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Abstract

The objective of this project was to generate Bash commands from natural language
using deep neural networks. We used the NLC2CMD dataset and tested three
models: GPT-2, BART, and T5. We also experimented with tokenization methods
and post-processing to improve accuracy on the competition scoring metric. We
found that while cross-entropy loss decreased steadily for all models, only TS5 was
able to continue learning the structure of Bash commands. After post-processing,
all models improved, but only T5 and BART exceeded the performance of the
GPT-3 baseline model.
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2 Introduction

Bash or the Bourne Again Shell, is a standard and popular command line interface to Unix-based
computer systems. Despite its popularity, it has a very steep learning curve. Novitiates are often over-
whelmed by the concepts of binaries, flags, and arguments. Even experienced engineers frequently
consult man-pages, online documentation, and online forums like Stack Overflow to learn about the
particulars of various commands. This project aims to ease those burdens on new and experienced
users alike, and to develop tools to generate Bash commands from natural language. We want to
provide a natural language interface that enables people to interact with computers through natural
languages, and thus making programming resources more accessible to the general public.

However, translating natural language into Bash can be challenging; many natural language queries
or commands can be converted into the same Bash command. Conversely, many Bash commands
may correspond to the same natural language command, due to English’s inherent ambiguity and the
required specificity of Bash. Thus, there is a many-to-many relationship between natural language
and Bash commands. Further compounding this difficulty is that Bash commands can be composed,
generating pipelines of commands corresponding to entire data flows. Lastly, the meaning of these
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commands all shifts when either the order of the commands or their arguments are permuted. For
this reason, generating a perfectly correct Bash command from natural language can be extremely
complex.

In order to tackle some of these problems, we used the data from the NeurIPS 2020 NLC2CMD
Challenge, and experimented with several transformer models, including GPT-2, BART, and T3, as
well as different tokenization and post-processing schemes. We evaluated the model performance in
terms of both the training loss and a specific metric measuring the accuracy of the prediction, and
compared our models with the baseline model provided by the competition.

3 Related Work

Code generation is a variant of semantic parsing, and a significant amount of research has been
published in this area. One of the earliest and most successful studies was conducted to translate
natural language to SQL queries. Zhong et al. (2017) [1] proposed a deep augmented pointer network
and a loss function supplemented by reinforcement learning. In the SQL domain, they were able
to achieve an execution accuracy of 60%. Notably, however, SQL has a singular, well-defined
syntax with a context-free grammar. Accordingly, this model does not always generalize well to
programming languages like Bash.

For high-level programming language generation, there are a number of recent attempts to translate
well-structured natural language input into Java or Python. Ling et al. (2016) [2] proposed a generative
model with a multiple pointer network to generate code from texts in Trading Card Games, although
the selected input language in the games is very well-defined. A more robust syntax-based model
was developed by Yin and Neubig (2017) [3] and tested on the same dataset, but performance did not
increase materially. Rahit et al.(2019) [4] used recurrent neural network (RNN) and long-short term
memory (LSTM) cells to build their model and reported an accuracy as high as 74% when the input
was prepared in a format closer to pseudocode with keywords such as “define” and “if-else.”

In the specific domain of Bash command generation, Lin et al. (2018) [5] modified the seq2seq model
by adding gated recurrent units (GRU) and RNN cells and introducing a copying mechanism. The
model was evaluated manually by people, rather than by an objective metric, and the accuracy was
reported to be 0.29. Fu et al. (2021) [6] built a transformer model combined with a custom beam
search and won the NLC2CMD Challenge competition. They tested different models and concluded
that transformer-based models could significantly outperform the RNN-based models.

4 Approach

The NLC2CMD Challenge was held once by NeurIPS in 2020. The goal for competitors was to
generate templated commands from natural language commands that could be used to guide Bash
users. Most competitors used GPT-2 as their base model. This paper used GPT-2 but also surveyed
two additional models, BART and T5, version 1.1.

The general approach consisted of two methods: (1) text generation and (2) translation. First, it is
important to note that Bash is not a context-free grammar. It admits of very little recursion and, while
most binaries are POSIX compliant, interfaces are still not entirely standardized. Flags often carry
different semantic meaning and imply different tasks when employed by different binaries. Moreover,
flags often override, modify, or cancel the intent of other flags in the same command, introducing
complex dependencies. These dependencies can also shift as the order of the flags and their arguments
are permuted. In sum, the meaning of a flag is almost entirely provided by the invoking binary and its
location in the sequence of arguments. This introduces difficulties in fine-tuning embeddings, since
training may attempt to encode vastly different meanings in the same embedding. This is particularly
challenging given sparse datasets. Given sufficient training data, it is likely that that the models
may eventually learn correct contextual meaning when employed by different binaries, but we found
10,000 rows insufficient for the task. This line of thinking inspired our first approach, text generation
using GPT-2.

While at first this task appears to be a straightforward translation task, after considering Bash more
closely, one can see that it does not admit of many properties or structures of natural language.
Accordingly, rather than trying to properly translate natural language into Bash, we thought that we



could train a model to hallucinate Bash “stories” given natural language. The high-level idea here is
that we fine-tune a GPT-2 model, showing it complete stories that consist of both a natural language
portion and a Bash portion with some added special tokens. When training, GPT-2 learns common
storylines. When testing, we feed the trained model only the first half of the story, i.e. the natural
language portion, and ask it to complete the story, hoping that it will generate Bash commands as the
most likely story completion. In many respects, this idea performs quite well; however, a significant
issue with this approach is constraining responses from GPT-2. How long should the story be? When
does the real content of the “Bash story” start and end? What happens when GPT-2 has multiple
endings? These questions are detailed in the error analysis section.

The second approach we used was a more traditional seq2seq language modeling approach. Pre-
trained models for BART and T5 are easily fine-tuned for translation tasks. While many natural
language modeling tasks admit of a fair amount of transfer learning because natural languages share
some abstract semantic structures, Bash does not benefit from this nearly as much. As a non-natural,
non-context-free grammar language, modeling it can be difficult, and our BART model, in particular,
struggled with this.

S Experiments

5.1 Data

The dataset we used is from the “The NLC2CMD Competition,” consisting of 10,000 parallel
translations of English (labelled “invocation”) and Bash commands (labelled “cmd”). Here is an
example:

invocation: Assign permissions 755 to directories in the current directory tree
cmd: find . -type d -print0 | xargs -0 chmod 755

Most of the invocations in the dataset involve a sequence of different tasks, and consequently the
Bash commands often consist of a series of pipelines. In addition, since the Bash commands
contain identifiers, such as directory paths, file names, and permissions, a templatization scheme has
been imposed by converting shell commands into their corresponding abstract syntax trees (ASTs),
replacing identifier nodes with placeholders, and then recombining the command. Applying this
process to the previous command produces the following templated command:

templated cmd: find Path -type d -print0 | xargs -0 -I chmod Permission

This helps the model to generalize during training, without getting distracted by a myriad of specific
identifiers.

The dataset was split into the training and test sets with a ratio of 0.98 to 0.02, yielding 10,140 training
examples and 207 test examples. The invocations and templated commands must be tokenized by the
same tokenizer used in training each model; accordingly, the outputs vary by model and tokenizer.
For instance, the BART tokenizer yields the following encoded example:

<s>Assign permissions 755 to directories in the current directory
tree</s></s>find Path -type d -printO | xargs -0 -I chmod Permission</s>

While the TS5 tokenizer yields the following:

Assign permissions 755 to directories in the current directory
tree</s> find Path -type d -print0O | xargs -0 -I chmod Permission</s>

The GPT-2 model does not ingest input as pairs, but instead as entire sections of text. Natively, it only
defines the beginning and ending special tokens, so we had to develop our own encoding scheme to
communicate the structure of our input to the GPT-2 model. The primary objective of the encoding
scheme is to introduce tokens that signal the beginning of natural language and Bash commands.
For this, we used the <|source|> and <|target |> tokens, but these could have been any tokens
unlikely to be used by Bash utilities or arguments. The general template for the encoding scheme
was as follows:

<bos_token> <source_token> <invocation> <target_token>


https://nlc2cmd.us-east.mybluemix.net/

<templated cmd> <eos_token>
Using the above example, this schema produces the following encoding:

<|endoftext|> <|source|> Assign permissions 755 to directories in the current
directory tree <|target|> find Path -type d -printO | xargs -0 -I chmod
Permission <|endoftext|>

While this encoding was sufficient for training, we still found it difficult for GPT-2 to learn the
semantics of our special tokens.

5.2 [Evaluation method

The standard cross-entropy loss function was used to train the models. But a more robust metric
measuring the accuracy of the model predictions defined by the competition was used to evaluate the
performance of our models. The metric is expressed mathematically:
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U (x) is a sequence of Bash binaries in a command z, ¢ is the predicted Bash command and C'is the
ground truth Bash command. Apart from measuring whether the executables in the two commands
match, an additional variable X has been introduced to measure whether the flags associated with
each utility match or not:

X =2x[F(U(c))) N F(U(C)y)| = [F(U(c):)) UF(U(C)s)

F(z) refers to the set of Bash flags in a command x. T is the maximum length between U(c) and
U(C) while N is the maximum size between F'(c) and F(C). Since the order of flags does not
matter, these are set operations.

It is important to note that this metric is extremely strict, assigning a score of -1.0 for predicting an
incorrect or missing starting binary. It also penalizes extra and incorrect flags and arguments. The
return value ranges from -1.0 to 1.0, and a score of 1.0 is only awarded when a command is precisely
equivalent to the golden one.

5.3 Experimental details

For this task, we tested three models: HuggingFace’s GPT-2[7], Facebook’s BART Large[8], and
Google’s TS5 v1.1 base. GPT-2 is a causal model, predicting text from context, while the other two
are traditional seq2seq models. Each was trained for 5, 10, and 25 epochs. Batch size was limited to
10 examples to avoid out of memory errors. For training, we used the AdamW optimizer with weight
decay regularization. The learning rate was linear with a warmup of 100 steps. Training time for
GPT-2, BART, and T5 v1.1 was approximately 1, 1.5, and 1.25 hours, respectively, on an Azure NC6
instance with a Tesla V100 PCle 16GB GPU. We attempted to train the original T5 large model, but
even with five examples per batch, we got out of memory errors; it also took approximately seven
hours to fine-tune. All three models used cross-entropy loss for training, but were scored on the test
set using the NLC2CMD metric at the end of each epoch.

5.4 Results

While training loss consistently improved, only T5 ultimately began to learn the structure of Bash
commands. Below, you can see that cross-entropy loss steadily decreased for all three models.
Curiously, T5 recorded the highest loss, while performing best on the scoring metric used by the
competition.
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Despite improving on the training objective, all three of these models still produced garbled and
verbose responses. Repetition was common for all three, although most common with BART. GPT-2
had a tendency to “ramble;” it was not uncommon for GPT-2 to generate natural language intermixed
with Bash commands. It also frequently produced multiple “target stories.” Here we define a target
story as a section of output text that begins with the special token <|target | >, which was used to
denote the beginning of a Bash command in the encoded input. Here is an example row of output
from the modeling process with GPT-2:

{

"source": "List the files from the current directory tree that contain
lines matching regular expression '“From:.*unique sender',
ignoring ~/src and ~/bin",

"target": "find Path -name Regex -prune -or -name Regex -prune \
-or -type f -print | xargs -I {} grep -E -i -1 Regex {}",
"prediction": "<|endoftext|> <[source|> List the files from the current

directory tree that contain lines matching regular expression

'“From: .*unique sender', ignoring ~/src and ~/bin <|target|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>

The first day of the year is a long one for the first day of the year.
<|target|> find Path -name Regex -daystart -type f -printO \



| xargs -0 -I {} grep -H Regex {}
s

Here, you can see several types of errors affecting performance. A detailed analysis is left for the
subsequent section, but here we will highlight three issues that motivated our post-processing. First,
you can see that GPT-2 outputs multiple target stories, i.e. in the prediction, there are two chunks of
text following a special target token. Second, we can see that GPT-2 had not internalized the meaning
of the target token, because it continued to predict natural language as well as special end-of-sentence
tokens, <|endoftext|>, after the target token. Third, we can see hints of GPT-2’s pretraining
through the inserted sentence, “The first day of the year is a long one for the first day of the year.”
This suggests that GPT-2 is still heavily biased toward its pretraining data, despite being fine-tuned to
produce Bash commands. BART and T5 had similar errors, but those are left for the analysis section.

Many competitors in the NLC2CMD competition actually crafted extremely sophisticated post-
processing techniques. Some used ensemble models, others implemented a custom structured
beam-search. Given the time limitations for this project, we elected for a rule-based approach. We
ran simple functions that could be composed across model predictions. We then scored the prediction
after post-processing. We designed three post-processing functions to address our main problems: (1)
multiple target texts, (2) repetition or rambling, and (3) binary prediction.

Looking at the predictions, we noticed that, most often, the target text closest to a Bash command was
the last sequence GPT-2 generated. Accordingly, we wrote a function named clean that selected the
last chunk of text associated with a target command. Second, because the scoring metric penalizes
incorrect or excessive flags, we tried to trim repetitions and rambling with a function called max_len.
Tokenizing by separating on white space, we collapsed repeated tokens and limited the maximum
number of tokens to 15. Lastly, we attempted to do binary matching. Because the entire prediction’s
score hinges largely on selecting the right binary, we wrote a function that attempted to find the first
token in a sequence that closely matched a top 100 Bash utility name. This function only materially
improved performance for BART, but it was extremely noisy, as can be seen in the above model
performance chart. Using the above prediction and running through the clean function yields the
following:

find Path -name Regex -daystart -type f -printO | xargs -0 -I {} grep -H Regex {}
This is already a significant improvement. Further passing it through max_len yields:
find Path -name Regex -daystart -type f -printO | xargs -0 -I {} grep -H

While these cleaning techniques are quite crude, they significantly improve scores. The best model
scores under different post-processing functions along with the GPT-3 baseline are recorded in the
following table:

model raw clean clean+max_len binary

GPT-2 -095 -0.61 -0.60 -0.95
BART -095 -0.95 -0.95 -0.05

T5 -0.13 -0.06 0.12 -0.12
GPT-3 -0.19 -0.19 -0.19 -0.19

6 Analysis

The first task in analyzing model performance was error analysis. We checked all predictions on the
test set by epoch for each model to discover generalizations, which are summarized in the following
table:



Model BART T5 GPT-2
Primary . . A -, . .
sources of | Missing or invalid binaries | repetition of sequences or wrong interpretations of
ertor (like "findfind") redundant tokens the invocation
Example find Path -name Regex es Regex | sed Program sort <( sort -u File ) File
target -print | xargs -1 -i -1 wc , y & & File | uniq -u
Example Path -name Regex Iprint0 | yes Regex | headt Program find Path -iname Regex
prediction | wargs -I Quantityl -1 wc - yes yes yes yes yes yes -exec grep -i Regex

Because both BART and GPT-2 struggled to correctly capture the target binaries, they received
significant scoring penalties. The redundant binaries or flags and arguments, on the other hand, were
not so harshly penalized; consequently, T5 was able to edge out the GPT-3 baseline. Curiously, the
BART model tended to get the wrong starting binary for almost all the examples, but did very well in
predicting the remainder of the command. Here are some examples of this pathology:

Target Prediction
comm -2 -3 File File -2 -3 File File
chown Regex -R File own Regex -R File

mv -f File File mmv -f File File

Investigating this further, we first confirmed that the model was improving over epochs. We analyzed
a single invocation: “display all the html files in the current folder excluding search in the path ./foo”
over several epochs. Although none of the predictions correctly captured the target binary “find,” the
model did improve in pruning trailing repetitions.

Target find Path -path Regex -prune -or -type f -name Regex
. findfind Path -name Regex -prune -or -name f -name
Prediction
Regexexecexecexecexecexecexecexecexecexecexecexecexe-
(1 epoch)
cexecexec
Prediction Path -path Regex -prune -or -path f -name Regex
(6 epochs) -findfindfindfind
Prediction findfind Path -path Regex -prune -or -name f -name Regex
(14 epochs) -print - -

One possible reason for this aberrant behavior is that BART, while doing a reasonable job in capturing
the intent of the sentence, struggled to develop individual token accuracy; in particular, the accuracy of
the binary token. Predicting a binary given only the natural language and the beginning-of-sentence
special token was difficult. Because predicting the binary is so important, we hypothesize that
separating BART training into the following two phases may improve performance: (1) train only on
the natural language command and the singular token corresponding to the correct Bash utility, and
then (2) fine-tune the model with the full, templated Bash commands. Improving binary prediction in
BART would likely make it competitive with TS.

We also investigated GPT-2 prediction errors. Here is an example prediction for the natural language
invocation: “Change the ownership of all files in the current directory tree from root to www-data’:

<|endoftext|> <|source|> Change the ownership of all files in the current
directory tree from root to www-data <|target|> (omit 23 <|endoftext|> tokens
here) Synchronize file systems to /tmp/ and output the result to console
<|target|> df File | awk Program | xargs -I {} 1s -a -1 -d -S -r File

The model incorrectly generated another invocation: “Synchronize file systems to /tmp/ and output
the result to console.” This has greater implications than simply generating additional cruft to be
trimmed; it actually corrupts the hidden state of the model. Consequently, the final prediction was
orthogonal to the target command: find Path -user Regex -exec chown Regex {}.

The last error class, which was demonstrated by all 3 models, was “rambling,” or inserting additional
command sequences after the target sequence. Here is an example:

target : cat File | sort -r -h
prediction: cat File | sort -n -r | grep -v Regex



This suggests that all the models failed to generate the end-of-text token in the correct location.

While all of these models could be improved with longer training, phased training, and more
sophisticated post-processing, the principal factor affecting performance was data size. 10,000
examples is insufficient to generate very accurate translations, and we were unable to find additional
data sources that did not require significant preprocessing.

7 Conclusion

The three main discoveries of this project were: (1) the size of the dataset is the most important factor
in performance, (2) post-processing is required, especially when training on limited data, and (3)
signaling structure to your model is difficult and subtle but dramatically affects performance, as seen
with BART and GPT-2. While we are satisfied to have surpassed the GPT-3 baseline, the competition
winner achieved a score of 0.53, which still significantly exceeds the 0.12 achieved by our TS5 model.
This team, however, augmented their data by scraping Stack Overflow and similar websites. They
also implemented a variety of additional techniques, which included a custom beam search and
ensemble classification, which were out of the scope of this project. We believe that success on this
task lies principally in cultivating a larger dataset of parallel translations. TS was able to achieve
notable performance using only 10,000 examples. With 100,000, we are confident that T5 may well
exceed the performance of the top model, even in the absence of more sophisticated techniques.
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