the latter two methods. Our implementation further
supports full Huggingface integration by using decorators to modify the behaviour of existing
PyTorch and Huggingface methods.
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Model #parameters Perplexity

GPT-2 Medium 355M 26.37
DistilGPT-2 82M 43.69
Pruning 41M 26.44
Low Rank 31M 22.00
Pruning + Low Rank 37M 24.56

Table 2: Perplexity is calculated from the test evaluation loss on the wikitext-103 benchmark. The
result for Low Rank is taken from the original paper, which did not provide code, training times, or
hyperparameters.

We maintained a constant set of hyperparamters, which we set to match the ones in [Zafrir et al.,
2021]. Pruning ratios and ranks for Low Rank were set according to the desired compression ratio.
Models were deployed for training on a Azure NC6 Virtual Machine with a Nvidia Tesla V100.
Training times for pre-training were highest for pruning, which took ≈ 30 hours to complete with the
DistilGPT-2 model. For the other Low Rank, training takes approximately 8 hours.1

5.3 Theoretical Analysis

Recall that the stable rank of a matrix A, ranks(A), is defined as the ratio in eq. 3, where the
numerator is the Frobenius norm of A, and the denominator is the spectral norm. Note further that
ranks(A) is at most the rank of A, and hence the stable rank is intuitively understood as a continuous
proxy to rank(A).

ranks(A) =
∥A∥2F
∥A∥22

(3) O

(
d∏

i=1

∥Wi∥22
d∑

i=1

ranks(Wi)

)
(4)

Given that pruning directly decreases the Frobenius norm of the weights, we can infer that it decreases
the stable rank as well (the spectral norm, i.e. largest eigenvalue, should not be changing under
pruning, since knowledge distillation ensures that model outputs stay the same). Therefore, under
extreme compression cases, low-rank decomposition and pruning would start interfering with one
another, once the minimal rank is achieved. Additionally, this indicates that there exists some
equilibrium state between sparsity and low-rank decomposition.

Lastly, examining recent results for generalization bounds Arora et al. [2018], we see generalization
error asymptotically bounded by the expression in eq. 4, which indicates that low-rank decomposition
and pruning, by explicitly decreasing the stable rank, would yield better generalization results.

5.4 Results & Discussion

We evaluated the pruning method on GPT-2 with a pruning factor of 0.5 (meaning that the weights
are 50% sparse) and achieved a perplexity of 2, which is comparable to GPT-2 Medium, which has
335M parameters. In contrast, our pruned distilGPT-2 model has only 41M non-zero parameters,
therefore we have a compression ≈ 8×.

When combined with Low Rank, we managed to improve the result both in terms of perplexity and
parameter count, which supports the hypothesis that there exists an equilibrium state between the
two. We were however still not able to match the performance of Low Rank from the original paper,
however this could also be due to hyperparameter optimizations and longer training times.

Looking more broadly, our theoretical analysis of pruning and low-rank estimators indicates that
these methods provide models with tighter bounds on generalization error, which is true in practice
as well, since we are able to surpass GPT-2 Medium performance.

1Repository accessible at https://github.com/victorkolev/gpt2-compression

5

https://github.com/victorkolev/gpt2-compression


6 Conclusion & Future work

In conclusion, we have found that the combination of weight pruning and low rank decomposition
can be advantageous in creating more compressed models that generalize better. More specifically,
our work focused on decoder-based models such as GPT-2 and we were able to attain quantitative
results despite high costs of training and limited computational resources. Additionally, we revealed
a deeper connection between the two methods through matrix rank and stable rank, as detailed in our
theoretical analysis section. The field of large language models is actively developing and we believe
compression methods will be a key aspect of the deployment of such models.

Future work A future direction of development for this project is the integration of Kronecker
Decomposition and combining it with the methods we investigated. Considering pruning with
Kronecker decomposition, we hypothesize that this is a favorable compression method since we can
impose explicit block structure (as in Narang et al. [2017]) while pruning. This structure would result
in a sparse Kronecker matrix as well.

The second method combination of interest is progressive low rank decomposition with Kronecker
decomposition – because Kronecker decomposition is set up to break the original matrix into a small
(usually 2× 2) matrix and a larger matrix, the latter is a prime candidate for low-rank decomposition.
On the other hand, combining Kronecker with Low Rank is of interest, because there are deeper
linear-algebraic relationships between Kronecker product and SVD Schacke [2004]. Concretely,
Kronecker product is multiplicative with regards to eigenvectors and eigenvalues, and:

A⊗B = (UAΣAV
⊤
A )⊗ (UBΣBV

⊤
B ) = (UA ⊗ UB)(ΣA ⊗ ΣB)(VA ⊗ VB)

⊤. (5)

Note that the right-hand side is itself the singular value decomposition of A⊗B, hence SVD can be
computed much more efficiently on the smaller matrices.
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