
Learning To Cluster: A Comparison of Document
Vector Representations for Layout Identification

Stanford CS224N Custom Project

Pooja Sethi
Department of Computer Science

Stanford University
pjasethi@stanford.edu

Bryan Chia
Department of Statistics

Stanford University
bryancws@stanford.edu

Abstract

In this work, we present a new document understanding task: unsupervised layout
identification. The objective is to cluster documents together that have similar lay-
out, which we define to jointly include physical appearance and semantic meaning.
For example, given an unsorted collection of documents, we may want to cluster all
bank statements together, with further sub-clusters dividing statements from Chase
Bank vs. Bank of America. Towards this goal, we investigated how effectively
LayoutLM and variants of it perform when used to produce document embeddings.
When tested on two of our own benchmark datasets, sourced from SROIE2019 and
RVL-CDIP, we found that LayoutLM performed 5 to 10 times better (as measured
by the Silhouette coefficient and the Calinski-Harbasx index) than simple but effec-
tive baselines such as Bag-of-Words and TF-IDF. Our code and experiment results
are available at https://github.com/poojasethi/doc-clustering.git

1 Key Information

Our TA mentor is Kamil Ali. We have two external mentors, Richard Stebbing & Spencer de Mars
(Impira Inc.), and no external collaborators. We are not sharing this project with another class.

2 Introduction

While much research has been done on obtaining representations of individual words [1, 2] and
sentences [3, 4, 5], comparatively little has been done on obtaining representations of entire documents.
Good document representations, however, could be helpful in a variety of real-world applications.
A common use case is the problem of supervised document classification, i.e., predicting which
category a document belongs to (e.g., invoice, email, bank statement, or scientific report) [6].

Unfortunately, pre-defined labels are often not granular enough. For example, “scientific report” does
not discern between an ACL, ICLR, and Nature paper, “bank statement” does not distinguish between
Chase Bank versus the Bank of America, and so on. For a model to make these more fine-grained
distinctions, it is important it understands a notion of layout. Loosely defined, two documents have the
same layout if they have similar physical appearance and semantic meaning. Examples of documents
with the same layout are given in Figure 1; examples with different layouts are given in Figure 2.
Documents that originate from the same template are likely to have the same layout.

In this work, we introduce the new task of layout identification. The goal is to cluster documents
together that are likely to have the same layout. In contrast to document classification, which is
supervised, we explicitly choose to frame layout identification as an unsupervised problem for two
reasons. First, the notion of different layouts is relative and thus difficult to annotate. All bank
statements, even if coming from different banks, have a similar layout when contrasted against
scientific papers. Second, we want our model to be able to distinguish between different types of
layouts even when the train data and test data do not overlap.

Stanford CS224N Natural Language Processing with Deep Learning

https://github.com/poojasethi/doc-clustering.git

Figure 1: Bank statements with the same layout should be clustered together.

Figure 2: Bank statements with different layouts should be in separate but neighboring clusters.

We investigate: how effectively can existing encoders, such as LayoutLM and its variants [7, 8], be
used to form document embeddings for layout identification?

3 Related Work

There are several notable approaches to obtaining document embeddings. One well-known approach,
Doc2Vec [9], learns a vector per paragraph in the document using methods called PV-DM and
PV-DBOW, which are analogous to CBOW and skip-gram, respectively, from word2vec [1]. These
paragraph vectors can be concatenated or averaged with word embeddings to get a final document
embedding. In addition to Doc2Vec, there have been numerous works in obtaining sentence embed-
dings, such as Universal Sentence Encoder (USE), Sentence BERT (SBERT), and Simple Contrastive
Learning (SimCSE) [4, 3, 5]. Sentence embeddings for a document could also be combined to obtain
a document embedding..

The downside of the aforementioned approaches is that they only leverage the text in the document
while ignoring information about its physical layout. For example, knowing that a word is at the
top-center of a page could convey it is a title and has importance. LayoutLM [7] is a notable model
that aims to address this gap. When a document is processed using optical character recognition
(OCR), the word’s bounding box (position) on the page is generally returned and is represented by
a top-left coordinate (x0, y0) and bottom-right coordinate (x1, y1). The LayoutLM encoder, which
builds on BERT [10], capitalizes this positional information in the following way: instead of using
BERT’s traditional 1-D position embeddings, it adds and trains four additional input layers, one for
each of x0, y0, x1, and y1. The authors refer to these layers as 2-D position embeddings.

Once pretrained, the LayoutLM model is then finetuned and tested on supervised tasks such as
document classification and entity extraction, where it outperforms BERT and RoBERTa [11].
However, it is not evaluated in the context of obtaining document embeddings, nor is it tested on
any task similar to ours (i.e., unsupervised layout identification). Thus, in our work, we extend its
analysis to these use cases.

Finally, it is also worth noting LayoutLMv2 [8]. The authors extend the inputs to the original
LayoutLM model, adding visual token embeddings obtained from patches of the document image.
Figure 5 in the Appendix highlights the architecture changes. We also test LayoutLMv2 for our task.

2

4 Approach

From a modeling perspective, the task of layout identification can be broken into two key steps.

1. Document Encoding In this step, each document is converted into an embedding, using
models we discuss in further detail in Sections 4.1 and 4.2.

2. Document Clustering Once document embeddings have been obtained, they are each
softly assigned to one of k clusters (k is a hyperparameter) using Gaussian Mixture Models
(GMMs), which we discuss in further detail in Section 4.3

4.1 Baseline Models

We implemented two baseline methods for obtaining document embeddings: Bag of Words (BoW)
and Term frequency-inverse document frequency (TF-IDF), leveraging CountVectorizer and
TFIDFVectorizer, respectively, from the sckitlearn library [12]. We then applied dimensionality
reduction (PCA) to reduce the embeddings to R768 vectors. We chose this size for consistency with
the document embedding size obtained from our advanced models.

4.2 Advanced Models

In addition to the baseline, we used four additional models to obtain document embeddings: a
pretrained LayoutLMv11 model, two finetuned variants of LayoutLMv1, and a pretrained Lay-
outLMv2 model. We chose to focus on LayoutLM specifically because its success on other document
understanding tasks and accessibility of pretrained models.

To test LayoutLMv1, we leveraged a pretrained model from HuggingFace [13]. We wrote a wrapper
around this model that allows us to pass in a preprocessed document as input and obtain the hidden
states of the model as output, which in turn we used to create a final document embedding. The
approaches we tested to combine the model hidden states into a document embedding are discussed
in in Section 5.3.1.

Next, we finetuned the base model twice, separately: once for sequence (document) and once for
token (word) classification. We hypothesized that finetuning the model for a sequence classification
task, using in-domain data, might help it perform better on layout identification. However, we also
worried finetuning could cause the embeddings to lose generalizability. Therefore, we also tested
finetuning on an unrelated task, token classification, and with out-of-domain data, to see if it could
improve the robustness of the document embeddings. Further details on the datasets we used for
finetuning are in Section 5.1.2 and the results are in Section 5.3.2. We referenced code from two
examples of finetuning LayoutLM for sequence classification [14, 15].

Finally, we also tested the pretrained LayoutLMv2 model from HuggingFace [16] and finetuned it.

4.3 Clustering Algorithm

For clustering, we implemented a GMM, leveraging GaussianMixture [12]. We chose GMM as
opposed to K-Means because of its ability to handle non-circular clusters and softly assign documents
to clusters. We also implemented interactive visualizations of the cluster assignments, shown here.

5 Experiments

5.1 Data

We prepared datasets both for the core layout identification task and for finetuning of our pretrained
models. Our layout identification datasets are available for download here.

5.1.1 Layout Identification Datasets

We created two datasets using documents from SROIE [17] and RVL-CDIP [6], respectively. The
SROIE training set consists of 626 scanned receipts and the RVL-CDIP training set consists of

1We use LayoutLMv1 to refer to the model in the original LayoutLM paper [7]

3

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
https://www.loom.com/share/f3384933501a4439a4a6341fe4d349f0
https://drive.google.com/drive/u/1/folders/1yjovBe7blrTmarF39wk6P_gUwmT0bfk-

320,000 documents from 16 distinct categories, such as invoices, emails, scientific reports, etc., of
which we randomly sampled 1,000. While these datasets are traditionally used for benchmarking
entity extraction and document classification, respectively, we prepared them for our own task of
layout identification. For each document, we ran OCR pre-processing using Impira [18]. This returns
all of the tokens in the document and their bounding box positions in a file called rivlets.json.
An example is provided in Figure 6 in the Appendix. In addition, Impira splits each document into
images of each of its constituent pages.

The rivlets and images (for LayoutLMv2) are passed as input to the document encoders, which
return their hidden states. The hidden states are then squashed into document embeddings. Finally,
the document embeddings are passed as input to the GMM, which returns a cluster assignment per
document.

5.1.2 Finetuning Datasets

As described in Section 4.2, we first finetuned using in-domain data, i.e., the full RVL-CDIP [6]
test dataset.2 of 40,000 labeled documents. During finetuning, we used the sequence classification
objective, where the model has to assign the document to one of 16 classes. Next, we finetuned using
out-of-domain data, i.e., the full FUNSD [19] dataset, which consists of 200 annotated documents.
During finetuning, we used the token classification objective, where the model has to tag each token
with one of the following labels: "question", "answer", "header" or "other". We used off-the-shelf
LayoutLM tokenizers available on HuggingFace to preprocess each of the datasets before finetuning.

5.2 Evaluation method

We evaluated the quality of the clusters obtained using two metrics.3 These metrics capture how
tight each cluster is and how well-separated the clusters are from each other. The advantage of these
metrics is that they allow us to measure cluster quality without labeled data.

The Silhouette coefficient evaluates clustering performance based on the pairwise distance of
between- and within-cluster distances. The coefficient ranges from [−1, 1]. A high score is attained
when b(x), the distance of a point to the nearest cluster’s points, is large and a(x), the proximity to
other points within the same cluster, is small [20]. The coefficient is negative when the point has been
classified in the wrong cluster.

The Calinski-Harabasx (CH) index evaluates clusters based on the ratio of the between-cluster
and within-cluster sum of squares. The index ranges from [0,∞]. A higher value indicates that there
is more between-cluster variation and less within-cluster variation in terms of distance.

The key difference between these metrics is that, in measuring between-cluster distances, the CH
index compares all cluster centers to the overall center, while the Silhouette coefficient compares
them to their closest neighboring clusters. Thus, CH index rewards embeddings that produce clusters
far from all other clusters, and not just the nearest neighboring cluster.

5.3 Experimental details

5.3.1 Squashing Hidden States

The hidden states returned by the LayoutLM encoders are a matrix ∈ R512×768, where 512 is the
maximum sequence (document) length and 768 is the dimension of the final hidden state embedding
for each word.4 Padding or truncation are used to standardize different lengths to 512. We tested the
following methods to process the hidden states matrix into a document embedding ∈ Rd.

Method 1: Average all words Take the mean on the sequence dimension (axis=0). This averages
each column to produce a vector ∈ R768.

2Because we created our layout identification test set by sampling the training split of RVL-CDIP, we used
the RVL-CDIP test split for finetuning to avoid overlap.

3See Appendix Equations 1 and 2 for the full Silhoutte Coefficient and Calinski-Harabasx calculations.
4We use the terminology “word" in this section for ease-of-understanding. This is also not incorrect because

we do use word-level tokenization. However, more precisely, these methods are being applied over tokens.

4

https://scikit-learn.org/stable/modules/clustering.html#silhouette-coefficient
https://scikit-learn.org/stable/modules/clustering.html#calinski-harabasz-index

Method 2: Average all words, mask pads We observed that many of the rows in the hidden states
matrix can correspond to pad tokens. For example, if the sequence length is 50, then the last 462
rows in the matrix will be the corresponding hidden state per pad. We therefore used the attention
mask to zero-out all rows corresponding to mask tokens, and then take the average as above to get a
vector ∈ R768.

Method 3: Average all words, mask pads, append length We realized one downside of Method 2
is that it loses information about the length of the sequence. So next, we appended the true sequence
length (or max length minus number of padded tokens) to the vector produced by Method 2 to create
a vector ∈ R769.

Method 4: Average all words, mask pads, append & normalize length Upon further inspection
of Method 3, we realized that the sequence length feature tended to be much higher in value than
the other elements of the hidden state vector. So next, we tried to normalize the sequence length by
dividing it by the max sequence length before appending it. This still produced a vector ∈ R769.

Method 5: Last word, append length In addition to averaging the hidden states from all words in
the sequence, we also tested using the hidden state from only the last word. To do this, we zero all
rows corresponding to words that are not the last word. We then take the sum across the sequence
dimension. Similarly to Method 3, we finally append the sequence length. This produced a vector
∈ R769.

Method 6: PCA on all words, mask pads, append length Finally, we tested performing PCA
over the masked matrix ∈ R512×768 to get a matrix ∈ R768. Intuitively, the procedure chooses the
principle component of the words that provide the most variance in each embedding dimension.
Finally, we appended the sequence length to create a vector ∈ R769.

5.3.2 Finetuned Model Details

Table 2 in the Appendix shows the train and test accuracy of finetuned LayoutLMv1 and LayoutLMv2
on their respective tasks. Though we finetuned LayoutLMv2, we ultimately did not use its finetuned
variants for document clustering because we were seeing better performance with LayoutLMv1.

5.3.3 Clustering Details

We set k equal to 10 based on our prior, rough estimate of the number of layouts present in each
dataset. We discuss the choice of k further in Section 6.4.

5.4 Results

Our results are shown in Table 1. One immediate observation is that all of the LayoutLM models
performed significantly better than the baseline encoding methods, achieving Silhouette coefficients
approximately 5 times higher and a CH index 200 times higher than the baselines, on both the
SROIE and RVL-CDIP layout identification datasets. Among the variants of LayoutLM we tested,
Vanilla LayoutLMv1 (the base pretrained model) performed the best the most often, achieving a
Silhouette score of 0.536 on SROIE and 0.665 on RVL-CDIP. Close behind it was was the model
finetuned on an unrelated task, which tied Vanilla LayoutLMv1 on SROIE and did only marginally
worse on RVL-CDIP. Finally, and surprisingly, Vanilla LayoutLMv2 mostly under-performed Vanilla
LayoutLMv1. However, it did achieve the highest CH index on RVL-CDIP of 20779.4.

We discuss possible explanations for these results in Section 6.

6 Analysis

6.1 Effects of Encoding Model

There were two notable takeaways in the choice of document encoding model.

First, all of the LayoutLM models and variants performed significantly better than the baselines.
This can be better understood by examining Figure 3. Qualitatively, we can see that the embeddings

5

Table 1: Layout Identification Results (Silhouette Coefficient / Calinski-Harabasx (CH) Index)

Method SROIE RVL-CDIP
(n = 626) (n = 1000)

Baselines
Bag of Words (BoW) 0.093 / 27.5 0.134 / 90.3
TF-IDF 0.103 / 16.9 0.003 / 5.7

Vanilla LayoutLMv1
Average all words 0.186 / 406.4 0.371 / 1214.2
Average all words, mask pads 0.436 / 2262.7 0.497 / 8525.4
Average all words, mask pads, append length 0.536 / 3172.3 0.664 / 20513.6
Average all words, mask pads, append & normalize length 0.436 / 2265.0 0.497 / 8542.2
Last word, append length 0.536 / 3172.9 0.665 / 20442.5
PCA on all words, mask pads, append length 0.460 / 2412.6 0.576 / 18493.6

Finetuned LayoutLMv1 on Related Task (RVL-CDIP)
Average all words 0.253 / 272.0 0.229 / 388.2
Average all words, mask pads, append length 0.534 / 3165.2 0.660 / 20405.5
Last word, append length 0.524 / 3094.6 0.654 / 20093.0

Finetuned LayoutLMv1 on Unrelated Task (FUNSD)
Average all words 0.162 / 308.5 0.308 / 923.4
Average all words, mask pads, append length 0.536 / 3172.5 0.663 / 20503.8
Last word, append length 0.536 / 3172.4 0.659 / 19882.2

Vanilla LayoutLMv2
Average all words 0.163 / 115.83 0.113 / 177.1
Average all words, mask pads, append length 0.524 / 2887.8 0.652 / 20779.4
Last word, append length 0.517 / 2858.7 0.646 / 20615.7

Bold numbers indicate the best performance in each model category.
Green numbers indicate the best performance on each dataset. There can be ties.

from the LayoutLM models lead to progressively tighter and better separated clusters. We also
implemented an animation that allows us to inspect the contents of each cluster, and saw that related
documents, such as hand-written notes, were being placed more closely together.

Second, and surprisingly, LayoutLMv2 generally did not outperform LayoutLMv1. This went against
our expectations given that LayoutLMv2 takes in a richer feature set: it appends 49 additional visual
embeddings in addition to the 512 original text embeddings used by LayoutLMv1. One possible
explanation for the negligible impact of the visual embeddings is that that the documents image are
resized to 224 x 224 before being embedded. We hypothesize that the small image size, and the
transformation of a rectangular document to a square, could lead to loss of important layout-related
features.

6.2 Effects of Hidden State Squash

The next most impactful design decision was the strategy we used for squashing hidden states.
Masking the hidden states of pad tokens alone increased the CH index by a factor of ∼5-10 for both
SROIE and RVL-CDIP. Appending the length led to further improvement. Surprisingly, normalizing
the length (by dividing the maximum sequence length) was worse using the original length. We
think this is because normalizing the sequence length “dilutes" this useful feature too much. Another
interesting takeaway was that using the last word’s hidden state was comparable to using the average
of all words’ hidden states, which might indicate the LayoutLM model does a good job of retaining
long-range dependencies.

6.3 Effects of Finetuning

Overall, we had hoped finetuning would increase performance. Instead, we were initially surprised
that finetuning on the related task (RVL-CDIP) led to worse performance than finetuning on the

6

https://www.loom.com/share/f3384933501a4439a4a6341fe4d349f0

Figure 3: These plots show document embeddings, compressed into two dimensions using t-SNE.
Each point corresponds to a document. The top row shows documents from the SROIE layout
identification dataset, and the bottom from RVL-CDIP. Each of the three columns represent a different
encoding technique: BoW; Vanilla LayoutLMv1 with averaging and masking pads; and Vanilla
LayoutLMv1 with averaging, masking pads, and appending length.

unrelated task (FUNSD). And finetuning on the unrelated task was generally no better than not
finetuning at all.

However, in hindsight, these results seem congruent. Finetuning on the related task may have caused
the document encoder to overfit to that task, thus producing less universally generalizable document
embeddings. While the same statement could perhaps be made of the model finetuned on FUNSD,
the fact that this task is more unrelated to layout identification could have enabled the model keep its
generalizability with respect to layout identification. Finally, it’s worth noting that for the unrelated
task, we only had 200 documents available (compared to 40,000 for related), so it’s possible that we
would have also seen performance degrade for unrelated as well if we had finetuned with more data.

6.4 Effects of Cluster Size

Finally, we were curious how various cluster sizes k could impact performance. We tested this in
Figure 4.

The CH index increases nearly monotonically as k increases, irrespective of the choice of encoding
model. In contrast, we see a steady decrease in the Silhouette score. These results are expected. The
CH index increases because as there are more clusters, the variance within a given cluster decreases
and the cross-cluster variance increases – both of which the CH index rewards. In contrast, the
Sihouette score decreases because its measure of cross-cluster variance goes up. This difference is
explained by the fact that the CH index compares all cluster centers to the overall center, while the
Silhouette score compares all cluster centers to their nearest neighbor’s cluster center. With more
clusters, the nearest neighbors also become closer.

The most distinctive part of Figure 4 is a sharp discrepancy between LayoutLM and LayoutLMv2
beyond 60 clusters, which repeats both on RVL-CDIP and SROIE. LayoutLM maintains its prior
performance, but LayoutLMv2 quickly degrades. One possible explanation is that the the smaller,
tail clusters formed using LayoutLMv2 embeddings are noisier than the tail clusters formed using
LayoutLMv1. That is, because LayoutLMv2 document embeddings are relatively poor for layout
identification, the clusters formed at marginal values of k are also likely to be poor.

7

Figure 4: Plots showing changes in clustering performance for increasing values of k. We test vanilla
LayoutLM v1 (blue line) and v2 (orange line) on both RVL-CDIP (left column) and SROIE2019
(right column).

7 Conclusion

In this work, we introduced a new task of unsupervised layout identification. The objective of the task
is to group related documents together by layout, which refers to the physical structure of a document
and as its semantic meaning. Towards this goal, we tested various methods of producing document
embeddings. We found that the base pretrained LayoutLM [7] model and variants of it (finetuned
versions, as well as LayoutLMv2 [8]) significantly outperformed simple but effective baselines, as
measured by Silhouette score and the Calinski-Harbasx index. We also found that an effective way to
produce document embeddings is to mask out the hidden states of all padding tokens, average the
remaining hidden states together, and finally append the sequence length as an additional feature.
This enabled a GMM model to learn tight yet separable clusters.

We did also discover several limitations. First, we would like to dig more deeply into why Lay-
outLMv2 did not increase performance. A possible next step could be train LayoutLMv2 with
higher-resolution and more accurately re-scaled images, which may better preserve layout. Second,
we were also surprised finetuning did not help, especially when using in-domain data. We think
this happened because we also changed the training objective when finetuning. Keeping the original
masked language modeling training objective while just adding the additional data may have been
fruitful.

More broadly, we are excited about future possibilities in layout identification. Incorporating features
such as font and color, jointly learning the document purpose (e.g., scientific report vs. bank
statement), and being able to handle multi-page documents could ultimately lead towards richer
document understanding.

8

References
[1] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. In ICLR, 2013.

[2] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In EMNLP, 2014.

[3] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019.

[4] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah
Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope,
and Ray Kurzweil. Universal sentence encoder. CoRR, abs/1803.11175, 2018.

[5] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In EMNLP, 2021.

[6] Adam W Harley, Alex Ufkes, and Konstantinos G Derpanis. Evaluation of deep convolutional
nets for document image classification and retrieval. In International Conference on Document
Analysis and Recognition (ICDAR).

[7] Yiheng Xu et al. Layoutlm: Pre-training of text and layout for document image understanding.
In Association for Computing Machinery (ACM), 2020.

[8] Yang Xu et al. Layoutlmv2: Multi-modal pre-training for visually-rich document understanding.
In Association for Computational Linguistics (ACL), 2021.

[9] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Pro-
ceedings of the 31 st International Conference on Machine Learning. International Conference
on Machine Learning, 2014.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. ArXiv, abs/1810.04805, 2019.

[11] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv, abs/1907.11692, 2019.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[13] Yiheng Xu et al. Layoutlm. 2020. Available at https://huggingface.co/docs/
transformers/v4.16.2/en/model_doc/layoutlm.

[14] Siva Hemanath. Document classification - layoutlm. 2021. Available at https://www.kaggle.
com/sivahemanth/document-classification-layoutlm.

[15] Niels Rogge. Fine-tuning layoutlm for sequence classification on rvl-
cdip. 2021. Available at https://colab.research.google.com/github/
NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_
LayoutLMForSequenceClassification_on_RVL_CDIP.ipynb.

[16] Yang Xu et al. Layoutlmv2. 2021. Available at https://huggingface.co/docs/
transformers/v4.16.2/en/model_doc/layoutlmv2.

[17] Zheng Huang, Kai Chen, Jianhua He, Xiang Bai, Dimosthenis Karatzas, Shijian Lu, and C. V.
Jawahar. Icdar2019 competition on scanned receipt ocr and information extraction. 2019
International Conference on Document Analysis and Recognition (ICDAR), pages 1516–1520,
2019.

[18] Impira, 2022.

9

https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/layoutlm
https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/layoutlm
https://www.kaggle.com/sivahemanth/document-classification-layoutlm
https://www.kaggle.com/sivahemanth/document-classification-layoutlm
https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForSequenceClassification_on_RVL_CDIP.ipynb
https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForSequenceClassification_on_RVL_CDIP.ipynb
https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForSequenceClassification_on_RVL_CDIP.ipynb
https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/layoutlmv2
https://huggingface.co/docs/transformers/v4.16.2/en/model_doc/layoutlmv2

[19] Jean-Philippe Thiran Guillaume Jaume, Hazim Kemal Ekenel. Funsd: A dataset for form
understanding in noisy scanned documents. In Accepted to ICDAR-OST, 2019.

[20] Understanding of internal clustering validation measures. In 2010 IEEE International Confer-
ence on Data Mining.

A Appendix

Figure 5: The LayoutLMv2 architecture. The key changes over the LayoutLMv1 architecture are
shown in the red boxes.

Table 2: Train and Test Accuracy for Finetuned Models

LayoutLM
Related Task:

Document Classification
(16 Labels)

LayoutLMv2
Related Task:

Document Classification
(16 Labels)

LayoutLM
Unrelated-Task:

Token Classification
(4 Labels)

Train / Test Size 35,988 / 4008 22,500 / 2500 160 / 40
Train Accuracy 86.7% 94.5% 87.2%
Test Accuracy 79.9% 79.9% 47.2%

10

1 [
2 {
3

4 "confidence": 0.8999999761581421,
5 "location": {
6 "height": 0.018456375838926183,
7 "left": 0.0633116883116883,
8 "page": 0,
9 "top": 0.05453020134228188,

10 "width": 0.2094155844155844
11 },
12 "processed_word": "gardenia",
13 "rotated": false,
14 "source": "ocr",
15 "uid": "ocr -836e40e7c89dcedfb91ec0159cb46c54ae132819-0"

,
16 "word": "GARDENIA"
17 },
18 {
19 "confidence": 0.8199999928474426,
20 "location": {
21 "height": 0.018456375838926183,
22 "left": 0.2905844155844156,
23 "page": 0,
24 "top": 0.05453020134228188,
25 "width": 0.20129870129870125
26 },
27 "processed_word": "bakeries",
28 "rotated": false,
29 "source": "ocr",
30 "uid": "ocr -334ffc1b8297a92946386ee0768d32111a59d7f6-0"

,
31 "word": "BAKERIES"
32 }
33]

Figure 6: An abbreviated example of a rivlets.json file taken from our layout identification
dataset, based on SROIE2019 receipts.

1

NC

∑
i

(1

ni

∑
x∈Ci

b(x)− a(x)

max{b(x), a(x)}

)
∈ [−1,+1]

a(x) =
1

ni − 1

∑
y∈Ci,y ̸=x

d(x, y)

b(x) = minj,j ̸=i
1

nj

∑
y∈Cj

d(x, y)

(1)

Equation 1: Silhouette score, where NC: number of clusters, Ci: cluster i, ni: number of
observations in Ci, and d(x, y) is a distance measure between two points.

The Silhouette score is especially useful when looking at the effect of breaking up neigh-
boring subclusters (e.g., breaking up a cluster of bank statements into subclusters of statements from
different banks), as it is maximized by keeping close subclusters as a large cluster.

11

∑
i nid

2(ci, c)/(NC − 1)∑
i

∑
x∈Ci

d2(x, ci)/(n−NC)
∈ [0,∞] (2)

Equation 2: Calinski-Harabasx index, where NC: number of clusters, Ci: cluster i, ci: center of i, c:
center of all data points, ni: number of observations in Ci, n: number of data points, and d(x, y) is a
distance measure between two points.

In measuring within-cluster tightness, the Calinski-Harabasx index uses the mean distance
measure between all points, while the Silhouette score uses a variance-like measure. The
Calinski-Harabasx index is thus more sensitive to outliers within the cluster.

12

	Key Information
	Introduction
	Related Work
	Approach
	Baseline Models
	Advanced Models
	Clustering Algorithm

	Experiments
	Data
	Layout Identification Datasets
	Finetuning Datasets

	Evaluation method
	Experimental details
	Squashing Hidden States
	Finetuned Model Details
	Clustering Details

	Results

	Analysis
	Effects of Encoding Model
	Effects of Hidden State Squash
	Effects of Finetuning
	Effects of Cluster Size

	Conclusion
	Appendix

