
Improving Logical Consistency in Pre-Trained
Language Models using Natural Language Inference

Stanford CS224N Custom Project

Ananth Agarwal
Department of Computer Science

Stanford University
ananthag@stanford.edu

Cameron Tew
Department of Computer Science

Stanford University
ctew@stanford.edu

Anthony Tzen
Department of Computer Science

Stanford University
atzen@stanford.edu

Abstract

Current state-of-the-art pre-trained language models (PTLMs) contain rich and vast
amounts of world knowledge, demonstrating an ability to extrapolate information
from contextual texts and to accurately answer questions [1]. However, the latent
factual understanding captured by PTLMs can be irrational and inconsistent, caus-
ing PTLMs to be prone to generating contradictory statements [2]. We demonstrate
that natural language inference (NLI) can provide additional signal about contradic-
tory statements output by a PTLM. We explore several approaches for aggregating
the entailment and contradiction probabilities acquired through NLI on a batch of
PTLM predicted answers and define a scoring heuristic that balances between the
NLI output and the PTLM’s confidence in its answers. Predictions whose scores are
below a tuned threshold are revised before outputting final answers. In addition, we
investigate methods for using these NLI probabilities to define a MaxSAT problem
that, when optimized, yields corrected predictions. Our results demonstrate that
a system that uses either of our approaches to revise PTLM answers has better
accuracy and logical consistency than a vanilla PTLM.

1 Key Information to include

• Mentor: Eric Mitchell (em7@stanford.edu)

• External Collaborators (if you have any): n/a

• Sharing project: n/a

2 Introduction

Pre-trained language models (PTLMs) are deep transformer-based neural networks trained over large
corpora of text. PTLMs can be easily distributed and fine-tuned to many different tasks across NLP.
Consistency in generated answers for question answering tasks is a property that would indicate
a PTLM has learned a robust set of beliefs. Modern state-of-the-art models, however, generate
surprising logical inconsistencies, indicating they are falling short of acquiring human-like factual
understanding.

For example Macaw [3], a PTLM built on T5, outputs the following logical contradiction for a simple
question answering task:

Stanford CS224N Natural Language Processing with Deep Learning

• Q: Is an american bison a mammal? A: Yes

• Q: Is a mammal a bird? A: No

• Q: Is an american bison a bird? A: Yes

The prevalence of logical inconsistencies like the one above demonstrates the need to improve how
PTLMs reason about the world and the knowledge they have captured.

Natural language inference (NLI) models are trained on the sequence classification task of determining
whether the relation between a premise and hypothesis is “entailment”, “contradiction”, or “neutral”.
For example a RoBERTA model [4] fine-tuned on Multi-Genre Natural Language Inference (MNLI)
indicates that the affirmative statement “An american bison is a bird” generated by processing the
Macaw answer above strongly contradicts with the premise “An american bison is a mammal”. Our
work focuses on using NLI to estimate contradiction and entailment probabilities between pairs of
statements generated from PTLM question-answer results in order to determine whether the PTLM
answer should be revised before outputting a final answer. We explore scoring heuristic methods
using the data output from the NLI and the PTLM’s confidence in its original answer. Our results
demonstrate improvements over baseline PTLM accuracy and logical consistency in all cases.

3 Related Work

Li et al. show that highly accurate PTLMs often fail to exemplify consistency, for example in
transitive logic [5]. Kassner et al. leverage a global persistent memory called BeliefBank and a
constraint solver to build a system around a PTLM that improves accuracy and logical consistency
[6]. The weighted MaxSAT constraint solver uses a manually curated set of logical implications as
constraints to revise the PTLM’s raw answers that most clash with other answers in the BeliefBank,
and this processed answer is output. Limitations of Kassner et al.’s work include poor scalability
of procuring manually curated constraints for a constraint solver, and that entities with multiple
meanings are excluded from the dataset. The pre-trained NLI model we are utilizing in our approach
has the advantages of internalized knowledge and contextualized representation of words.

4 Approach

Questions
𝒒𝟏, 𝒒𝟐, … , 𝒒𝒎

QA Natural Language Model
(Macaw T5)

Predicted Statements
𝑠1, 𝑠2, … , 𝑠𝑚

Prediction Probs.
𝑃 𝑠1
𝑃 𝑠2
⋮

𝑃 𝑠𝑚

Entailment Probs.
𝑃 𝑠1 → 𝑠1 𝑃 𝑠1 → 𝑠2 ⋯

𝑃 𝑠2 → 𝑠1 𝑃 𝑠2 → 𝑠2 ⋯
⋮ ⋮ ⋱

Scoring

Scored
Predictions

score 𝑠1
score 𝑠2

⋮
score 𝑠𝑚

Correction
Heuristic

Corrected
Statements
𝒔𝟏, 𝒔𝟐, … , 𝒔𝒎

Contradiction Probs.
𝑃 𝑠1 → ¬𝑠1 𝑃 𝑠1 → ¬𝑠2 ⋯

𝑃 𝑠2 → ¬𝑠1 𝑃 𝑠2 → ¬𝑠2 ⋯
⋮ ⋮ ⋱

Natural Language
Inference Model

(RoBERTa)

Figure 1: Scoring & Iterative Improvement Approach

4.1 Data Preprocessing

We first preprocessed the BeliefBank dataset curated by Kassner et al. in order to construct batches
of factual statements for testing our model. The evaluation dataset contains facts that are either true
or false about 85 entities (“silver facts” inferred from a knowledge graph; see Section 5.1), and it
also contains a directed constraint graph that encodes entailment between pairs of statements [6]. We
created one batch of test facts per entity in the following way:

1. Sample a statement about the entity from the set of silver facts and add it to the batch.

2. Using the constraints, sample and add a new statement that can be inferred from statements
already added to the batch. If no such statements exist, go back to step 1.

2

3. Repeat step 2; stop when the batch has batch size n statements.

In addition, to ensure that each batch has a balanced sample of both positive and negative statements,
we attempt to sample from only applicable positive statements if there are more negative statements
in the current batch (and vice versa) if possible in steps 1 and 2. Overall this process ensures that for
each batch, there are enough logical implication statement pairs to compute a reliable consistency
metric, i.e., our model has the potential to make predictions about the batch’s statements that would
satisfy or violate a significant number of constraints. We can thus evaluate the logical consistency of
a batch of statements by examining what percentage of these constraints are satisfied or not satisfied
(Section 5.2).

4.2 Querying the PTLM and NLI

Our model takes one batch of facts at a time as input. Each fact is mapped to a natural English
yes/no question using a simple template. For example our “IsA” relation template maps the raw input:
mammal:{IsA,bird:yes} to “Is a mammal a bird?”. The question is then fed into a QA PTLM
which then outputs a yes/no answer along with its probability. Using templates again, we transform
each question-answer pair into a declarative statement. For example <Q: “Is a mammal a bird?”,
A: “no”> is mapped to “A mammal is not a bird”. The PTLM probability of its yes/no answer can
subsequently be interpreted as the PTLM-estimated probability of the resulting statement; that is, for
a question answer pair <qi, ai> and corresponding statement si, PPTLM (si) = PPTLM (ai).

We then evaluate the logical consistency of this batch of statements, S = {s1, s2, ..., sn}. This is
where we introduce a novel approach - rather than using a manually configured constraint solver like
Kassner et al., we use a pre-trained NLI model, which takes a hypothesis statement sh and a premise
statement sp as input and predicts an entailment probability, a contradiction probability, and a neutral
probability. We denote the first two probabilities as follows:

Pe(sh, sp) = PNLI(sp =⇒ sh)

Pc(sh, sp) = PNLI(¬(sp ∧ sh)) = PNLI(sp =⇒ ¬sh))

Each ordered pair of statements (sh, sp) (where sh, sp ∈ S) is passed through the NLI to create two
n× n matrices: entailment probabilities and contradiction probabilites.

4.3 Estimating P (sh) from Logical Relationships

The PTLM and NLI outputs are used to compute new estimates for the probability of each statement
sh ∈ S, using only the estimates of how the other statements in the batch entail or contradict with sh.
Specifically, for each (premise sp, hypothesis sh) pair of statements where p ̸= h, we can estimate:

P (sh) = P (sp ∧ (sp =⇒ sh)) = P (sp)P (sp =⇒ sh) = PPTLM (sp)Pe(sh, sp)

P (¬sh) = P (sp ∧ (sp =⇒ ¬sh)) = P (sp)P (sp =⇒ ¬sh) = PPTLM (sp)Pc(sh, sp)

Then, for each sh, we aggregate the relevant estimates into a single PNLI(sh) estimate, experimenting
with several methods to do so. The first approach takes the maximum of the probability estimates.
This closely matches the underlying logical reasoning: only one entailment clause (sp ∧ (sp =⇒ sh))
needs to be true for sh to be true, and only one contradiction clause (sp ∧ (sp =⇒ ¬sh)) needs to be
true for sh to be false.

PNLI(sh) := P
(∨
p ̸=h

sp ∧ (sp =⇒ sh)
)
= max

p̸=h
P (sp ∧ (sp =⇒ sh) = max

p ̸=h
PPTLM (sp)Pe(sh, sp)

PNLI(¬sh) := P
(∨
p ̸=h

sp ∧ (sp =⇒ ¬sh)
)
= max

p ̸=h
P (sp ∧ (sp =⇒ ¬sh) = max

p ̸=h
PPTLM (sp)Pc(sh, sp)

(1)
Another method is to compute an empirical estimate by taking the average of the probability esti-
mates. Here, a statement that is strongly entailed/contradicted by more statements can have a higher
probability estimate than a statement with just one equally strong or stronger entailment/contradiction.

PNLI(sh) :=
1

|S| − 1
·
∑
p ̸=h

P (sp ∧ (sp =⇒ sh)) =
1

|S| − 1
·
∑
p̸=h

PPTLM (sp)Pe(sh, sp))

PNLI(¬sh) :=
1

|S| − 1
·
∑
p ̸=h

P (sp ∧ (sp =⇒ ¬sh)) =
1

|S| − 1
·
∑
p ̸=h

PPTLM (sp)Pc(sh, sp))

(2)

3

A third method is to compute an average of the entailment and contradiction probabilities weighed
by the PTLM estimates of the premise probabilities. This weighted average approach is similar to
the previous approach, but the entailment and contradiction probabilities are scaled by the relative
values (instead of the absolute values) of the premise probabilities. We can interpret these scaled
PTLM premise probabilities as a probability distribution Pscaled = PPTLM (sp|S\{sh}), where
each premise’s scaled probability is an estimate of the importance of the premise statement in the
PTLM’s “worldview” relative to that of the other premise statements.

PNLI(sh) := Esp∼Pscaled

[
P (sp ∧ (sp =⇒ sh))

]
=

1∑
p ̸=h PPTLM (sp)

·
∑
p ̸=h

PPTLM (sp)Pe(sh, sp))

PNLI(¬sh) := Esp∼Pscaled

[
P (sp ∧ (sp =⇒ ¬sh))

]
=

1∑
p̸=h PPTLM (sp)

·
∑
p ̸=h

PPTLM (sp)Pc(sh, sp))

(3)

4.4 Scoring and Correcting the Predictions

Using one of the three described methods, we obtain estimates for P (sh) and P (¬sh) for each sh.
Ideally, P (sh) = 1− P (¬sh), but this is rarely the case in practice since the NLI has not perfectly
learned logical relationships among all statements. Thus, we average the two types of estimates to
get a final NLI-based estimate of these probabilities. Lastly, we use a hyperparameter λ to balance
these NLI-based estimates with the original PTLM probabilities to obtain a final, adjusted estimate of
P (sh), which act as our “scores” for each statement:

score(sh) := λ
(
0.5 · PNLI(sh) + 0.5 · (1− PNLI(¬sh))

)
+ (1− λ)PPTLM (sh) (4)

With this scoring scheme, we then apply an iterative improvement approach to correct the PTLM’s
original predictions. We invert (“flip”) the lowest-scoring statement if it is under a minimum score
threshold, recompute all the statement scores taking into account the new revised answer, and repeat
until no more scores are under the threshold or a maximum number of flips is reached. Both the min
score threshold and the max number of flips permitted are hyperparameters we fine-tune with the
development BeliefBank dataset (Section 5.3).

4.5 Using a Constraint Solver

The above-described approach attempts to use NLI probabilities to adjust the predicted probability of
each statement within a batch and to correct the predictions accordingly. While this is an interpretable
and straightforward approach for correcting a batch of PTLM predictions, the use of a greedy iterative
correction process raises the question of whether the correction process can be better optimized.
We thus also investigate a different approach: using the NLI and PTLM probabilities to transform
our model’s task into a MaxSAT problem that can be optimized by a constraints solver algorithm.
This method would be similar to that of Kassner et al., but rather than manually supplying curated
constraints to the constraint solver [6], we would use the NLI probabilities to define the constraints.

In this context, a MaxSAT problem takes as input a set of boolean variables and logical constraints
with associated weights, with the objective being to assign true/false values to each variable such that
the sum of the weights of the satisfied constraints is maximized. Specifically, we define the following
MaxSAT problem with a hyperparameter α ∈ [0, 1]:

• For each statement si, define a variable xi and define the following two constraints:

1. (xi) with weight = (1− α) · PPTLM (si)

2. (¬xi) with weight = (1− α) · (1− PPTLM (si))

• For each pair of statements (sh, sp) where h ̸= p, define the following constraints with
weights set to their corresponding NLI estimates:

1. (¬xp ∨ xh) with weight = α · Pe(sh, sp)

2. (xp ∨ ¬xh) with weight = α · Pe(sp, sh)

3. (¬xp ∨ ¬xh) with weight = α · Pc(sh, sp)

4. (xp ∨ xh) with weight = α · Pc(¬sh,¬sp)

4

Note that this requires two passes of statements through the NLI model, one pass with the set of
positive facts (s1, s2, ...sn) and one pass with the set of negative facts (¬s1,¬s2, ...¬sn). For each
statement si, our model predicts it to be true if and only if the statement’s corresponding variable xi

is assigned true by the constraint solver algorithm.

The hyperparameter α can be interpreted as analogous to the λ hyperparameter used in our iterative
improvement approach, as its role is to also balance the NLI probabilities (the constraints weights)
with that of the PTLM probabilities (the variable weights), although it is not directly comparable
given that the NLI and PTLM signals are processed differently.

5 Experiments

5.1 Data

We are using the BeliefBank dataset curated by Kassner et al. to tune and evaluate our model [6].
The dataset contains a manually defined subset of the ConceptNet [7] semantic knowledge graph
(KG) represented as a directed graph with 1,846 nodes and 4,058 edges. Edges capture directional
implications between nodes, and we preprocess the graph such that nodes are modeled as statements
of the form (<relation>,<target>:<truth>). For example, the edge (IsA,crustacean:1)
→ (IsA,invertebrate:1) codifies the constraint “If {x} is a crustacean, then {x} is an inverte-
brate”. The relations of the constraint graph nodes are one of: “IsA”, “HasA”, “MadeOf”, “PartOf”,
“HasProperty”, and “CapableOf”, which are 6 relations of interest captured by the BeliefBank paper
[6]. During preprocessing, we also augment the graph to capture the contrapositives of existing
constraints.

The BeliefBank dataset contains 1,072 “calibration silver facts” harvested from the constraint graph
about 7 different entities of interest (e.g., “ant”, “cypress”). We use this as a development set to fine-
tune our model hyperparameters. The BeliefBank test dataset consists of 12,636 factual statements
derived from the constraint graph for 85 selected plant and animal entities, while excluding entities
that could be ambiguous like “bat” [6].

5.2 Evaluation method

Our goal is to maximize the number of correct answers while minimizing the number of these answers
that logically contradict each other. Kassner et al. report F1-score over accuracy score due to class
imbalance in the dataset [6]. Since we design for balance in the labels of the batch of facts created for
each entity (Section 4.1), we report both F1-score and accuracy score.

Each batch of facts has a set of constraints our model is attempting to satisfy. Let C(S) denote a set
of logical constraints over statements S in the batch, where we consider each individual constraint
ci where the premise sp is true, denoted {ci|sp}. Consistency is defined as the complement of the
fraction of all violated constraints, as shown in Equation 5:

Consistency = 1− |{ci | ¬(sp → sh)}|
|{ci | sp}|

(5)

The numerator is the number of constraints that are violated, i.e., where sp → sh is false.

5.3 Experimental details

5.3.1 HuggingFace Models

Our model uses the macaw-large PTLM (the same one used by Kassner et al. [6]) and
roberta-large-mnli for NLI with their default configurations. These models are only used
in their evaluation states; our approach does not require training or fine-tuning. Our evaluation
baseline is macaw-large with no additional post-processing.

5.3.2 Hyperparameter Tuning for Scoring and Iterative Improvement

To select optimal hyperparameter values for our scoring and iterative improvement methods (Section
4.4), we run our model on batches of size n = 50 sampled from the development BeliefBank dataset
(Section 4.1). We tune three hyperparameters:

5

1. Minimum Score Threshold: Statements whose score (Equation 4) is below this threshold
are candidates for flipping the original PTLM answer

2. Max Number of Flips: The maximum number of flips to be applied for a single batch

3. λ: Interpolates between the raw PTLM score and the additional signal from the NLI

Hyperparameters are tuned using the hyperopt framework, which leverages the Tree of Parzen
Estimators (TPE) [8] algorithm for performing Bayesian Optimization over the search space. We
use negative F1 score as an objective function loss to minimize and perform 100 iterations during
tuning. Each iteration evaluates a different subset of hyperparmeter values according to the TPE
algorithm. Using the tuned hyperparameter values, we then evaluate our model on batches of size
n = 100 sampled from the test Beliefbank dataset.

On a GCP n1-standard-8 using a Nvidia Tesla V100 GPU, our evaluation against the development
set, including hyperparameter tuning, completes in ≈ 1.5 hours. Evaluation against the test set takes
≈ 10 minutes.

5.4 Constraint Solver Experiments

We use the νZ extension of the Z3 algorithm [9] to optimize the MaxSAT problem we construct for
each batch of predicted statements. The runtime required to execute this algorithm can be significantly
large to get an optimal answer, especially when handling O(n2) number of constraints. Thus we cap
each run of the Z3 algorithm at 1 minute when running on a GCP instance with a Tesla T4 GPU, after
which the algorithm can yield a partial, candidate solution.

In addition, to reduce the complexity of this MaxSAT representation and to mitigate some of the
potential noise that could come from summing over a large quantity of many small weights, the
constructed MaxSAT problem would only include constraints that have an NLI-predicted probability
of at least ϵ. Hyperparameter tuning for α and ϵ was done with a basic grid search approach on
batches of size n = 100 sampled from the development BeliefBank dataset, with the selected values
being α = 0.91 and ϵ = 0.2. We then used these values to evaluate our constraints solver approach
on batches of size n = 100 sampled from the test Beliefbank dataset.

5.5 Results

Hyperparameters Metrics
Method Min. Score Max Flips λ F1 Accuracy Consist.
Baseline - - - 0.787 0.822 0.826
Max 0.573 9 0.422 0.807 0.844 0.836
Average 0.543 6 0.519 0.812 0.85 0.846
Weighted Avg. 0.367 7 0.832 0.833 0.87 0.858

Table 1: Iterative Improvement Approaches vs. Baseline Performance

While all the PNLI approaches we explored outperform the baseline vanilla PTLM in all metrics, the
difference in the optimal hyperparameters is significant. The weighted average approach (Equation
3) achieves the best performance with the most strict parameters; fewer iterative flips are needed
and the score threshold is much lower. These results confirm our expectation that increasing logical
consistency on a state-of-the-art PTLM generally dovetails with increasing accuracy. We expected
the max approach (Equation 1) to outperform the baseline by a higher margin since it accounts for
the strongest entailment and contradiction probabilities from the batch, but the tuned low λ relative to
the other approaches suggests this NLI signal is not discerning enough (see Section 6.3 for further
analysis).

Our preliminary experiments with using the constraints solver to resolve NLI-predicted logical
inconsistencies within a batch of facts show some promising results, as our best run (α = 0.909, ϵ =
0.2) obtained a F1 value of 0.829, which is significantly higher than the baseline and outperforms the
average and max iterative improvement approaches. This approach also achieved a consistency of
0.896, which is much higher than any of the three iterative improvement approaches.

6

6 Analysis

Question PTLM PTLM Prob. Orig. Score Output Final Score Label
Is an american bison a mammal? Yes 0.9998 0.7579 Yes 0.7958 Yes
Is an american bison a bird? Yes 0.8197 0.249 No 0.5053 No
Is an american bison a country? Yes 0.8096 0.2416 No 0.4002 No
Does an american bison have a face? Yes 0.9965 0.5095 Yes 0.5233 Yes
Batch mean 0.5005 0.5225
Batch variance 0.0220 0.0183

Table 2: Select “american bison” inputs and outputs, n = 100; weighted average approach

6.1 Increasing Statement Score

We take a closer look at the model’s effectiveness in Table 2 by investigating its handling of the
motivating american bison example from Section 1. The PTLM answer to “Is an american bison
a bird?” causes the affirmative but false statement “An american bison is a bird” to be input to
the NLI model. The low initial statement score calculated according to Equation 4 is indicative
of this statement being strongly contradictory to other higher-confidence statements such as “An
american bison is a mammal”. By flipping the original PTLM answer, our model achieves a
higher statement score for the statement “An american bison is not a bird”. The statement score
for “An american bison is a mammal” also increases because the corrected answer results in a
higher entailment probability PNLI(sh) and lower contradiction probability PNLI(¬sh) where
sh = An american bison is a mammal. The average score increase for the entity as a whole
illustrates that our scoring heuristic in Equation 4 effectively identifies incorrect and inconsistent
predictions as it was designed to do. Furthermore, the correcting of the “Is an american bison a
country?” prediction suggests that our approach of evaluating natural language inference within a
batch helps sift out noise that a word like “american” may introduce in this question.

6.2 Hyperparameters

The hyperparameter λ interpolates between the raw PTLM probabilities and our NLI-based statement
scores, and has arguably the most dramatic affect on our results. By fixing min-score-threshold
and max-num-flips hyperparameters to their optimal values based on our tuning against the devel-
opment set (see Section 5.3.2), we can explore varying levels of λ and how they affect the overall
accuracy (F1) and consistency for each of our three different aggregation methods.

Figure 2: λ influence on: F1-score (Left), consistency (Right)

From Figure 2 we observe that in both F1 and consistency, nearly all approaches result in no predic-
tions being flipped until reaching a λ ≈ 0.5 threshold. At λ = 0.5, there is considerable divergent
behavior between all three aggregation approaches. In particular, as λ starts favoring the NLI-based
statement scores, the maximum aggregation approach inadvertently makes incorrect flipping deci-
sions, due to it overestimating both entailment and contradiction probabilities. Empirically, we see
that incorporating the probability of premise sp being true and taking that into account when scoring
statements does seem to “soften” the scoring so that the model makes more measured decisions about
which statements to “flip”.

7

6.3 Comparison of Methods

Studying confusion matrices of the three PNLI approaches’ results offers deeper insight into dif-
ferences between them. Table 3 contains the confusion matrix for the weighted average approach
(Equation 3), and Table 4 corresponds to the maximum approach (Equation 1). Table 5 for the average
approach (Equation 2) is in the Appendix.

Answer Flipped
Yes No

PTLM Incorrect Yes 446 1067
No 39 6948

Table 3: Weighted Avg. Confusion Matrix

Answer Flipped
Yes No

PTLM Incorrect Yes 390 1123
No 206 6781

Table 4: Maximum Confusion Matrix

One striking result is that the weighted average approach has substantially fewer false positives
- a prediction that was flipped to the incorrect answer - compared to the average approach, and
especially the maximum approach. Table 7 in the Appendix comparing the mean and variance of
statement scores before and after the iterative correction procedure offers an explanation for this. The
variance of the original statement scores computed using a weighted average for PNLI is an order
of magnitude higher than the variance observed using the maximum approach. Combining this fact
with the comparatively lower minimum score threshold and better metrics implies that the weighted
average is better able to separate out predictions that need flipping from already correct predictions.
The wider range of statement scores likely allows the hyperparameter tuning to also find a better
balance between NLI and PTLM signals since there is more room for nuance between predictions.
Despite flipping many fewer statements, the weighted average approach achieves significantly higher
precision (0.92) than the maximum approach (0.65). The maximum approach may be overly greedy
when determining PNLI and not accounting for the noise inherent in the predictions. Table 7 further
reinforces the stronger performance of the weighted average approach by showing that the increase
in statement score after iterative flipping is more than double the increase provided by the next-best
approach. Given a group of questions that produce similar outputs from the PTLM, the weighted
average allows our methodology to rely more heavily on signal from the entailment and contradiction
probabilities, whereas the standard arithmetic mean does not. Recall from Section 4.1 that our batches
are biased towards containing more premise - conclusion logical implication pairs than would be
present if the silver facts were randomly sampled. This essentially makes it easier to make NLI
predictions since the statement pairs passed into it likely have a non-neutral relation. Therefore, the
weighted average outperforms the arithmetic mean because it places a higher weight (λ) on a strong
NLI signal.

6.4 Scoring Heuristic vs. Constraints Solver

We can again examine the confusion matrix (Table 6 in the Appendix) to see differences in how the
constraints solver performs when compared to our iterative improvement approaches. Namely, there
is a higher number of false positives, which makes sense since the constraints solver algorithm is
more likely to find these false positives as it attempts to exhaustively explore all possible true/false
combinations of the statements. In contrast, our iterative improvement approaches are more conser-
vative, greedily flipping only one statement at a time and flipping only when the statement score is
under a threshold for a limited number of times. Fine-tuning these hyperparameters does help, but for
any given experiment run, the selected hyperparameter values are used for every batch, even though
the optimal hyperparameter values to use for each batch may significantly differ from batch to batch.
From our results, it appears that the more conservative heuristic approach performs better in accuracy
while, interestingly, the less conservative constraints solver performs better in consistency, although
further experimentation is needed to verify this robustly.

7 Conclusion

In this project, we demonstrated the usefulness of an NLI model for correcting batches of predictions
made by a PTLM. In particular, although an NLI can only approximate the probabilities of a given
entailment or contradiction between two statements, its output can still be used along with the
PTLM’s prediction probabilities to identify logical inconsistencies and correct predicted statements

8

accordingly. In addition, an NLI model’s entailment and contradiction probability estimates can be
represented as soft constraints in a MaxSAT problem that, once optimized by a constraints solver,
can also yield improved predictions that are more accurate and logically consistent. The primary
advantage of our work is achieving an accuracy and consistency increase over the baseline without
needing manually curated logical constraints specified. However, there are some limitations to our
approach warranting further research. We biased our batches towards facts that are more likely to have
a strong entailment or contradiction relation with each other, which resulted in stronger NLI signals.
The benefit afforded by NLI may be less pronounced in a random selection. In addition, there is more
room to explore methods for robustly addressing how the NLI model itself may provide logically
inconsistent predictions (e.g. when PNLI(sh) ̸= (1 − PNLI(sh)). Furthermore, we evaluate NLI
within a batch of facts, which is limited by batch size. Kassner et al. utilized a global memory to
store facts [6], which also has scalability limitations, but there may be an optimal balance to be struck.
Lastly, further work can investigate mechanisms to better train for consistency in the pretraining of
language models, which would reduce the need for additional architecture around them that seeks to
correct their mistakes.

References

[1] Fabio Petroni, Tim Rocktäschel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H.
Miller, and Sebastian Riedel. Language models as knowledge bases? CoRR, abs/1909.01066,
2019.

[2] Nora Kassner and Hinrich Schütze. Negated LAMA: birds cannot fly. CoRR, abs/1911.03343,
2019.

[3] Oyvind Tafjord and Peter Clark. General-purpose question-answering with macaw. CoRR,
abs/2109.02593, 2021.

[4] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019.

[5] Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Srikumar. A logic-driven framework for
consistency of neural models, 2019.

[6] Nora Kassner, Oyvind Tafjord, Hinrich Schütze, and Peter Clark. Beliefbank: Adding memory
to a pre-trained language model for a systematic notion of belief, 2021.

[7] Robert Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph
of general knowledge. In AAAI Conference on Artificial Intelligence, 2016.

[8] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems, volume 24. Curran Asso-
ciates, Inc., 2011.

[9] Nikolaj Bjørner and Anh-Dung Phan. νz-maximal satisfaction with z3. Scss, 30:1–9, 2014.

9

A Appendix

A.1 Confusion Matrices

Answer Flipped
Yes No

PTLM Incorrect Yes 361 1152
No 123 6864

Table 5: Avg. Confusion Matrix

Answer Flipped
Yes No

PTLM Incorrect Yes 721 792
No 304 6683

Table 6: Constraint Solver Confusion Matrix

A.2 Summary Statistics

Method Orig. Score Mean Orig. Score Variance Final Score Mean Final Score Variance
Max 0.735 0.0083 0.7386 0.0073

Average 0.6918 0.0114 0.6991 0.0097
Weighted Avg. 0.5415 0.0198 0.5594 0.0169

Table 7: Summary Statistics Comparison for Scoring Methods

10

	Key Information to include
	Introduction
	Related Work
	Approach
	Data Preprocessing
	Querying the PTLM and NLI
	Estimating P(sh) from Logical Relationships
	Scoring and Correcting the Predictions
	Using a Constraint Solver

	Experiments
	Data
	Evaluation method
	Experimental details
	HuggingFace Models
	Hyperparameter Tuning for Scoring and Iterative Improvement

	Constraint Solver Experiments
	Results

	Analysis
	Increasing Statement Score
	Hyperparameters
	Comparison of Methods
	Scoring Heuristic vs. Constraints Solver

	Conclusion
	Appendix
	Confusion Matrices
	Summary Statistics

