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Abstract

Dense information retrieval systems have gained popularity in recent years. Given a
user query, similarity-search based systems retrieve the top k most similar document
from a background corpus, and performance are largely evaluated over a single
distribution, either in distribution or out of distribution (zero-shot). In this work,
we identify that many practical workloads require retrieving from a combination
of in-distribution (ID) and out-of-distribution (OOD) candidates, especially as
corpora update over time. In response, we ask whether alternate retrieval strategies,
i.e., besides simply retrieving the top k most similar documents, and fine-tuning
strategies, beyond vanilla fine-tuning, would enable fairer performance in the
mixed-distribution setting. We first propose a synthetic setting to evaluate this
question, and then discuss our results and opportunities for future work.

1 Introduction

Information retrieval is an important step for open-domain applications such as language modeling [1],
question-answering [2], fact-checking, and personal assistants [3]. Such applications can receive user
inputs about nearly anything, requiring access to a wide range of knowledge. In literature, retrieval-
based systems follow a two-stage approach by first retrieving then reading: explicitly collecting
the top k relevant documents from a large background corpus, and providing this to a separate task
model, which reasons over the knowledge to generate an output (or answer). Research has shown that
improvement on retriever performance transfers readily to downstream tasks. In this work, we focus
on dense retrieval system which select relevant passages based on similarity scores between dense
question and dense passage representations [4, 5]. The performance of retrievers has significantly
improved in recent years, though it is well known that they still struggle to retrieve out-of-distribution
text domains and retrieval tasks [6, 7, 8]. However, existing work does not consider the further
difficulty of retrieving from a mixture of in and out of distribution items.

Practical workloads often consist of a mixture of in and out-of-distribution (OOD) data, especially
as corpora evolve over time. A key challenge for studying the proposed retrieval setting is the lack
of benchmarks that explicitly require retrieving from a mixture of distributions. One option is to
combine two existing questions and corpora, however it would be possible for questions from one
dataset to be answerable using passages from the other from our preliminary studies, making it
difficult to evaluate how retrieval quality changes. We first construct an evaluation testbed by creating
synthetic datasets that contain distribution shifts from an existing general domain benchmark, MS
MARCO [9]. Sub-distributions in the retrieval setting can arise either due to the types of questions
asked or passages retrieved. We compare both styles of distribution shift in our analysis.

The main reasons we hypothesize mixed-distribution retrieval could require alternate strategies are:

1. Training strategy Dense retrievers are trained contrastively [4], and there has been limited
evaluation of how the fine-tuning strategy impacts retrieval generalization. Prior work shows
tries vanilla fine-tuning on a distribution of one question type, and shows performance
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degrades when the retriever applied to a new question type [10]. Hard negative mining
has been reported to improve retrieval performance [4, 11], however these works evaluate
in-distribution performance on standard benchmarks. Prior evaluation studies of dense
retrievers do not use hard negative mining to fairly compare to methods that do not use hard
negatives [6]. In this landscape, we observe that advanced fine-tuning strategies are not
well-studied from a generalization perspective and we hypothesize that fine-tuning with hard
negatives may mitigate performance tradeoffs between in-distribution and OOD retrieval.

2. Retrieval strategy While in single-distributions retrieval all of the top k documents are from
the instant distributions, under the mixed retrieval setting, it is possible for zero of the top k
passages to be from one of the sub-distributions. We hypothesize a retrieval model that is
biased towards one sub-distribution will favor retrieving passages from that sub-distribution
over the OOD passages. This might suggest using a sub-distribution aware retrieval method,
instead of simply choosing the top-k overall documents, may be preferable.

In summary, our contributions are:

1. We design synthetic evaluation datasets to study multi-distribution retrieval.
2. We show that mining hard-negatives provides large gains when fine-tuning on small corpora

compared to vanilla fine tuning, and can outperform pretraining on the full corpora.
3. We provide in-depth analysis on fine-tuning and its effect on retrieving in both ID and OOD

settings.

2 Related Work

Multiple Distributions in Retrieval Prior work evaluates popular retrievers on out-of-distribution
(OOD) data [12, 6], however while in zero-shot retrieval, k of the top k retrieved passages for
a question are from the OOD corpus, under mixed-retrieval, it is possible to retrieve zero OOD
passages in the top k. [10] considers retrieving over multiple question types, however their question
categories are formed by introducing different question templates, while we seek to understand latent
sub-distributions in existing benchmarks.

To support retrieval over multiple domains, common approaches in prior work include training a
single retriever on a mixture of domains [12, 13], or using a mixture of experts or specialized encoders
[14, 10], each tailored to a different domain. While these techniques can improve generalization, we
may not be able to access all downstream retrieval distributions during training.

Retrieval Training Approaches Prior work uses hard-negative mining for training dense retrievers
[4, 11]. Whiles these methods report end-to-end lifts on in-distribution evaluations, they do not
consider the effects on different sub-distributions of the dataset or OOD performance. BEIR [6],
which includes a rigorous evaluation of different retrievers’ OOD performance, does not use hard
negatives in its implementations of dense retrievers to maintain a fair comparison between methods,
based on our understanding. In contrast, we explore the how hard-negative mining might impact
robustness.

3 Approach

Here we describe the retrieval problem and our process to create synthetic datasets that contain
sub-distributions, which is a precursor to studying the multi-distribution setting.

3.1 Preliminaries

Dense Retrieval The goal of dense information retrieval is to train a model to find relevant
documents to a user query, from a massive background corpus. The typical approach is to encode
questions and documents either with a single neural network, or using a bi-encoder architecture in
which one encoder is for queries and the other is for document. Relevance is determined by taking
the dot product or cosine similarity between the encoded query and document representations. For
efficient similarity search, documents are encoded in optimized data structures [15]. Generally, the
top-k most relevant passages are retrieved per query, and provided to a second task-specific model
such as a reader that produces an answer to the question.
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Benchmarks Popular existing question-answering benchmarks require retrieving from a single
distribution ([9, 16], inter alia.), so we need to construct an evaluation setting for our retrieval setting.
One option to study the multi-distribution setting is to combine the questions of benchmarks spanning
multiple domains. In preliminary experiments under this setting, we mix the questions and corpora
of the two documents (D1 and D2), and use the same pretrained retrieval model checkpoint, that
was trained on a third, separate distribution (D3), to perform retrieval for all the questions. We
observe that for the questions coming from D1 that is farther from the D3 by Jaccard similarity, a
large proportion of the top retrieved passages come from the passages associated with D2, which
distributionally closer to the training distribution.

While this observation could have important implications for the optimal retrieval strategy — for
example, that a retrieval strategy that is aware the underlying data contains two distributions D1 and
D2 might be preferable to always choosing the overall top-k passages — unfortunately a confounding
factor is that it is challenging to decouple whether the alternate passages that are chosen for D1

questions are incorrect or actually, unknowingly, better than passages in the D2 corpus for the
question at hand. It is also possible that a question can be answered by passages from multiple
datasets with overlapping subdomains. In order to eliminate this confounding factor, we need a new
evaluation set — we thus choose to synthetically split one dataset into two subsets.

3.2 Synthetic Domain Split

We design synthetic splits from MS MARCO [9], a popular retrieval benchmark. Our objective is
to obtain two datasets D1 and D2 that reflect a distribution shift. In retrieval, distribution shifts can
arise from the set of questions, or the set of passages. We consider generating the shifts from both
perspectives. Below, we discuss our protocol for generating synthetics.

Clustering Passages We first use [5] to encode all questions, then uniform manifold approximation
and projection (UMAP), a type of non-linear dimensionality reduction [17]. Because UMAP uses a
topological approach to capture the interconnectedness of data points, the variance explained by the
procedure cannot easily be calculated. As a heuristic, we first apply PCA to our high-dimensional
data and iteratively increase the number of components k until the total variance explained first rises
above 60% [18] at some k̄. We then set k̄ as the desired dimension from UMAP.2

To set the number of clusters, we use the Gap statistic approach [19]. Intuitively, this statistic aims to
capture how tight points are around a cluster. Letting dii′ be the standard ℓ2(i, i

′) norm, with data
separated into k clusters C1, . . . , Ck, the Gap statistic is given by:

Gapn(k) = E∗
n{log(Wk)} − log(Wk)

where Wk =
∑k

r=1(1/2|Cr|)
∑

i,i′∈Cr
dii′ . The term E∗

n{log(Wk)} denotes the expectation of
log(Wk) under a "null" sampling distribution of size n. The larger the Gap statistic, the more
confident we are that k is the correct number of clusters. See Appendix A for full details.

3.3 Multi-Distribution Retrieval Approaches

To evaluate our proposed retrieval setting using the constructed D1 and D2, we start by using an out
of the box retrieval model fθ trained on the full MS MARCO benchmark. Next, we assume that we
only have access to D1 during training, but questions from both D1 and D2 during inference. By
training the base model on D1, we hypothesize this biases the model towards D1. We are ultimately
interested in observing whether the biased retriever degrades on D2 and struggles to select passages
corresponding to questions in D2, and whether it’s possible to mitigate performance degradations on
D2 during inference, despite only having access to D1 during training.

Vanilla Fine-tuning Fine-tuning is a popular transfer learning method in which both the original
deep feature extraction model fθ, and the predictor head are updated via gradient descent. We tune
fθ on D1 using the Multiple Negatives Reranking Loss function, which expects as input a batch
consisting of sentence pairs (a1, p1), (a2, p2) . . . , (an, pn) where (ai, pi) are a positive pair (i.e., a
question and the passage containing its answer), and (ai, pj) for i ̸= j a negative pair, and minimizes
the negative log-likehood for softmax normalized scores over passages [20].

2While only a quick-and-easy heuristic, this is largely justifiable given that we have no reason to believe our
data is linear; indeed we likely capture more than 60% of the explained variance with this method.
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BM25-retrieved Hard Negative Fine-tuning Next, we explore training using hard negatives,
which intuitively should be more difficult for the retriever to tell apart from the positive passage for
the question, thus “encouraging” the model to learn more nuanced reasoning patterns. A popular
strategy in the literature is to use a “simple” retriever to mine hard negatives. In our case, we use a
popular and powerful retriever that is based on sparse encodings of questions and passages called
BM25. We use BM25 to select the top passages for every question in D1, and select the top passage
that is not the gold-labeled positive passage and incorporate during the contrastive fine-tuning.

4 Experiments

4.1 Data

Our analysis focuses on two synthetic datasets: subsets of the MS MARCO benchmark [9]. MS
MARCO is a popular large retrieval dataset containing Bing user queries. The entire corpus contains
8,841,823 million passages. The train set contains 532,761 total (query, passage) pairs. There are
6,980 test queries. For computational feasibility, in whole we pull 50k (query, passage) pairs from
the train set, every one of the 6,980 pairs from the test set, and an additional 150k documents from
the corpus. In this way, we can simulate the corpus on a smaller scale, while increasing the ratio of
gold passages to gain insight on our later fine-tuning procedure.

Using the approach described in Section 3.2, we first apply the UMAP dimensionality reduction to
collapse the 768-dimensional passage embeddings (i.e. data) into 40-dimensional embeddings. Then
we use K-means to split MS MARCO into 23 clusters based on the Gap statistic. In Figure 3 in the
Appendix we plot the cluster sizes to verify all have a reasonable number of samples. In Figure 2 in
Appendix A, we show the Gap statistic and the optimal number of clusters.

We denote the two furthest apart clusters as “home” and “away” and pick “home” randomly between
these two. In Figure 1, we show a visualization of (a) “home” and “away” as well as (b) “home” and
the closest neighbor to it. As the embeddings are 40-dimensional, we select two randomly chosen
axes for the figure.3 Out of concern for small data issues in the resultant clusters, we group these 23
clusters into two groups that partition the passage embeddings: the “home” groups and the “other”
groups. For clarity, we illustrate via an example when random_seed = 2. We observe that clusters
12 and 22 are furthest apart. Now we group everything closest to the “home” cluster until we reach
roughly half the number of total documents (roughly 100k). We then fine-tune our experiments on
the queries tied to the passages in the “home” groups.

“home” groups = [12, 20, 3, 13, 0, 19, 4, 14, 8, 11, 7, 18, 16]

“other” groups = [22, 10, 2, 21, 6, 9, 1, 5, 15, 17]

(a) “home” & “away” Clusters (b) “home” & “nearest” Clusters

Figure 1: All units are given in Euclidean distance. Here we see a stark contrast between far and
near clusters along two axes. Our ‘”home” cluster is denoted in blue. We observe a clear separation
between the cluster furthest away from “home” in (a), while we see significant overlap in (b). In
addition, (b) is zoomed in (see axes). This agrees with our intuition and is robust to the chosen axes.
Furthermore, we reason that one passage can be close in embeddings to multiple queries, and similarly
multiple passages can be close to one query. As an alternate specification, we create our dataset with
the same procedure described above, except clustering by queries. Using 200k queries with gold

3Note this is in contrast to PCA where it is natural to choose the first two principal axes, as UMAP does not
have this same interpretable structure.
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passages in the train set, we use the BERT encoder to embed the queries and cluster/chunk them.
We then group the associated passages and add in another 300k random passages from the corpus
to account for the fact that not all passages are tied to queries. We focus our analysis on the case of
passage embeddings as the results were qualitatively similar. For additional details, see Appendix C.

N.B. For the remainder of the paper, note that our “home” chunk is synonymous with in-distribution
data, and our “other” chunk is synonymous with out-of-distribution data.

4.2 Small Chunks

In contrast to the main specification given above, we also consider breaking the domain into five
chunks. We hypothesize there exists a relationship between OOD relevance scores and (1) the distance
between the ID and OOD clusters, and (2) the distribution within each cluster. In order to assess
(1), we first form our “home” chunk as before, but we stop at ∼40k passages. The other chunks are
formed by picking ∼40k passages and bucketing them into OOD groups by distance away from our
“home” chunk. We then perform vanilla fine-tuning on our “home” chunk and evaluate on the other
four OOD chunks to compare the retrieval relevance score degradation. For (2), we examine average
Euclidean distance between UMAP embedding points.

4.3 Experimental details

Evaluation As in [6], we use the Normalized Cumulative Discounted Gain (NDCG) as a unified
metric that strikes balance between binary and graded relevance while accounting for multiple
retrieved documents. In particular, we compare the NDCG@10 scores across ID and OOD domains
to evaluate degradation. We provide additional discussion on our choice of metrics in Appendix D.

Model We use Sentence-BERT (SBERT) as the dense retriever baseline, given its simplicity and
competitive performance[5]. SBERT is a bi-encoder Siamese architecture that encodes a question
and document with a BERT language model to produce sentence embeddings q and d. It is pretrained
on SNLI with a classification objective and finetuned with a regression objective — computing
the cosine similarity between q and v, it minimizes the mean squared-error loss. During retrieval,
query embedding q is used to retrieve the top-k documents d1, ..., dk with the highest retrieval scores
according to maximum inner product search over the dense corpus.

Baselines We start with a distilBERT model pretrained on the full MS MARCO passage ranking
dataset in an attempt to eliminate bias towards particular subpopulations, though this a possible
limitation of using our syntthic datasets. We compare the following fine-tuning baselines: (1)
fine-tuning on questions corresponding to the in-distribution training questions and evaluating on
both ID and OOD test questions, (2) fine-tuning on a question set of the same size as (1), but
randomly splitting the training questions, (3) no fine-tuning, and (4) fine-tuning with BM25-mined
hard negatives. Ablating hyperparameters, we found a learning rate of 2× 10−6, batch size of 48,
weight decay of 0.1 to work best. On a RTX3090 GPU, training time requires 8 hours with BM25 on
a joint home + other corpus for 10 epochs and 1 hour for vanilla finetuning on home chunk.

4.4 Results

In Table 1 we show our results for the main data specification, where our “home” ID chunk and
“other” OOD chunk partition the total passages into ∼100k halves.

Table 2 we show key results for the small chunk specification described in Section 4.2. For clarity, a
denotes the ID small “home” chunk while b− e denote four OOD small “other” chunks in decreasing
Euclidean distance from a.

5 Analysis

We begin with an analysis of our fine-tuning results on our main data specification of one “home” and
one “other” group, followed by results of fine-tuning on BM25-mined hard negatives. The remainder
of this section investigates mechanisms behind degradation in our ID “home” chunk data.
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Evaluation on ID and OOD test queries

“home” ID qtest “other” OOD qtest

Fine-tuning on ID qtrain 0.6417 0.6619

Fine-tuning on ID qtrain, random 0.6292 0.6843

No Fine-tuning 0.7710 0.8334

BM25-retrieved negatives 0.7767 0.8371

Table 1: Baseline retrieval results on different fine-tuning regimes in our main data specification
with two chunks. Fine-tuning ran for 10 epochs with learning_rate = 2e− 4. All relevance scores
reported use the NDCG@10 metric.

Evaluation on ID and OOD test queries

a qtest b qtest c qtest d qtest e qtest

Fine-tuning on qtrain from a [0.7165, 0.7277] 0.8751 0.8135 0.8722 0.8147

No Fine-tuning [0.7121, 0.7202] 0.8742 0.8310 0.8839 0.8062

Table 2: Baseline retrieval results for small chunks (pairwise comparisons of one ID “home chunk”
a and four OOD chunks b − e). Note the ID qtest NDCG@10 score is stable across comparisons,
and thus a simple range is given. Fine-tuning ran for 10 epochs with learning_rate = 2e− 6. All
relevance scores reported use the NDCG@10 metric.

5.1 Vanilla Fine-tuning

As shown in Table 1, we observe some expected and some counter-intuitive results in our vanilla fine-
tuning experiments. First, we observed that fine-tuning on in-domain data degraded in-distribution
performance less than fine-tuning on random training data of the same size, which is consistent with
what we would expect. However, we saw that in-distribution performance significantly dropped in
comparison to no fine-tuning at all. We would expect that the retriever learns better representations for
the passages and queries when testing on the in-distribution split, so this result is surprising. Because
the model is not exposed to a variety of contrastive pairs during training — if new test questions that
ask about similar passages are actually quite different from the training questions about that passage
cluster, the model may not score the cluster passages highly.

Second, our initial hypothesis was that mixed-distribution retrieval may be more difficult than pure-
OOD retrieval because the ID-retriever biases the selection of more ID passages, so OOD questions
may receive fewer relevant passages. In our initial analysis, we observed that our synthetic splits
did not support this hypothesis. Instead, we observe that when the model is trained on either the
synthetic splits based on questions clustering, or splits based on passage clustering, the in-distribution
questions retrieve an average of 70% in-distribution passages in their top-1 hits, while the OOD
questions retrieve an average of 97% in-distribution passages in their top-1 hits. We do not observe
any evidence of the degradation for OOD passage retrieval when tested on OOD questions.

5.2 BM25-mined Hard Negative Fine-tuning

BM25 is a TF-IDF variant of sparse retrievers based on exact lexical match. It has been shown to
be robust to OOD generalizations and often considered a strong baseline [6]. Remarkably, we note
that despite underperforming a non-finetuned SBERT by +10% when trained on the "home" chunk,
by hard negative mining with BM25-retrieved passages most similar to groundtruth, fine-tuning on
a 200K subset for only 1 epoch outperforms pretraining on the full MSMARCO (8.8M passages)
dataset in both ID and OOD settings. We observed consistent gains across different distribution shifts
and note that the sample efficiency in improving a pretrained model on the full distribution is a novel
observation.
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5.3 Cluster Analysis

Qualitative Evaluation From our discussion on vanilla fine-tuning, because it is likely that our
synthetic domain splits strongly influence our results, here we analyze the underlying clusters.

We find that the clusters we construct do contain queries or passages which are similar in content
beyond syntactical structure. As expected, the BERT encoder proves adept at grouping specific topics
(e.g. medicine, finance) together. In Listings 1-6 in Appendix B, we provide further examples of
cluster contents based on passage clustering. In Listings 7-9 in Appendix C, we show the same
analysis for clustering by queries. Based on the way our chunks were constructed, we would expect
to see contents in the “home” chunk to be more similar than those in the “other” chunk, even though
the underlying clusters have distinct topics. This is due to the fact that while “home” chunk was
aggregated by those closest to the base “home” cluster, the “other” chunk was just everything further
away from it. In Listings 1-3 and 4-6 in Appendix B, we show that our resulting chunks do exhibit
this desired behavior. For example, our “home” chunk consists of broadly medical topics while our
“other” chunk consists of things from movies to climate.

Quantitative Evaluation The discussion above and the large degradation in ID performance
motivates more concrete metrics and further investigation into our underlying clusters. In particular,
the mechanism behind degradation is not entirely clear; the following analysis provides a first-pass at
understanding how degradation behaves relative to the clusters.

As our clustering was based on Euclidean distance, we choose to use pairwise Euclidean distance
between embeddings in the UMAP 30-dimensional space to evaluate how diffuse each chunk is. We
perform this test on the entire embedding space as well as the “home” and “other” chunks and report
our findings in Table 3.

“home” chunk “other” chunk entire domain

Mean di,j 3.66 3.14 4.29

SD di,j 1.74 1.47 1.91

Table 3: Summary statistics for the pairwise Euclidean ℓ2 distance between a random subsample
of 5000 embeddings i, j ∈ chunk ⊂ R30 for both “home” and “other” chunks. Standard errors via
bootstrapping are very small and suppressed for clarity. In addition, while the mean is higher than the
median, it is within 0.1SD.

Contrary to the qualitative results above, we surprisingly observe that the both the mean and standard
deviation of the pairwise distances of our “home” chunk are higher than that of the “other” chunk.
Further, the mean pairwise distance is within a standard deviation of that of the entire domain,
suggesting that “home” and “other” are very noisy and distributionally similar to the entire domain.
We hypothesize that fine-tuning on one chunk may lead to overfitting to the train set queries.

To evaluate this hypothesis further, we turn to our approach from Section 4.2 for a finer breakdown
of the space into 5 sub-domain chunks: a − e. In Table 4, we see via that a is significantly more
concentrated, which is in line with our construction of the chunks. While a has passages that are
similar in topic, b− e simply represent chunks in decreasing order of distance from a, and thus are
not necessarily grouped by content themselves. If our hypothesis of overfitting is correct, we would
expect to see even higher degradation across the board. However, from our results in Table 2, we see
no such result, indicating that the spread within chunks is not driving the degradation.

a (“home”) b c d e

Mean di,j 1.75 3.06 2.87 2.45 2.87

SD di,j 0.97 1.62 1.59 1.15 1.50

Table 4: Summary statistics for the pairwise Euclidean ℓ2 distance between a random subsample of
5000 embeddings i, j ∈ small chunk ⊂ R30 for all small chunks as described in Section 4.2. Note a
represents the small “home” ID chunk while b− e represent the small “other” OOD chunks.
Standard errors via bootstrapping are very small and suppressed for clarity. In addition, while the
mean is higher than the median, it is within 0.1SD.
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5.3.1 Vanilla Fine-tuning on Small Chunks

As per Section 4.2, we break our domain into five smaller chunks with the goal of studying how
performance on OOD degrades as a function of distance. From the results in Table 2, we observe that
distance seems uncorrelated with OOD relevance degradation. Coupled with Table 4, our preliminary
exploration suggests the distribution of the chunks also does not influence results. In particular,
we see that differences in mean pair-wise Euclidean distance do not correlate well with the OOD
degradation. While these metrics are quite noisy, it provides motivation for further investigation.
Note lastly that the in-domain a relevance scores are consistently lower than those of b − e. We
believe this can be explained by the fact that a is highly concentrated in comparison to the other OOD
chunks; test queries on a must retrieve from a much smaller, more precise set of embeddings, which
on average reduces retrieval scores when the test queries in the embedding space are not close to a.

Surprisingly, we also see that performance on a and b− e does not degrade from the no fine-tuning
regime, contrary to what we saw in the main data specification with two large chunks.4 This suggests
that while cluster size and spread may not be related to relevance scores after fine-tuning, they
significantly influence the fine-tuning procedure and lead to variable results downstream.

6 Conclusion

Main Findings Dense retrievers are highly sensitive to the training strategy and data selection.
We proposed a novel method to construct synthetic multi-distribution retrieval settings, showed that
vanilla fine-tuning can degrade performance, and that BM25 fine-tuning is consistently helpful for
generalization. Furthermore, our first-pass synthetic split analysis suggests that it is that neither
embedding distance nor distributional differences play significant factors in OOD degradation.

For existing retriever training datasets, corpora are often orders of magnitude larger than the training
datasets used to train the question and passage BERT encoders. For example, on the MS MARCO
benchmark, the number of documents in the corpus is 18x larger than the number of training pairs,
so several documents are not incorporated during training process. Our setting, conditioned on
further investigation, could implications for how to design question answering benchmarks with good
coverage over question and passage types. Overall, we hope this work encourages further attention
towards retrieval strategies that account for the sub-distributions in the background corpus.

6.1 Limitations & Future Work

We considered multi-distribution retrieval performance under several regimes, but the primary
mechanisms behind degradations are still opaque. Future work is largely focused on understanding
the mechanisms behind different fine-tuning regimes and the underlying domains.

While we have made progress in understanding the underlying clusters, the different choices and
challenges in clustering and aggregating reflect the vast generality that real ID/OOD data can exhibit.
Here we have focused primarily on the case where we aggregate small clusters based on distance away
from a designated “home” cluster. The fundamental assumption here was that Euclidean distance in
the embedding space had a strong impact on retrieval scores.5 We analyzed this case for two and five
chunks, with both not exhibiting any obvious trend in OOD relevance score degradation.

As suggested by our exploration into the clusters, given that b − e were far more disperse than a
(as they were simply grouped by distance away from a), a promising avenue would be to keep our
small “home” chunk a the same while finding another small “other” chunk that is also concentrated.
This would give us some more insight into whether distributional inequalities impact retrieval scores,
as well as a more representative depiction of the ID/OOD setting we aim to mimic. In order to
avoid small sample problems, as next steps we will double the sampled corpus size from ∼200k to
∼400k documents. Lastly, we should perform a set of robustness checks on our results by designating
different “home” clusters and seeing if and how our results change.

4As a robustness check, we also reverse the fine-tuning procedure and fine-tune on the OOD chunk and
evaluate on both. The results are also very similar here.

5We also performed the same experiments using cosine similarity as a metric and found qualitatively similar
results.
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A Appendix: Cluster Number & Balance

Gap Statistic Letting dii′ be the standard ℓ2(i, i
′) norm, with data separated into k clusters

C1, . . . , Ck, the Gap statistic is given by:

Gapn(k) = E∗
n{log(Wk)} − log(Wk)

where Wk =
∑k

r=1(1/2|Cr|)
∑

i,i′∈Cr
dii′ . The term E∗

n{log(Wk)} denotes the expectation of
log(Wk) under a "null" sampling distribution of size n. To understand this, first note that Wk (and the
term log(Wk)) is small when the clusters are compact, as it is the average of the pairwise distances of
points in a cluster. In order to make a meaningful statement of what "small" means, the authors propose
comparing the Wk values to those obtained under a null distribution of data (the term E∗

n{log(Wk)}).
In particular, with x(1), . . . , x(n) ∈ Rd, we can create this null distribution by going along each
dimension and sampling n points according to x̃i ∼ U(min{x(1)

i , . . . , x
(n)
i },max{x(1)

i , . . . , x
(n)
i })

for i = 1, . . . , d. In other words, we sample based on d different uniform distributions whose
endpoints are given by the minimum and maximum values observed in each dimension in the data.
We then calculate the Wk under this null distribution; repeating this sampling procedure multiple
times yields the expectation E∗

n{log(Wk)} we see above. The larger the gap between these two terms
for a given k, the more confident we are that k is the correct cluster size.

However, the authors note the tradeoff between model parismony and a higher Gap statistic. In
particular, even if the gap statistic increases from k to k + 1, we stop at k if Gapk+1 is within one
standard error of Gapk.

In Figure 2 we show the Gap statistic and the optimal number of clusters determined by the Gap
statistic algorithm. In Figure 3 we show a histogram of cluster sizes to illustrate decent balance
among clusters. For different random seeds we see slightly different results; however, qualitatively
this picture is robust, in that every cluster has several thousand observations.

Figure 2: Gap Statistic

Figure 3: Histogram of the Number of Passages in each Cluster
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B Appendix: Clustering by Passages

Here we provide a qualitative look into the clusters when we cluster by passages. Recall these
passages are encoded by a BERT model and then projected down into 30-dimensional space via
UMAP. We turn our attention to our first experiment, with our “home” and “other” chunks that
partition the entire domain. In particular, with 23 clusters in whole and random_seed = 2, we
observe that clusters 12 and 22 are furthest apart. As described in the main text, we create our chunks
by grouping everything closest to the “home” cluster until we reach roughly half the number of total
documents (roughly 100k).

“home” chunk = [12, 20, 3, 13, 0, 19, 4, 14, 8, 11, 7, 18, 16]

“other” chunk = [22, 10, 2, 21, 6, 9, 1, 5, 15, 17]

We show cluster contents for the first three clusters in each chunk.

The N a t i o n a l Women’ s H e a l t h I n f o r m a t i o n C e n t e r l i s t s t h e s e common
c a u s e s o f u r i n a r y t r a c t i n f e c t i o n s i n women : 1 Wiping from
back t o f r o n t a f t e r a bowel movement . 2 Having sex . 3
Hold ing u r i n e f o r t o o long . Being 1 d i a b e t i c . Having a
k i dn ey s t o n e o r o t h e r f a c t o r t h a t makes i t d i f f i c u l t t o
u r i n a t e . P r o d u c i n g l e s s e s t r o g e n , such as a f t e r menopause .

Causes o f i n s o m n i a i n women : Most c a u s e s o f i n s o m n i a i n men and
women a r e same b u t some common c a u s e s o f i n s o mn i a i n women
i n c l u d e : S t r e s s : The demanding l i f e s t y l e i n today ’ s wor ld (
r e s p o n s i b i l i t y o f t h e f a m i l y and a t work ) can c a u s e f a t i g u e
and s t r e s s . S t r e s s i s one o f t h e commonest c a u s e s o f i n s o m n i a .

S y s t e mi c i n f l a m m a t o r y r e s p o n s e syndrome ( SIRS ) i s an i n f l a m m a t o r y
s t a t e a f f e c t i n g t h e whole body . I t i s t h e body ’ s r e s p o n s e t o
an i n f e c t i o u s o r n o n i n f e c t i o u s i n s u l t . Al though t h e d e f i n i t i o n

o f SIRS r e f e r s t o i t a s an i n f l a m m a t o r y r e s p o n s e , i t a c t u a l l y
has pro − and a n t i − i n f l a m m a t o r y components .

Listing 1: Passage Clustering, Cluster 12 Passages

m e d i c a l D e f i n i t i o n o f b o t u l i n u m t o x i n : a ve ry p o w e r f u l n e u r o t o x i n
t h a t c a u s e s b o t u l i s m and i s p roduced by t h e b o t u l i n u m

b a c t e r i u m ( C l o s t r i d i u m b o t u l i n u m ) ; a l s o : b o t u l i n u m t o x i n t y p e
a Note : Botu l inum t o x i n a c t s p r i m a r i l y on t h e p a r a s y m p a t h e t i c
n e r v o u s sys tem .

D i a r r h e a i s a common s i d e e f f e c t o f a d e t o x c l e a n s e . In f a c t ,
p r o p o n e n t s o f t h e s e t y p e s o f d i e t p l a n s c l a i m t h a t t h e
d i a r r h e a i s a s i g n your body i s r i d d i n g i t s e l f o f t o x i c
s u b s t a n c e s .

But i t ’ s n e v e r t o o l a t e t o g e t t r e a t m e n t . . Even f o r v e t e r a n s i n
t h e i r 70 s and 80 s , a c o m b i n a t i o n o f p s y c h o t h e r a p y , m e d i c a t i o n ,
and m a r i t a l and f a m i l y t h e r a p y can r e d u c e PTSD symptoms ,

i n c l u d i n g insomnia , a n x i e t y and i r r i t a b i l i t y , he s a i d . The
Vietnam War ended i n 1975 .

Listing 2: Passage Clustering, Cluster 20 Passages
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The c i l i a r y body c o n t r o l s t h e shape o f t h e l e n s . The c i l i a r y body
i s composed main ly o f smooth muscle and i s c o n n e c t e d t o t h e
l e n s by s u s p e n s o r y l i g a m e n t s which a r e n o t v i s i b l e i n t h i s
image . C o n t r a c t i o n o f smooth muscle i n t h e c i l i a r y body makes
t h e l e n s r o u n d e r f o c u s i n g v i s i o n on o b j e c t s which a r e c l o s e r
t o t h e eye .

F u n c t i o n o f t h e O l f a c t o r y Nerve . The o l f a c t o r y n e r v e i s
r e s p o n s i b l e f o r your s e n s e o f s m e l l and p a r t i a l l y r e s p o n s i b l e
f o r your s e n s e o f t a s t e . I t i s a l s o known as c r a n i a l n e r v e 1
b e c a u s e i t i s t h e s h o r t e s t o f t h e c r a n i a l n e r v e s and one o f
on ly two n e r v e s ( t h e o t h e r i s t h e o p t i c n e r v e ) t h a t b yp as s t h e

b r a i n stem and c o n n e c t d i r e c t l y t o your b r a i n .

The l a r g e s t u n i t w i t h i n which gene f low can r e a d i l y o c c u r i s a
s p e c i e s .

Listing 3: Passage Clustering, Cluster 3 Passages

C l i m a t e d a t a f o r f a i r b a n k s i n t l , L o n g i t u d e : −147.876 , L a t i t u d e :
6 4 . 8 0 3 9 . Average w e a t h e r F a i r b a n k s , AK − 99709 − 1981 −2010
norma l s . Jan : Janua ry , Feb : Februa ry , Mar : March , Apr : A p r i l ,
May : May , Jun : June , J u l : Ju ly , Aug : August , Sep : September ,
Oct : October , Nov : November , Dec : December .

3059 h o u r s . Av . a n n u a l s n o w f a l l : 47 i n c h . C l i m a t e d a t a f o r S a l t
Lake Ci ty , UT − 84116 − 1981 −2010 normals − w e a t h e r . Jan :
Janua ry , Feb : Februa ry , Mar : March , Apr : A p r i l , May : May , Jun :

June , J u l : Ju ly , Aug : August , Sep : September , Oct : October ,
Nov : November , Dec : December .

C l i m a t e d a t a f o r Denver , CO − 80201 − 1981 −2010 norma l s − w e a t h e r
Jan : Janua ry , Feb : Februa ry , Mar : March , Apr : A p r i l , May : May ,

Jun : June , J u l : Ju ly , Aug : August , Sep : September , Oct :
October , Nov : November , Dec : December

Listing 4: Passage Clustering, Cluster 22 Passages

F l y i n g t ime from Chicago , IL t o Cai ro , Egypt . The t o t a l f l i g h t
d u r a t i o n from Chicago , IL t o Cai ro , Egypt i s 12 hours , 47
m i n u t e s . Th i s assumes an a v e r a g e f l i g h t speed f o r a commerc ia l

a i r l i n e r o f 500 mph , which i s e q u i v a l e n t t o 805 km / h or 434
k n o t s . I t a l s o adds an e x t r a 30 m i n u t e s f o r t ake − o f f and
l a n d i n g . Your e x a c t t ime may va ry depend ing on wind s p e e d s .

Thorn ton H o t e l s . Candlewood S u i t e s Denver Nor th − Thorn ton .
Welcome t o t h e Candlewood S u i t e s Thorn ton s e r v i n g Nor thg lenn ,
Wes tmins te r , B r igh ton , Commerce Ci ty , Broomf ie ld , and Thorn ton
. We a r e m i n u t e s from downtown Denver , many RTD s t a t i o n s ,
Water World , downtown L o u i s v i l l e , and t h e B r o o m f i e l d e v e n t
c e n t e r .
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4 . Hampton Inn Denver − Nor th / Thorn ton . From B u s i n e s s : P r o p e r t y
L o c a t i o n With a s t a y a t Hampton Inn Denver Thorn ton i n
Thornton , you ’ l l be c l o s e t o Boondocks Food and Fun and
T h o r n c r e e k Gol f Course . Th i s h o t e l i s w i th . Add t o
mybookRemove from mybook .

Listing 5: Passage Clustering, Cluster 10 Passages

James A. Owen i s an American comic book i l l u s t r a t o r , p u b l i s h e r and
w r i t e r . He i s known f o r h i s c r e a t o r −owned comic book s e r i e s

S t a r c h i l d and as t h e a u t h o r o f The C h r o n i c l e s o f t h e
Imag ina r ium Geograph i ca n o v e l s e r i e s , t h a t began wi th Here ,
There Be Dragons i n 2006 . 1 C a r e e r .

web v i d e o s t a r L i l Moco born on 02 11 1994 i n . U n t i l now , L i l
Moco ’ s age i s 22 y e a r o l d and have S c o r p i o c o n s t e l l a t i o n .
Count down 361 days w i l l come n e x t b i r t h d a y of L i l Moco !

The Emoji Movie i s a 2017 American 3D computer − a n i m a t e d comedy
f i l m d i r e c t e d by Tony Leondis , and w r i t t e n by Leondis , E r i c
S i e g e l and Mike White , based on t h e t r e n d of e m o j i s . I t s t a r s
t h e v o i c e s o f T . J . M i l l e r , James Corden , Anna F a r i s , Maya
Rudolph , S t e ve n Wright , Rob Rigg le , J e n n i f e r Cool idge ,
C h r i s t i n a A g u i l e r a , S o f i a Vergara , Sean Hayes and P a t r i c k
S t e w a r t . The f i l m c e n t e r s on Gene , a m u l t i − e x p r e s s i o n a l emoj i
who l i v e s i n a t e e n a g e r ’ s phone , and who s e t s o u t on a j o u r n e y

t o become a . . .
Listing 6: Passage Clustering, Cluster 2 Passages
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C Appendix: Clustering by Queries

Now we examine the clusters when clustered by queries rather than passages themselves. The BERT
encoding again does a good job of embedding similar topics.

what a r e p s s a s c o r e s used f o r
what a r e r e q u i r e m e n t s f o r minor i n s p a n i s h a t u t a
what a r e t h e c r i m e s c l a s s i f i e d as economic c o r r u p t i o n and

f i n a n c i a l c r i m e s
what a r e t h e p r o f i t s
what a r e t h e r e q u i r e m e n t s f o r b e t h u n e cookman
what a r e t h e s a l a r i e s o f b i g bang a c t o r s
what a r e t h e t a x b e n e f i t s o f a h e l o c
can employer pay f o r i n d i v i d u a l h e a l t h p o l i c y
c a s e can a r r i v e a t t h e supreme c o u r t t h r o u g h each of t h e s e ways

e x c e p t
what do l e n d e r s use as you d t i
what do p a r t n e r s h i p s f i l e t a x i n mich igan
what do q u a n t i t a t i v e r i s k a n a l y s t s do
what do r i c h p e o p l e compla in a b o u t

Listing 7: Query Clustering, Cluster 3

does s c h i z o p h r e n i a c a u s e h a l l u c i n a t i o n s
vasospasms c a us ed by what
cad h e a r t r e l a t e d
what a r e aneurysm
what a r e s i g n s o f a n x i e t y i n your c h e s t
what a r e t h e c o m p l i c a t i o n s o f v a r i c o s e v e i n
can a p i n c h e d n e r v e c a u s e t o o t h p a i n
what a r e t h e e a r l y s i g n s o f c o l o n c a n c e r ?
what a r e t h e most common c a u s e s o f p a r a l y s i s
what a r e t h e s i g n s o f a l l e r g i e s i n t h e w i n t e r t ime
what a r e t h e s i g n s o f k id ne y f a i l u r e i n dogs wi th dm?
what can be r e a s o n of e x c e s s u r i n a t i o n
what c a u s e d i z z i n e s s mayo c l i n i c

Listing 8: Query Clustering, Cluster 7 Queries

t h e s m a l l i n t e s t i n e i s s m a l l i n what
does e c o l i f e e d on
what a r e o f common t o bo th a e r o b i c and a n a e r o b i c r e s p i r a t i o n
what a r e some t i s s u e s found i n t h e s k i n
d u r i n g which phase does a c e l l spend t h e m a j o r i t y o f i t s l i f e

c y c l e ?
what a r e t h e d u p l i c a t e d s t r a n d s o f dna c a l l e d
what a r e t h e f i v e p h a s e s o f t h e c e l l c y c l e ?
what a r e t h e m y c o r r h i z a e
what a r e t h e p r o d u c t s and by p r o d u c t s o f p h o t o s y n t h e s i s ?
what a r e t h e two major s u b d i v i s i o n s o f t h e n e r v o u s sys tem ?
what a r e your uppe r two t e e t h c a l l e d
what body p a r t s does pku a f f e c t
what c e l l s don ’ t go t h r o u g h m i t o s i s

Listing 9: Query Clustering, Cluster 21 Queries

D Appendix: Additional Experimental Details

NDCG@k Here we provide additional details about the NDCG@k metric. For a specified discount
function λ(r), where r ≥ 1 is the rank of a document, the discounted cumulative gain (DCG)
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metric of our retriever is a weighted sum of the degree of relevancy of the ranked items, defined
by

∑n
r=1 λ(r)f(r) where f(r) = reli. NDCG has the advantage of rewarding higher degrees

of relevancy for documents while downweighting lower ranked relevances. NDCG normalizes
DCG by the Ideal-DCG score of the ground truth ranking to be within [0, 1] and we use a cut-off
NDCG@k = 10, setting the discount λ(r) = 0 for ranks k > 10.
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