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Abstract

With the advent of social media, emojis have become a key feature of online
textual communication, yet they are not well understood from an NLP point of
view. Existing literature focuses on a small range of emotional emoji, with less
focus on exploring the long tail of emoji. Zero-shot prediction, a practically
useful capability that can cater to new emojis, is often overlooked. We construct
a multimodal model that can leverage emoji image and description information
to generate meaningful embeddings for all available emojis and combine these
with a fine-tuned Sentence-BERT to make emoji predictions which can handle
unseen classes. We outperform previous models and can predict for unseen emojis.
Further, we highlight difficulties in evaluating zero-shot performance and suggest
some ways to overcome those along with an analysis of different ways emojis are
used today.
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2 Introduction

The rise of social media has introduced a new way of communication where meaning can be composed
by combining textual messages with emojis. Analyzing conversations without considering emojis
would be a loss of valuable information as emojis are often used to either convey the sentiments
and emotions of the user, or clarify ambiguous text phrases. Despite their prevalence as a language
form, emojis and their underlying semantics have not been widely studied from a Natural Language
Processing (NLP) standpoint, and the interplay between text-based messages and emojis has not been
explored in-depth. Current approaches tend to focus on emoji usage relating to sentiment expression,
or restrict the emoji they consider to the most commonly used emoji which also tend to be emotional
emoji, thus neglecting the long tail of largely non-emotional emoji. Multimodal approaches to emoji
prediction combining information from text and image on social media posts were found to enhance
emoji prediction [1]], [2]. However, to the best of our knowledge, emoji embeddings have been
constructed with emoji name and description data and have neglected to use emoji image information.
Finally, zero-shot emoji prediction based on textual input, an important capability for practical emoji
recommendation systems, has been explored by very few papers [2].

We construct a multimodal model that leverages emoji image and description information obtained
from emojipedia.organd hotemoji.com, and uses a finetuned Sentence-BERT model to make
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emoji predictions. We outperform [2]]’s model on general emoji prediction, show that emojis are used
in 2 ways (sentiment expression and word emphasis), and propose a practical system of predicting
emojis that yield respectable performances across different settings.

3 Related Work

3.1 Emgji Prediction

Interest in emoji prediction has grown over the years due to the usage of emoji exploding on social
media. Existing literature achieved high accuracies with various state-of-the-art models from bi-
directional LSTM [3]] to BERT [4]], showing that there is a non-spurious relation between words and
emojis that can be learned by automated systems.

Most existing papers on emoji prediction tend to use either a handcrafted emoji set [5] or the most
frequent emojis in their respective datasets (e.g. [3]] uses the top 20, [6] uses the top 100 and [4] uses
the top 300). This means that emoji sets considered in existing literature are limited in size and topics,
as the most commonly used emojis are typically emotional emoji such as facial expressions. [2] is the
only exception that considered a wide range of over 1000 emoji including the often overlooked long
tail emojis. Our work chooses to adopt [2]]’s dataset as we argue that limiting our emoji set means
neglecting a large amount of information that can be conveyed through non-emotional emoji.

[3l], [2]] consider a multimodal approach to predict emojis. The former combines image embeddings
generated by Resnets with text embeddings generated by FastText to predict emojis based on the
picture and text caption associated with an Instagram post, while the latter combines the confidence
scores generated from a text-based bi-directional LSTM and image-based convolutional network
to predict emojis based on text and image inputs associated with a tweet. Both papers show that
a multimodal approach outperform their unimodal counterparts based only on textual contents,
suggesting that textual and visual content embed different but complementary features of emoji usage.
However, to the best of our knowledge, there is no existing work that currently leverages the rich
visual information embedded in an emojis visual image for emoji prediction. Certain emoji usage
correlates heavily with the emojis visual image rather than the emojis name. For instance, 8 is often
used to represent a penis due to the similarity of the image’s shape with the penis shape. Thus, we
distinguish our work by supplementing emoji embeddings with emoji image information and not just
emoji name and description.

3.2 Zero-shot learning

Zero-shot learning is when you train a model that can predict outcomes for unseen classes. This has
become increasingly popular when the is focus on transferable learning to recognize unseen classes.
There are two popular approaches used for zero-shot models: (1) Embedding models [7],[8]where
data is projected in embedding space and a non-parametric approach is used to predict the class;
(2) Generative models [9] are used to create fake samples to predict for unknown classes. The
embedding approach is seen to follow a class-inductive approach while the generative models follow
a class-transductive approach.[10]

A popular approach for zero-shot learning is embedding the data (text/image) into a vector space. A
model is trained to embed the data with the objective of minimizing distance between the ground
truth class vector and the embedding of the data. The embedder be used for unseen classes as the it is
generally trained on train classes. When embedding the data there are multiple approaches which
include creating embeddings manually[[11], generating automatic word vectors like Bag-of-Words
[12] or using context aware embedding approaches such as GloVe[13] and Word2Vec [14]. Further,
Augmenting the information while training the embedding and classifier proves to be better at zero-
shot learning [[15]. This inspired us to consider augmenting the information of the emojis by scraping
the data from |emojipedia.organd hotemoji.com,

Image2Emoji [[LO] tries to zero-shot predict emojis for visual data. They combine textual and image
information to predict the emojis. They used pretrained models like Word2Vec to embed the text
along with generating probabilities for visual concepts and find the similarity with the output vector
by measuring the distance from the emoji names vector. Our approach varies from this approach by
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using BERT model to generate embeddings leveraging transformers along with a CNN to extract
information from the image.

4 Model Architecture: SEMBERT (Sentence-Emoji BERT)

Our zero-shot emoji prediction model consists of three main components as seen in figure [T}
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Figure 1: Overview of the Proposed Model

4.1 Emoji Embedder

Here, we create embeddings for all the emojis in our dataset. The idea is to create multimodal
embeddings where the embeddings incorporate the image of the emoji along with its name and
description. Thus, the emoji embedder has two components:

Emoji Image Embedder: Here, the image is mapped to a vector using a convolutional neural
network.The backbone for our image embedder is a resnet-18 that is pretrained on image-net. The
output dimension of the last linear layer giving us a 200 dimensional vector v;. The resnet-18 is
trained by comparing the vector from the CNN with the word vector obtained from passing the
description and emoji name through a pretrained Glove Model ¢;. We create positive and negative
samples where we pair the emoji vector with the right emoji description vector for positive samples
and incorrect pairing for negative samples. We maintain a ratio of 1:9 for positive to negative samples
(y; = 1 if pairing is positive). The model uses cosine distance to measure the similarity between the
CNN vector and the text vector.

A contrastive loss function is used to train the CNN. We minimize the following function:

1 1
L= Z:(gyid(vi,ti)2 + 5(1 —y;) max(1 — d(vy, ;),0)?)
Emoji Name and Description Embedder: Here, we use a pretrained all-mpnet-base-v1 model to
convert the emoji name, its aliases and its corresponding description (concatenated with "\u25A1" and
passed through the model) to vectors of size 768. The data we scraped ourselves from |emojipedia,
org and hotemoji. com).

To get the final emoji embedding we concatenate image embeddings with textual embeddings. This
is done for all emojis in our dataset. Note that none of these models are finetuned on the emoji
prediction task.

4.2 Tweet Embedder

Each tweet is embedded using a SentenceBert [17]] (all-distilroberta-vI) and a vector of 768 is created.
In contrast to the emoji embedding models, we finetune this model on our emoji prediction task.
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4.2.1 Prediction Head

The prediction head projects the 768+200=968 dimensional emoji embeddings and the 768 dimen-
sional tweet embedding into a 500 dimensional vector space (by applying a linear transformation to
each). In our final model versions we use a dropout layer with 0.2 dropout probability before feeding
the embeddings into the linear layers. In the 500 dimensional project space the dot product between
emojis and tweets is taken. A softmax layer normalizes all dot products (for better ensembling) and
the emoji embedding(s) with the highest similarity score(s) are returned as the predictions of the
model. An illustration of the model architecture can be found in Figure I}

4.3 Baselines

We develop two baseline models that make predictions based on the similarity of tweets and the
descriptions.

Sentence-Baseline: we use the emoji name, alias and description embeddings as described earlier
and use the same model (all-mpnet-base-v1) to encode tweets. We normalize the euclidian length of
all embeddings to 1 and measure the cosine similarity between the two. The emoji with the highest
score is the predicted emoji.

Word-Baseline: we try to check whether emoji names appear in the given tweet (if the tweet contains
the word "crocodiles" we would expect the emoji with the name "crocodile" to have a high similarity
score. As Glove word vectors are sensitive to misspellings, we decide to use a small SentenceBERT
for encoding each word (all-MiniLM-L6-v2). Taking the average of individual embeddings of each
word in emoji names we get the query. We compare this to the embedding of each individual word in
a tweet. The maximum similarity over all words in the tweet with the emoji is the final similarity
score between an emoji and a tweet.

S Experiments

5.1 Data
Dataset # of Observations  # of Emojis
Train Set 11.3M 1122
Validation Set 0.9M 1068
Full Test Set 1M 1064
Balanced Test Set 10K 1063
Zero-shot Test Set  1.1M 99

Table 1: Dataset constructed from [2]. Note that we also remove emojis representing numbers as we
do not have emojipedia+hotemoji data for those.

The main dataset is based on the Twemoji dataset obtained from [2], which contained 13M tweets in
the train set, 1M tweets in the validation set, and 1M tweets in their full test set. They constructed a
class-balanced test set that consists of a subset of 10k tweets where no single emoji appears more
than 10 times. For our purposes of zero-shot prediction, we randomly select 30 emojis from the 10-60
most frequently used emojis and 69 emojis from the rest, for a total of 99 emojis to be removed from
the original train and validation set, but not from the test set, and used these 1.1M observations of the
99 zero-shot emojis to form the Twemoji zero-shot test set (any tweet where one of the 99 emojis

appear at least once). Thus, we obtain a modified Twemoji dataset with statistics as can be seen in
Table[Il

Secondly, to increase our range of emoji available, we constructed our own zero-shot test set by
scraping 50K tweets from twitter that contain one of 279 emoji types that were not in the training set.

Finally, in order to create our emoji embeddings, we scraped data from emojipedia.org and
hotemoji.com to get emoji description, images and metadata for 1.7K emojis.
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5.1.1 Data preprocessing

When preprocessing tweets, researchers tend to play around with 2 areas: (1) removing links and
mentions, and (2) limiting the dataset to tweets with a minimum number of words. [4] find links
within tweets contain useful information. However, many researchers including [2]] chose to remove
links and mentions, neglecting potentially useful information that may be conveyed by links which
motivated us to conduct experiments on this. Additionally, [1] limited their dataset to 4 or more
words per tweet as they argue that tweets with low word count tend to be noisier. Hence, we ran an
experiment with our Sembert models to verify if using a limited dataset of tweets with 3 or more
words would lead to better model performance. This has not been the case, which is why we decide
to leave the tweets generally unprocessed. See Table[6]in Appendix [A]for experimental results.

5.2 Evaluation method

For evaluation, we use top-k accuracy with k=1, 5, 10 and 100. As emojis can be used interchangeably
with no definite correct answer, top-1 accuracy might not be the best metric for evaluating the task and
top-5 or top-10 accuracy may be better. We defined a true match the way Cappallo et al. (2018)[2]
defined their true positive. If there is even one emoji amongst the top k prediction that was correctly
predicted among all the emojis used by a user in a tweet, we consider it to be a correct prediction.

5.3 Training details

Loss function: We train all of our models with a loss function that was inspired by triplet loss.

Let £ be the set of all emojis. |E] = N

Let i € RY be the predicted logits for each emoji given a tweet (dot product of projected embeddings).
h; (the ith entry in h) is the logit for the emoji with emoji-id . Feeding this through a softmax we
get probabilities p for each emoji. Let y be the non-empty set of emoji ids that appear in a tweet.The
loss for a single tweet is:

L=~ log(pi)+ > log(1—p;))

i€y JEE\yY

The batch loss is the average loss over all individual tweet losses. The model tries to predict higher
probabilities for emojis in y and lower probabilities for £ \ y. This loss is propagated till the Tweet
embedder for each batch.

Optimization: We use the Adam optimizer and trained our models over chunks consisting of 128k
datapoints each. We stopped the training when there was no improvements on the validation set after
3-5 consecutive steps. We use a learning rate of Se-5 along with a batchsize of 64 and exponential
learning rate decay of 0.95 after every chunk.

5.4 Sub-model architectures

Given the base architecture as described in Section[d] we experiment with the architecture and training
methodology. In the subsequent Results section we will report the performance on the following
models:

Sembert: has the same architecture as described in Section @]

Sembert dropout: we add a dropout layer before the linear projections of embeddings in Sembert
with dropout probability of 0.2.

Sembert balanced: we take the trained Sembert model and finetune it using the balanced training
data.

Sembert balanced dropout: taking the trained Sembert balanced model, a dropout layer with
probability of 0.2 was added before the linear projections.

Emsemble dropout: each of our models outputs a probability distribution after the softmax layer.
We take the average over the predictions of Sembert dropout and Sembert balanced dropout.



6 Results and Discussion

6.1 Results on Full Test Set

Table 2] provides a comparison of the performance of our models with our baseline as well as Cappallo
et al. (2018) [2] model for predicting emojis on the full Twemoji test set.

Our Sembert models feature significantly higher scores than [2]] and our own baseline. [2] only
reports the Top-1 accuracy for their model trained on unbalanced training set. The significant
improvement can be attributed to the use of State-of-the-art transformer models instead of Bi-
directional LSTM as the language model and secondly, the augmentation of emoji information with
data from emojipedia.org/and hotemoji.com has led to information rich vectors.

Model | Top-1 Top-5 Top-10 Top-100
Cappallo et al. (2018) [2] 21.4 - - -
Cappallo et al. (2018) balanced | 13.0 30.0 41.0 84.0
Sentence Baselinel 1.3 4.0 6.0 21.7
Sembert 262  49.1 60.7 92.8
‘m‘m 265 495  61.0 91.6
Sembert balanced| 20.3 37.9 47.6 83.7
Sembert balanced dropoutl 20.8 38.0 47.5 83.0
nsemble dropouf| 26.5 48.8 59.8 90.9

Table 2: Accuracy in percent on the test set: Our models significantly performs better than Cappallo
et al. (2018) [2] model. 21.4 is the accuracy reported by the authors on a non-balanced dataset.

We observe that when we experimented with a dropout of 0.2 for Sembert trained on balanced/un-
balanced data, we see that the models with dropout performed slightly better or comparably to the
models without dropout. This holds true when evaluating models on the remaining datasets, hence
we only consider models with dropout.

6.2 Results on Balanced Test Set

Table [/| provides a comparison of the performance of our models against the baseline and [2]]’s model
on the balanced Twemoji test set. Here, our models outperformed our baseline but yielded worse
results than Cappallo et al.(2018)[2].

Model | Top-1 Top-5 Top-10 Top-100
Cappallo et al. (2018) 19.9 - - -
Cappallo et al. (2018) balanced | 35.1 48.3 54.7 87.7
Sentence Baseline| 53 13.3 17.8 42.8
Sembert dropout] 21.3 37.3 45.0 70.2
Sembert balanced dropoutl 30.8 46.5 535 76.9
nsemble dropout| 30.5 47.5 54.9 78.4

Table 3: Accuracy in percent on the balanced testset: our models underperform the author’s model in
this task as we optimize for zero shotting.

The difference in performance may be attributed to the removal of observations containing the
99 emoji types while training our models, resulting in loss of more than 1M training data points
compared to Cappallo’s model and an increase in unseen emojis for our model. As the balanced
test set contain only 10K observations (no more than 10 for each emoji), the presence of 99 unseen
emojis are likely to have a significant impact on the performance of our model.

6.3 Results on Zero-Shot Set

Table [ provides a comparison of the performance of our models against our baseline on the Twemoji
zero-shot test set, unrestricted and with output restricted to the zero-shot emoji set only. We only
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consider tweets for prediction where there is exactly one emoji (which is a zero shot emoji). Note that
our accuracy measure is equivalent to the standard accuracy measure if there is only one "true" emoji
for a tweet. Our Sembert and Ensemble models outperforms our baseline on the zero-shot Twemoji
test set. It yields a decent accuracy on the restricted prediction. The model is able to generalize for
these 99 emoyjis.

Since emojis can be used interchangably, there are many substitutes for different emojis. Thus, it is
expected that a model will rather predict emojis that it has seen during training. Looking at top-5 or
top-10 accuracy or restricting the emojis the model should take into consideration (by removing the
top-10 most frequent emojis in the dataset or even all emojis seen during training as done in Table )
gives a more realistic and fair picture of a model’s zero shot capabilities.

unrestricted restricted
Model Top-1 Top-5 Top-10 Top-100 | Top-1 Top-5 Top-10 Top-100
Sentence Baseline| 0.9 4.8 7.6 234 7.9 20.9 29.3 1
Sembert dropout| 2.8 9.9 19.2 69.0 430 714 82.1 1
Sembert balanced dropout| | 2.0 7.6 14.4 60.0 34.7 67.0 76.8 1
Ensemble dropout] 2.6 9.5 17.9 66.4 41.7 71.7 81.1 1

. Table 4: Accuracy in percent on the 99 zero-shot emojis
6.4 Ensembling

Our ensemble model [Ensemble dropout|features comparable accuracies to the best model available
on every dataset. This means that the model is able to predict even rare emojis reasonably well, if
it has seen these during training. Given that Sembert is not able to make good predictions on the
balanced dataset and Sembert balanced is not able to make good predictions on the full test set with
frequency information about emojis, it comes as a suprise that it is possible to do well on both dataset
at the same time.

6.5 Results on Custom-Scraped Zero-Shot Set

Table[5] provides a comparison of the performance of our models with our baseline on the our own
scraped zero-shot test set, with emojis considered for prediction unrestricted and restricted to only
those that have never been seen before. Surprisingly here only our baseline model performs well.
None of our other models are able to make predictions with high accuracy. We analyze these results
and propose a solution in the subsequent Section.

unrestricted restricted
Model Top-1 Top-5 Top-10 Top-100 | Top-1 Top-5 Top-10 Top-100
Sentence Baseline] 3.9 8.5 11.3 29.7 6.3 12.9 16.9 41.9
Sembert dropout] 0.0 0.1 0.1 33.6 0.1 11.1 28.1 83.1
Sembert balanced dropout] 0.0 0.3 0.7 19.5 24 10.9 20.3 73.1
Ensemble dropout] 0.0 0.2 0.03 23.2 14 11.5 25.4 81.4

Table 5: Accuracy in percent on custom scraped zero shot set

7 Analysis - Towards Practical Emoji Prediction
7.1 Different ways of using emojis

Analysing the results on our custom scraped zero-shot set, we observe that emojis can be used in two
ways:

* Sentiment expression: In this case, the emojis capture the sentiment of the tweet. For
example, "I won the championship “v,". Here, understanding the emotions and sentiments
of the tweet is critical in predicting the correct emoji.

* Word or idea emphasis (literal usage of emojis): In this case, the emoji is used as a way
to put emphasis on certain words or ideas used in the tweet. For example, "Seals are like the

dogs of the sea “* ". This would need a model more focused on particular words’ meaning
present in the sentence and finding the emoji that best represents the word or idea.



As the Twemoji dataset was highly skewed towards emotional emoji and largely consists of tweets
that used emoji for sentiment expression, the Sembert and Ensemble models which were trained on
Twemoji data could perform better than baseline on the Twemoji zero-shot test set as the observations
were skewed towards sentiment expression. However, in our scraped zero-shot test set, we considered
emoji outside of the Twemoji dataset, the observations consist of largely non-emotional emoji and
emoji usage was skewed towards word or idea emphasis. This would explain why the baseline,
which is based on sentence/word matching, could significantly outperform our trained Sembert and
Ensemble models.

To validate this hypothesis we conduct a small experiment and make predictions for 3 artificially
created tweets for each emoji:

* 1like emoji-name
* [ am angered by emoji-name

* emoji-name is very lit, I wanna see it

We define the correct label as the emoji-name for each emoji. Indeed, we find that our trained Sembert
models feature much lower accuracy scores, showing that they put too much focus on the sentiment
part of the sentence, not being very good in predicting word or idea emphasis usage of emojis. The
results can be seen in Appendix [B] Table

7.1.1 EREC: Emoji Recommendation

Based on the above understanding, we combine baseline model predictions with trained model
predictions to create a practical Emoji Recomendation system (EREC). Because there is no correct
way of using emojis, we believe that in a practical system the model performance for top5 and top10
emoji prediction should be more crucial. EREC recommends a user specified number of prediction
from our two baseline models (Sentence Baseline] [Word Baseline)) if the predicted cosine similarities
are above a certain threshold. These predictions are the literal emoji predictions. The rest of emojis
needed for top k prediction are taken from the [Ensemble dropout| model, which are more likely
sentiment expressing emojis.

This model not only accounts for the use of emojis to capture the emotional sentiments associated
with the piece of text (captured by ensemble SEMBERT) but also the word to emoji mapping (literal
mapping) done by the baseline both at the sentence and word level. Examples of its predictions can
be found in Appendix [C.2]Its performance on our 4 testsets can be found in Appendix [C.I| Table 8]

8 Conclusion and Outlook

In this project, we use state-of-the art transformers along with CNNs to build a model capable of
doing seen-class and zero-shot emoji prediction. Our models perform comparably or better than [2]’s
models on the dataset they used.

We find that ensembling can create models that perform well on low-frequency emojis without
performance loss on high-frequency emojis. We note that zero-shot emoji prediction is difficult due to
the trained models’ bias towards predicting seen emoji, and propose evaluating zero-shot prediction
while ignoring top-k most frequent emojis for prediction (extreme case is k= number emojis in the
training set). Importantly, we find that emojis are used in two different way - sentiment expression,
and word emphasis - and models trained on empirical data perform stronger on the former while
word-matching models tend to perform stronger on the latter. This motivated us to develop EREC
which is an ensemble of SEMBERT which does well with sentiment expression and the baseline that
handles word emphasis, making the predictions more practical and versatile. The introduction of
emoji image information potentially led to enhanced embeddings leading to better performance.

With the understanding that emojis can be used in different ways, future work can explore creating
datasets for each emoji use case and leveraging the corresponding dataset for the desired use case
(e.g. emotional emoji usage for sentiment analysis). There is also room to explore the extent to which
emoji image information improves emoji prediction, especially for most recently released emoji with
sparse emoji description.
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A Supplementary Experimental Results

Model | Top-1  Top-5 Top-10  Top-100
Sembert 26.2 49.1 60.7 92.8
Sembert-min3 25.6 48.1 60.0 92.4

Sembert-m3-cleaned | 21.7 44.6 56.6 91.3

Table 6: Results of model trained with different types of processing evaluated on a testset with the
same processing. Sembert-min3 is a model trained with tweets that have at least 3 words. Sembert-
m3-cleaned is a model trained on a dataset in which each tweet has at least 3 words and link, hashtags
and mentions are removed.
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B Different ways of using emojis - Experiment

We conduct a small experiment and make predictions for 3 artificially created tweets for each emoji,
we define the correct label as the emoji-name for each emoji:

¢ [ like emoji-name (table column like)
¢ T am angered by emoji-name (table column anger)

* emoji-name is very lit, I wanna see it (table column lit)

Model | like anger it
Sentence Baseline| 95.14 9398 92.76

‘ ord Baseline 79.89 79.5 76.19
embert dropout] 7.57 2.38 1.27

Sembert balanced dropout| | 36.46 26.69 17.96

Table 7: Accuracy on emoji usage artificial tweets.
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C EREC supplementary information

C.1 EREC performance

Dataset | Top-1 Top-5 Top-10 Top-100

Twemoji full test set 265 450 574 90.8
Twemoji balanced test set | 30.5 46.3 54.9 79.0
Twemoji zero-shot test set | 2.6 8.6 15.7 66.9
Scraped zero-shot test set | 0.0 8.4 9.1 28.5

Table 8: Results of EREC. The top-5/top-10 accuracies are similar to the best models we have for
each dataset.

C.2 Example Sentence

Stop the war in Ukraine, we need peace!
Uaw, 'ety 'ty ', ', tet, ')

I came back home and we didn't have any food left

o - - Fa e
[l_"_l' I\u,ll I_..IJ IT—.‘lf lj“.r I'rdilj Im’]

send nudes
[l';lf I‘,’Il W', lv: ‘&, I'-'.'-'Il Ih’]

Why does my car always break down, I hate it!

' & =7’ lﬁ.r lﬂll I&l]

sweet potato fries are overrated

', '&', 'Y, ', 'Y, 'y, ']

Whales are such majestic creatures.
e, '@, '&), '@, 'V, 'P, W]

I don't think he deserved to be treated like that
[l_T-'.'lf '@, 'Y, 'y, ', lel I-";—'_\I]

Christopher Manning's papers are really lit.

[lt’;“lf 'w', 'd") '@, 'E, I:é:_‘l, I‘b']

love the way you lie
P 1 1 1 Gl =] ¥

[ ' v ™ 3 '
['.'! . - 1 o | = = :v]

Figure 2: Example predictions of EREC

12



	Key Informations
	Introduction
	Related Work
	Emoji Prediction
	Zero-shot learning

	Model Architecture: SEMBERT (Sentence-Emoji BERT)
	Emoji Embedder
	Tweet Embedder
	Prediction Head

	Baselines

	Experiments
	Data
	Data preprocessing

	Evaluation method
	Training details
	Sub-model architectures

	Results and Discussion
	Results on Full Test Set
	Results on Balanced Test Set
	Results on Zero-Shot Set
	Ensembling
	Results on Custom-Scraped Zero-Shot Set

	Analysis - Towards Practical Emoji Prediction
	Different ways of using emojis
	EREC: Emoji Recommendation


	Conclusion and Outlook
	Supplementary Experimental Results
	Different ways of using emojis - Experiment
	EREC supplementary information
	EREC performance
	Example Sentence


