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Abstract

This project aims to measure the occupational impact of innovations using patent
text data. Innovations can both replace tasks previously performed by human
labor and augment human labor in their occupations. The extent to which a
given patent automates and augments human labor is measured by comparing
the textual similarity of patents with descriptions of tasks performed in various
occupations and occupational titles. This project compares different techniques
for obtaining such similarity measures using both static word embeddings and
contextual word embeddings. I then evaluate which measures are better able to
predict occupational content. This evaluation involves analyzing the extent to
which automation measures for occupations obtained via static and contextualized
embeddings can predict the degree to which an occupation’s tasks consist of routine,
abstract and manual tasks. I find that measures based on GloVe embeddings are
better able to predict occupational content than contextualized embeddings.
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2 Introduction

Technological advances, particularly in artificial intelligence (AI), have led to widespread anxiety
about the future of human professions. Recent findings reveal that artificial intelligence and machine
learning impact most occupations [1, 2, 3] and that the AI surge is driven by task substitution whereby
AI automates a subset of tasks formerly performed by human labor [4] with one estimate predicting
47% of US jobs being automated over the next decade or two [5]. While new innovations can
automate tasks previously performed by labour, they can also augment human labor by creating new
tasks and activities in which humans can be productively employed such as human-AI collaborative
writing [6] among other tasks. Measuring such effects is challenging since the boundary between
labor-augmenting and labor-automating innovations is not well-defined.

This project measures the occupational impact of innovations using patent text data. I use both
static word embeddings [7] and contextual word embeddings based on BERT [8] and [9] to identify
innovations that replace or create tasks performed by human labor, and match them to human
occupations. I then compare how well measures generated from different embeddings can predict the
task content of occupations to evaluate the different measures.

Such measures will enable us to explore whether the impact of technological change on societal
outcomes such as employment growth, wages and the creation of new work varies by the type of
innovation. Innovations that replace human workers via automation reduce their economic and
political bargaining power whereas those that augment workers ensure that they remain integral to
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value creation and decision-making. Specifically, future work could examine whether innovations
that automate human labor have different labor market outcomes as well as different performance
outcomes for the firms that produce and use them relative to innovations that augment human labor.

3 Related Work

Previous research used simpler ways of identifying the types of innovations and technologies using
specific keywords in the text of patent data to identify automation patents in machinery [10] or more
generally, using the level of investment in adopting specific automation technologies such as robots.
Other papers have used manual labelling of task descriptions of human occupations to identify their
suitability for machine learning and exposure to artificial intelligence (Brynjolfsson et al., 2018;
Felten et al., 2021). More recently, papers have used textual analysis methods to identify innovations
recorded in patents that potentially overlap with the tasks performed by occupations [3, 11, 12]. A
recent paper by Autor et al. (2021) is broader in its scope in identifying automation and augmentation
innovations since it is not restricted to identifying specific kinds of innovations (such as machine
learning, robotics or AI patents), but more generally, identifies all innovations (as measured using
patent text data) that overlap with the text of occupational titles and tasks.

4 Approach

4.1 Data

This work the following three main datasets:

1. The patent text dataset consists of the full text of patents, including the summary/abstract,
patent claims and patent descriptions along with numberous patent identifiers and categories.1
I collect patent text data from patentsview.org, which provides the full text of patents,
including the summary/abstract, patent claims and patent descriptions along with numerous
patent identifiers and categories. For this project, I restrict my patent text data to the summary
text of all patents granted in 2010 to a US firm for which a previous classification into
automation and non-automation patents exists [12]. Restricting my dataset in this manner
has two advantages: 1) it enables me to generate embeddings and classification scores in
the time allotted for this project (using the full patent text data for all years would take
prohibitively long), and 2) it enables me to generate automation scores that have an existing
baseline for comparison using the classification from [12]. My sample of patents consists of
94,368 unique patents.

2. The data on occupational titles comes from the U.S. Census Alphabetical Indexes of Indus-
tries and Occupations list over 21,000 industry and 31,000 occupation titles in alphabetical
order for about 700 main occupations.2 The similarity of patent text with occupational title
text is used as a measure of identifying labor-augmenting innovations.

3. The data on occupational tasks describes the task content of occupations.3 Since each
occupation consists of numerous tasks and each task is described in one or two sentences, I
group occupations by all the tasks they involve to get the full task data per occupation.

4.2 Methodology

The steps used to identify automation and augmentation innovations and the occupations they affect
are outlined below and illustrated in Figure 1. Some steps are different based on whether documents
embeddings are generated using GloVe [7] or sentence transformers.4

1. Pre-processing: For generating GloVe embeddings per document, this step strips punctua-
tion, removes stop words, retain nouns and verbs, and lemmatizes each word. Pre-processing
for sentence transformers involves only removing stop words and punctuation.

1One source of this data is this website: https://patentsview.org/.
2https://www.census.gov/topics/employment/industry-occupation/guidance/indexes.html
3https://www.onetcenter.org/dictionary/26.1/excel/task_statements.html
4The code for generating scores using these steps was not provided or taken from another source.
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2. Extract embeddings from words: For generating GloVe embeddings, I use pre-trained
word vectors from the Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors,
1.75 GB download).

3. Generating document vectors: Calculate the TF-IDF weighted average of GloVe word
vectors to generate a document vector. For BERT-base and MPNet-base sentence transform-
ers, document vectors are directly calculated using the sentence-transformers package. The
BERT-base sentence transformer model (bert-base-nli-mean-tokens) uses a BertModel as the
transformer layer (’max_seq_length’: 128) followed by a pooling layer. The MPNet-base
sentence transformer model (all-mpnet-base-v2) uses the MPNetModel as the transformer
layer (’max_seq_length’: 384) followed by a pooling layer and a normalization layer.
In this manner, a “document vector” is calculated for all CAI industry or occupation titles
for each Census year in the sample and for all United States utility patents issued in the
same time period.

4. Measuring patent similarity to occupational tasks and titles: Calculate cosine similarity
for each patent-occupational title pair and each patent-occupational task pair using equation
1. To account for the fact that some types of patents have naturally low similarity scores
(e.g. those using highly technical terminology such as chemical patents), the scores are
normalized by subtracting the median score across occupations (or industries) for a given
patent as shown in equation 2.

cosine similarity = Sc(Pi, Oj) =
p⃗io⃗j

|p⃗i|
∣∣o⃗j∣∣ (1)

patent scorei = max(Sc(Pi, Oj))− median(Sc(Pi, Oj)) ∀j ∈ J. (2)
The automation score of a patent is the degree to which a given patent automates work
performed by human labor. To arrive at the automation score for a patent, I measure the
cosine similarities between the document embedding of the patent summary text and the
document embeddings of task descriptions for 760 occupations. The augmentation score
measures the degree to which a given patent augments human labor. To arrive at this
measure, I calculate the cosine similarities between the document embeddings of the patent
summary text and occupational titles for 760 occupations. The approach for measuring the
augmentation scores is similar to that for automation scores but the underlying occupational
text contains titles of occupations instead of their task content as done in prior work [13].

5. Identifying patent-occupation matches: The top 5% most similar or highest adjusted
textual similarity scores across patent × occupation pairs are retained as matches for patent
p and occupation j. Lastly, the citation-weighted sum over patents issued in a given period
is taken to obtain patent counts by occupation over time.

Ip,j = 1 if Sc(Pi, Oj) > σ, (3)

where σ is the 95th percentile of the similarity score distribution.

occupational exposurej = arcsinh(
∑
p

Ip,j) (4)

4.3 Baseline

Prior work uses a Naive Bayes classification approach to assign patents into either automation or
non-automation categories after manually labelling approximately 500 patents as automation/non-
automation approach [12].5 I use this classification as a baseline for identifying automation patents
using different word and sentence embeddings.

5 Experiments

I compare patent-level scores obtained via different methods (GloVe embeddings, and embeddings
from sentence transformer BERT-base and MPNet-base models) with the baseline and with each

5This data is provided by the authors: https://github.com/lpuettmann/automation-patents.
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Figure 1: Generating automation and augmentation scores for patents. Source: [13].

other. To ensure whether the scores generated are capturing meaningful outcomes, I examine whether
the occupation-level scores are predictive of occupational task content (i.e. the degree to which an
occupation involves routine, abstract and manual work).

5.1 Data

To evaluate these measures, I analyze how they relate to the nature of jobs. To do so, I compile
measures of the degree to which an occupation’s tasks consist of routine, abstract and manual tasks
based on prior work in this literature [14]. Prior work evaluates the tasks performed in various
occupations based on the degree of routine and non-routine tasks involved in each occupation using
the 1960 distribution of task input. The year 1960 is used as the base period for this standardization
because it should primarily reflect the distribution of tasks prior to the computer era.

To link these task measures to my dataset, I rely on several crosswalks of US Census data. The United
States Census records the detailed titles of workers’ occupations. The publicly available Census
data aggregates this occupation information and reports several hundred 3-digit occupation codes.
The occupational classification system gets redefined for every decennial Census. In order to track
detailed occupations over time, empirical work has to rely on crosswalks that match occupation codes
from different Census years. I use the Occ1990dd Occupation System with 330 ‘occ1990dd’ codes
developed in prior work [15]. I then link the occ1990dd occupational codes to the 2010 Standard
Occupational Classification (SOC) codes using a crosswalk file6, and to the 2018 SOC codes (via the
2010 SOC to 2018 SOC crosswalk).

5.2 Evaluation method

This analysis is based on the assumption that automated machines are good at carrying out repetitive
tasks and fail at complex abstract tasks as considered in prior work [14, 12]. Previous work shows that
changes in routine-task intensity are predicted by investment in computer capital: The share of non-
routine tasks increases, whereas that of routine tasks decreases following computer investment [14].
Prior work also shows that the relationship between automation patents and the routine-task index is
positive: The larger the routine task share of an industry in 1960, the more automation technology
was subsequently invented, patented and potentially used in that industry over the following decades
[12]. Therefore, such an indicator appears to be capturing the same phenomenon as described by the
literature on routine-biased technological change.

6Available at: https://www.ddorn.net/data.htm
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To evaluate the occupation-level scores obtained via different pretrained embeddings, I examine how
well these scores predict the degree to which an occupation’s task consists of routine, abstract and
manual work using linear regressions.

5.3 Results

Table 1 shows the automation scores obtained via different methods by industry. Note that the Naive
Bayes approach is based on a binary classification into automation and non-automation patents
whereas the other two approaches are based on the textual similarity of patent summary text to the
text of occupational tasks.

Industry Naive Bayes GloVe bert-base-nli-mean-tokens mpnet-base
Chemical 0.16 0.87 0.72 0.52

Computers and Communications 0.98 0.92 0.73 0.55
Drugs and Medical 0.30 0.87 0.75 0.53

Electrical and Electronic 0.57 0.90 0.70 0.52
Mechanical 0.48 0.92 0.72 0.54

Others 0.37 0.92 0.73 0.56
Table 1: Mean (non-normalized) automation scores by industry for patents issued in 2010.

Table 1 shows that the GloVe and MPNet-base models follow patterns consistent with the Naive
Bayes baseline and with each other (e.g. all three have the maximum score for the "Computers and
Communications" industry). Previous experimental results show that MPNet achieves better results
on similar tasks compared with previous state-of-the-art pre-trained methods (e.g., BERT, XLNet,
RoBERTa) under the same model setting [9]. Moreover, GloVe-based scores have been shown in
prior work to predict employment trends over time [13]. Given this, I further examine scores obtained
via GloVe and MPNet. To check whether these scores change considerably from year-to-year, I
calculated automation scores using the MPNet model for patents issued in 2011. After aggregating
the patent level scores for both 2010 and 2011, I obtain the same scores by industry for the MPNet
model (up to 2 decimal places) as mentioned in the last column of Table 1, which indicates that there
is no yearly substantial variation in the scores obtained.

Table 2 shows the normalized patent-level scores (obtained via equation 2) by industry.

Industry Naive Bayes glove mpnet-base
Chemical 0.16 0.082 0.327

Computers and Communications 0.98 0.070 0.309
Drugs and Medical 0.30 0.083 0.349

Electrical and Electronic 0.57 0.078 0.333
Mechanical 0.48 0.082 0.314

Others 0.37 0.083 0.321
Table 2: Mean normalized automation scores by industry.

Table 3 shows how the occupation-level automation and augmentation scores obtained via GloVe
embeddings relate to the task content of occupations: routine, abstract and manual. As predicted,
there is a statistically significant and positive relationship between occupations exposed to automation
patents and their routine task content. This shows that more automation technologies were invented to
automate work in occupations that consisted of a greater proportion of routine tasks. The statistically
significant and negative relationship between occupations exposed to automation patents and their
abstract task content along matches the prediction that automation technologies fail at complex
abstract tasks. The linear regressions for augmentation scores are not statistically significant. One
reason for this could be the lack of data: while mean number of preprocessed nouns and verbs derived
from occupational task descriptions is 195.3 words, that for occupational titles is only 72.7 words.

Table 4 shows that scores based on MPNet-base sentence embeddings do not have similar statistically
significant relationships as shown in Table 3. The MPNet-based model may be unable to capture these
patterns because it uses all words in the document instead of only nouns and verbs as done during pre-
processing for GloVe embeddings; consequently the MPNet-based model could be capturing greater
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Routine Abstract Manual
(Intercept) 3.76∗∗∗ 3.18∗∗∗ 1.06∗∗∗

(0.25) (0.22) (0.15)
IHS_aut_patents 0.36∗∗ −0.38∗∗∗ 0.24∗∗∗

(0.12) (0.11) (0.07)
IHS_aug_patents 0.08 −0.13 −0.10

(0.11) (0.10) (0.06)
R2 0.10 0.15 0.10
Adj. R2 0.08 0.13 0.08
Num. obs. 118 118 118
RMSE 1.99 1.77 1.17
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3: Relationship between Occupational Augmentation and Automation Exposure and Occupa-
tional Task Content based on normalized gloVe scores.

Routine Abstract Manual
(Intercept) 4.34∗∗∗ 2.24∗∗∗ 1.14∗∗∗

(0.23) (0.19) (0.13)
IHS_aut_patents 0.05 0.23∗ 0.05

(0.12) (0.10) (0.07)
IHS_aug_patents 0.23 −0.04 0.03

(0.12) (0.10) (0.07)
R2 0.03 0.04 0.01
Adj. R2 0.02 0.02 -0.01
Num. obs. 136 136 136
RMSE 2.10 1.78 1.25
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4: Relationship between Occupational Augmentation and Automation Exposure and Occupa-
tional Task Content based on normalized mpnet scores.

noise while the GloVe embeddings are likely only capturing the similarities between meaningful
words in each document. Another possible explainable could be that the MPNet model is based on a
maximum sequence length of only 384 tokens whereas GloVe embeddings stem from all nouns and
verbs mentioned in the summary text of each patent document. Collectively, Tables 3 and 4 show that
automation scores based on GloVe embeddings better fit this prediction about routine and abstract
tasks.

Model Correlation
Naive Bayes 0.28

MPNet 0.05
GloVe 0.31

Table 5: Correlation of an occupation’s routine task measure and associated automation patents.

Table 5 shows the correlation of the routine task measure of an occupation and the number of
automation patents linked to that occupation. This further shows that the GloVe embedding method
are better able to capture the routine task content of occupation relative to the MPNet-based model.
It also suggest that the GloVe embedding method may be more predictive of routine tasks than the
baseline Naive Bayes classification used in prior work [12]. However, the Naive Bayes correlation
from prior work is based on industry-level measures (i.e. log of automation patents per industry and
the average task content of occupations in that industry) whereas the GloVe and MPNet correlations
are based on occupation-level measures.
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6 Analysis

To further evaluate the patent-level scores obtained via GloVe embeddings, I plot the normalized
automation and augmentation scores per patent, as shown in Figure 2. Figure 2 shows that automation
and augmentation patents are positively related to one another.

Figure 2: Relationship between patent-level normalized automation and augmentation scores.

I then examine the types of occupations linked to high automation patents and high augmentation
patents. Interestingly, the types of occupations linked to high automation and high augmentation
patents are quite different from one another, as shown in Figures 3 and 4, respectively. These figures
are based on linkages between patents and occupations. However, each patent was only linked to the
occupational task description or set of titles with which it had the highest similarity. Future work
should link patents with all occupations and then select patent-occupation pairs that have a similarity
score above a certain threshold to give a more comprehensive and accurate result of patent-occupation
linkages since each patent may have applications (i.e. it may be automating or augmenting work) in
more than one occupation.

Figure 3: Occupational exposure to automation patents. The y-axis is the inverse hyperbolic sine of
the number of automation patents.

This project also provides insight that can potentially explain why prior work finds different effects
on labor market outcomes resulting from exposure to automation based on differences in the types of
measures used. Prior work using the Naive Bayes classification method on classifying patents found
that new automation technology per worker is significantly and positively related to employment
gains in the same commuting zone [12], which paints a positive picture of the net employment
effects of automation. On the other hand, recent work using Glove embeddings of patent documents
finds that automation exposure predicts statistically significant declines in occupational employment.
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Figure 4: Occupational exposure to augmentation patents. The y-axis is the inverse hyperbolic sine
of the number of augmentation patents.

In Table 6, I use a simple probit regression to see how the automation and augmentation scores
obtained via Glove embedding methodology predict the likelihood of a patent being classified as an
automat as per the Naive Bayes classification in prior work [12]. The results here show that being
classified as an automat is negatively associated with automation scores and positively associated
with augmentation scores, which suggests that the Naive Bayes classification is perhaps capturing
augmentation technologies and therefore predicting a positive impact on employment growth. This
comparison also suggests that the way we define our measures can significantly impact the types of
labor market and other outcomes we find.

automat
(Intercept) −3.60∗∗∗

(0.04)
normalized_aut_score −26.11∗∗∗

(0.25)
normalized_aug_score 28.13∗∗∗

(0.21)
AIC 96725.23
BIC 96753.59
Log Likelihood -48359.61
Deviance 96719.23
Num. obs. 94346
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 6: Probit model predicting the likelihood of being classified as an automat [12] based on
patent-level automation and augmentation scores derived from GloVe embeddings.

7 Conclusion

This project was aimed at identifying the types of innovations that automate and augment human
labor using patent summary text data. From a dataset of 94,368 patents issued to US firms in 2010
and a comparison of both static and contextual word embedding techniques, the key finding based on
this work is that automation scores obtained via GloVe embeddings-based document vectors are better
able to predict the routine and abstract task content of occupations relative to contextual embeddings
via MPNet-based sentence transformers. Additionally, while automation and augmentation scores
for patents are positively related, the occupations linked to high automation and high augmentation
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patents are different from one another. Contextualizing these measures with prior work shows that
the labor market impact of automation may be different depending on the definition of automation
and the measures used. Future work that collectively links these measures to employment trends over
time and compares the findings of measures obtained via different modeling techniques would be
fruitful in better understanding how to evaluate these measures.
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