
ReportIT: Improving Insider Threat Detection Model
Explainability Through Report Retrieval

Stanford CS224N {Custom} Project
TA mentor: Gaurab Banerjee

External Collaborators, Mentors, Others Courses Sharing Project: N/A

Sameer Khanna
Department of Computer Science

Stanford University
sameerk@cs.stanford.edu

Abstract

Insider Threats are costly, necessitating models designed to detect these threats
before they cause damage. Unfortunately, models that lead to high performance
on benchmark datasets tend to use image encodings of behavior, which makes it
unclear to a security expert the reason why the behavior is classified as malicious.
Additionally, it is hard to get high quality Insider Threat data to train detection
models. To solve this issue, we introduce ReportIT, a contrastive learning model that
takes behavior images and generates a report detailing the user’s behavior while also
increasing the data efficiency of such approaches.

1 Introduction

As we move further into an ever more digital age, newer and more complex attack vectors are appearing
everyday. Insiders pose a unique threat to corporations and organizations of all scales due to their
access to proprietary systems and their ability to circumvent security protocols and blind spots the
public is not privy to. Close to 30% of confirmed breaches today involve insiders [1]. In total, over
2,560 internal security breaches occur in United States businesses every day [2] with a year-over-year
increase in insider attack rates of 21.4% [3]. Each such attack costs an organization on average 11.45
million USD annually [4].

Unfortunately, these attacks are extremely difficult to detect from within. Third party entities detect
the vast majority of most data breaches that occur within an organization; famous examples include
the breaches in TJX Companies, VeriSign, Adobe and LinkedIn [5, 6, 7, 8]. These failures can be
attributed to the simplicity of insider threat detection systems used in industry today. While solutions
proposed by academia boast higher predictive power, interpretability concerns prevent their usage as
industry models. Current trends of advancement in the space of insider threat detection revolve around
the usage of image encodings to represent employee behavior, leading to state of the art performance in
terms of accuracy as well as false positive rate at the cost of further reducing interpretability of models
[9]. As insider threat detection models can influence whether an employee gets to retain his/her job, it
is imperative that the security expert assessing the situation understands the reason behind a model
labeling an employee’s behavior as malicious.

Additionally, there are concerns regarding data availability for insider threat detection. Traditional
UEBA training data is composed of real-life scenarios, consisting of confidential information for a
company, as well as the personal information of their employees. Thus, each vendor utilizes their own
private datasets, making model comparisons and benchmarking difficult in nature. It is important to
determine if there are methods that can make insider threat detection models more label efficient.

To this end, we developed ReportIT, a model that takes the behavior image encodings that lead to great
prediction performance and generates (or retrieves) a report detailing in plain English the reasoning
behind a model’s classification. We also wish to evaluate if using insider threat reports can improve the
label efficiency of of image encoders, increasing the ease of setup and the effectiveness of deployed
insider threat detection systems in industry.

This work is novel for a couple of reasons:

Stanford CS224N Natural Language Processing with Deep Learning

• This is the first time contrastive learning has been proposed for insider threat detection.

• To our knowledge, this is the first time image-text contrastive learning has been proposed to
be used for image encodings as opposed to true images like natural images or medical images.

• To our knowledge, this is the first time image-text contrastive learning has been proposed for
such a highly imbalanced data space, especially one where we there is far greater diversity in
the minority class than the majority class.

• We introduce two novel methods of training for multimodal contrastive learning when there is
greater diversity in examples for one modality than the other.

2 Related Works

Academia Researchers have worked on a plethora of solutions for insider threat detection, the vast
majority of which utilize machine learning [10]. The most popular approach is framing insider threat
detection as an anomaly detection problem [11]. Chandola et al. [12] provide a detailed overview
of the state of anomaly detection. Machine learning methods have been shown to effectively handle
the anomaly detection problem; there is a plethora of research that has been published regarding this
avenue [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 9]. Section A goes over the current approaches
proposed for insider threat detection in greater detail.

Despite academia on the topic of insider detection dating as far back as 1987 [25], very little has
reached the industry. Gates et al. cites that the reason for this failure is academia tends to assume that
the definition of malicious activity is universal and that understanding why an insider threat is classified
as malicious is trivial, which can be far from the truth [26].

Industry Thus, while numerous User and Entity Behavior Analytics systems (UEBA), systems built
in the security industry to detect insider threats, have been created, most rely on their own datasets and
experience rather than using discoveries found in academia. Examples of industry implementations
include Niara, which utilizes Principle Component Analysis (PCA) [27] in combination with Maha-
lanobis distance [28] outlier detection (MD) in their implementation. This approach has a multitude of
issues; Niara claims it is highly sensitive to outliers within their training data and cannot be effectively
tuned to reduce the number of false negatives predicted [29]. In their CISO guide, Aruba Networks
proposes a variety of different model types and scenarios, including SVM, Naïve Bayes (NB), and
Logistic Regression (LR) [30]. Fortinet utilizes NB to categorize activity by an anomaly score; the
higher the score, the more likely a given user is acting in a malicious manner [31]. Exabeam utilizes a
second order Factorization Machine [32, 33] with a Markov Chain Monte Carlo learning method [34]
in order to improve first-time access malicious activity reporting [35].

Unfortunately, while there are numerous UEBA systems to be found in industry, most are rudimentary
in nature. Bussa et al. in Gartner’s market analysis report for UEBA states that most vendors still rely
at least partially on rule based implementations and require upwards of half a year worth of tuning in
order to achieve effectiveness [36]. There is a lot of skepticism among security practitioners regarding
UEBA systems due to poor interpretability, and very few real-world deployments leverage machine
learning [29, 26, 37, 38, 39].

Contrastive Learning Several approaches have been considered to improve the label efficiency of
models. A common approach is to utilize transfer learning, which focuses on gathering knowledge
by solving one problem and applying it to a related problem in the same domain. Transferring model
weights pretrained on natural image datasets like ImageNet has been effective, leading to statistically
significant boosts to performance when compared to models without pretraining [40, 41, 42].

More recently, natural image transfer learning approaches have been augmented by the use of self-
supervised learning techniques that do not require explicit labels for image interpretation to create
a model with high performance, further reducing the need for labeled data while still retaining high
performance [43, 44]. Contrastive learning is one form of self-supervised learning that aims to create
general representations of data by contrasting similar and dissimilar pairs of examples. There are many
instances where contrastive learning has been utilized to improve the efficacy of deep learning models
[45, 46, 47]. Implementations of image-text contrastive learning where natural language is used to
guide the learning of image encoders without the use of labeled data has seen wide success across a
variety of problem spaces [48, 49].

2

Image Captioning The traditional method for obtaining text information describing an image is
via treating the task as an image captioning problem. Image Captioning is the process of generating
textual description of an image. The task of image captioning can be divided into two modules. The
first module, the computer vision encoder, extracts the features and nuances out of input images. The
second module, the language based decoder, translates the features and objects given by our image
based model to a natural language sentence. A variety of different encoder and decoder architectures
have been utilized for the image captioning task with great success [50, 51, 52, 53, 54, 55, 56, 57].

3 Approach

Main Approach We develop ReportIT, a retrieval-based insider threat report generation method that
uses contrastive language image pre-training (CLIP) [48]. Taking advantage of the fact that the current
state-of-the-art in insider threat detection utilizes color-based images that encode the behavior of the
given employee to be assessed, we use learned behavior image - report pair representations that enable
our model to retrieve unstructured free-text insider threat reports. By framing the report generation
problem as a retrieval task, we can take advantage of the limited space of possible reasons the behavior
of an employee can be considered malicious.

User logged in, connected a
drive, and uploaded data to a

corporate espionage site.
User logged in, connected a
drive, and uploaded data to a

corporate espionage site.

User logged in, connected a
drive, and uploaded data to a

corporate espionage site.

User logged in, connected a
drive, and uploaded data to a

corporate espionage site.

Text
Encoder

T1 T2 T3 T4 T5 ... TN

Potential Insider
Threat Reports

User Behavior Image

Image
Encoder I I•T1 I•T2 I•T3 I•T4 I•T5 ... I•TN

No malicious
activity detected.

Matching Insider
Threat Report

Figure 1: Details regarding how ReportIT works. Here, the given behavior images as well as the
potential reports are encoded by the image encoder and the text encoder respectively. For each image
encoding, we determine the corresponding report encoding that has the highest cosine similarity. The
given report is returned as the retrieved report.

The general approach for ReportIT is detailed in Figure 1. Here, the given behavior image as well as
the potential reports are encoded by the image encoder and the text encoder respectively, leading to the
image encoding I and the report encodings T1, T2, ..., TN . For each image encoding, we determine
the corresponding report encoding that has the highest cosine similarity, as shown in Equation 1. The
given report is returned as the retrieved report.

Index of Retrieved Report = argmax
i

I · Ti

|I||Ti|
(1)

Training We seek to train ReportIT such that true image-text pairs have a high cosine similarity while
false image-text pairs have a low cosine similarity. At training time, we sample a batch of N input pairs
(ximage, xtext), where ximage refers to the image and xtext refers to the corresponding text. Using
the image encoder and text encoders, we create the subsequent encodings (I, T). We denote pair i of
encodings as (Ii, Ti). Our training objective is composed of two loss functions: Equation 2 showcases
the image-to-text contrastive loss for the i-th pair, while Equation 3 showcases the text-to-image
contrastive loss for the i-th pair. We combine these two loss function via a simple average, leading to
our contrastive loss for the training batch shown in Equation 4.

(lossimage−text)i = − log

 exp
(

Ii·Ti

|Ii||Ti|

)
∑N

k=1 exp
(

Ii·Tk

|Ii||Tk|

)
 (2)

3

(losstext−image)i = − log

 exp
(

Ii·Ti

|Ii||Ti|

)
∑N

k=1 exp
(

Ik·Ti

|Ik||Ti|

)
 (3)

L =
1

2N

N∑
i=1

(lossimage−text)i + (losstext−image)i (4)

Issue with Traditional Contrastive Learning As detailed in Section 4, the insider threat problem
space is highly imbalanced. Additionally, we want to explain why a given behavior image corresponds
to malicious behavior; if the behavior image corresponds to benign behavior the generated report
need not provide additional information. As a result, the majority class for the problem space has far
lower diversity of possible reports than the minority class. Figure 2 details the issues with using a
standard contrastive learning training regime for this problem. As there will be numerous false negative
image-text pairs within a batch, contrastive learning will try to increase the distance between images
and reports it should be aiming to bring close together, negatively hampering retrieval performance of
the trained image and text encoders.

I3•T4 I3•T5 ... I3•TN

I4•T4 I4•T5 ... I4•TN

I5•T4 I5•T5 ... I5•TN

...

IN•T4 IN•T5 ... IN•TN

User logged in, connected a
drive, and uploaded data to a

corporate espionage site.
User logged in, connected a
drive, and uploaded data to a

corporate espionage site.

User logged in, connected a
drive, and uploaded data to a

corporate espionage site.

User logged in, connected a
drive, and uploaded data to a

corporate espionage site.

Text
Encoder

T1 T2 T3 T4 T5 ... TN

Texts

Images

Image
Encoder

I1 I1•T1 I1•T2 I1•T3 I1•T4 I1•T5 ... I1•TN

I2

I3

I4

I5

...

IN

I2•T1 I2•T2 I2•T3 I2•T4 I2•T5 ... I2•TN

I3•T1 I3•T2 I3•T3 I3•T4 I3•T5 ... I3•TN

I4•T1 I4•T2 I4•T3 I4•T4 I4•T5 ... I4•TN

I5•T1 I5•T2 I5•T3 I5•T4 I5•T5 ... I5•TN

...

IN•T1 IN•T2 IN•T3 IN•T4 IN•T5 ... IN•TN

User logged in, connected a
drive, and uploaded data to a

corporate espionage site.
User logged in, connected a
drive, and uploaded data to a

corporate espionage site.

User logged in, connected a
drive, and uploaded data to a

corporate espionage site.

User logged in, connected a
drive, and uploaded data to a

corporate espionage site.

Text
Encoder

T1 T2 T3 T4 T5 ... TN

Texts

Images

Image
Encoder

I1 I1•T1 I1•T2 I1•T3 I1•T4 I1•T5 ... I1•TN

I2

I3

I4

I5

...

IN

I2•T1 I2•T2 I2•T3 I2•T4 I2•T5 ... I2•TN

I3•T1 I3•T2 I3•T3

I4•T1 I4•T2 I4•T3

I5•T1 I5•T2 I5•T3

...

IN•T1 IN•T2 IN•T3

User logged in, connecRed a
drive, and uploaded daRa Ro a

corporaRe espionage siRe.
User logged in, connecRed a

drive, and uploaded daRa Ro a
corporaRe espionage siRe.

User logged in, connecRed a
drive, and uploaded daRa Ro a

corporaRe espionage siRe.

User logged in, connected a
drive, and uploaded data to a

corporate espionage site.

Text
Encoder

R1 R2 R3 ... RM

Unique Set of M
Possible Reports

Images

Image
Encoder

I1 I1•R1 I1•R2 I1•R3 ... I1•RM

I2

I3

I4

I5

...

IN

I2•R1 I2•R2 I2•R3 ... I2•RM

I3•R1 I3•R2 I3•R3 ... I3•RM

I4•R1 I4•R2 I4•R3 ... I4•RM

I5•R1 I5•R2 I5•R3 ... I5•RM

...

IN•R1 IN•R2 IN•R3 ... IN•RM

Normal Batch Prune Batch Class Batch

Figure 2: Various training methodologies used for ReportIT. Here, yellow squares indicate true positive
image-text pairs, white/light-grey squares indicate true negative image-text pairs, and blue squares
indicate false positive pairs. For the NormalBatch and PruneBatch examples, there are multiple correct
reports that are in the same training batch (T4 = T5 = ... = TN). As a result, contrastive learning will
treat all image-text pairs (Ij , Tk) where j ̸= k, j ∈ [4, 5, .., N], k ∈ [4, 5, .., N] as negative image-text
pairs despite in actuality being positive image text pairs. PruneBatch handles this issue by pruning
images and texts that would lead to this issue, while ClassBatch instead treats texts akin to a class.

Proposed Solutions Thus, we propose PruneBatch, which is detailed in Figure 2. By removing
image-text pairs where there is an identical report already in the batch we reduce the false negative
image-text pairs within a batch, leading to drastically improved model training and superior text
retrieval using the trained model. While PruneBatch does not run into the issues a normal batching
paradigm has with false negative pairs, each training batch we are essentially removing significant
amounts of data that could prove to be useful in training our system. As reducing the amount of training
data leads to a reduction in diversity in training examples, the subsequent model will be far more brittle
and will overfit the data more easily. More importantly, it has been shown that increasing batch sizes is
important for improving contrastive learning models as larger batch sizes increase the ratio of negative
pairs to positive pairs. For a given batch size B, there will be B2 −B negative pairs and B positive
pairs; as B increases, the number of negative pairs increases faster than the number of positive pairs.
Higher negative pair to positive pair ratios have empirically lead to higher quality models [48]. With
PruneBatch we effectively are doing the reverse, decreasing this ratio.

As a result, we also propose ClassBatch, which is detailed in Figure 2; note now that a single text
report can be used for the correct image-text pair multiple times within a batch. Rather than treat
image-text within a batch as pairs, we treat the text related to a given image as a class, where the class
number corresponds to the index of the given report within the set of all possible reports. This approach
provides two major benefits over PruneBatch. First, we are no longer removing training data at training
time, reducing the likelihood of overfitting. Second, we are now contrasting the correct text report for a
given behavior image to all possible text reports, significantly improving alignment between an image

4

and its given text report by maximizing the ratio of negative pairs to positive pairs irrespective of the
training batch size.

Due to the highly imbalanced nature of the problem space, some reports will appear as the correct
report significantly more often than others. To combat the potential issues that may occur because of
this, we utilize a modified contrastive loss that takes into account class weights to train the ClassBatch
approach; the new loss function is shown in Equation 5. Here, WTi denotes the weight corresponding
the to the text Ti; each WTi is determined such that every report type has equal weighting during
training. RR==Ti corresponds to the report in the set of all possible reports that matches input text Ti.
Note that there is now an unequal number of images and texts being compared. Every image has only
one possible report associated with it, but not every report has a single behavior image associated with
it. As a result, the ClassBatch loss function is composed solely of the image-to-text contrastive loss as
applied between the images in the batch and all possible reports.

LClassBatch = − 1

N

N∑
i=1

WTi
log

 exp
(

Ii·RR==Ti

|Ii||RR==Ti
|

)
∑R

r=1 exp
(

Ii·Rr

|Ii||Rr|

)
 (5)

Baselines As we wish to identify the benefits of pursuing this task as a report retrieval problem as
opposed to an image captioning problem, our baselines consist of a variety of image captioning models.
The task of image captioning can be divided into two modules. The first module, the computer vision
encoder, extracts the features and nuances out of input images. The second module, the language based
decoder, translates the features and objects given by our image based model to a natural language
sentence. For our baselines, we utilize a state-of-art computer vision encoder and state-of-art natural
language processing decoder models using pretrained checkpoints from HuggingFace [58]. Studies
have shown the effectiveness of initializing encoder/decoder models with pretrained checkpoints
[50, 51, 52, 53, 54], making such models ideal for a baseline comparison of our approach. We utilize
the Vision Image Transformer (ViT) as our image encoder [59], and evaluate BERT, BART, GPT-2,
and RoBERTa as text decoders [60, 61, 62, 63].

4 Experiments

Data Traditional UEBA training data is composed of real-life scenarios, consisting of confidential
information for a company and the personal information of their employees. Thus, each vendor utilizes
their own private datasets, making model comparisons and benchmarking difficult in nature. The
CERT Insider Threat center together with ExactData LLC analyzed 1,154 actual insider incidents in
the United States to create the largest public repository of insider threat scenarios in order to tackle this
issue [64]. Many publications and companies have utilized this dataset to assess model architectures,
perform integration testing, and run confirmatory hypothesis testing, solidifying its status as the gold
standard public dataset for insider threat detection system benchmarking. [65].

The CERT Insider Threat dataset contains 32,770,224 unique events, with available audit data sources
including logon activity, email traffic, web browsing traces, file access logs, thumb drive usage, as well
as LDAP information describing the organization hierarchy and user roles.

Malicious users within the dataset execute activities in highly variable time periods, with some attacks
completing within a day, while others occur over a 2 month span. The high diversity in attack time
frames enables robust verification checks against insiders that intentionally act slowly.

As occurs in the real world, this dataset is extremely imbalanced; Table 1 details the occurrence of
attack scenarios compared to normal behavior within 24 hour time frames per user.

Table 1: Imbalance Ratios Within Insider Threat Data
Class Type Number of Instances Imbalance Ratio

Normal 330452 1 : 1
Scenario 1 85 1 : 3899
Scenario 2 861 1 : 384
Scenario 3 20 1 : 16570

Attack Scenarios There are three scenarios of attack within the dataset. In Scenario 1, a user obtains
sensitive information they subsequently upload to Wikileaks. In Scenario 2, a user browses job sites

5

looking for a job, stealing confidential information and leaving as soon as they find one. Finally, in
Scenario 3 a system administrator grows to dislike their job and downloads and installs a keylogger
onto their supervisor’s computer. Using the obtained password, they send an alarming mass email
acting as the supervisor, leaving the organization immediately afterwards.

Evaluation Method We have two sets of experiments for ReportIT; one set evaluates the label
efficiency of its trained image encoder, while the other evaluates its effectiveness in the report generation
task. For the label efficiency task, we employ three experiments. First, we seek to evaluate the quality
of image encoding qualitatively, using t-distributed stochastic neighbor embedding (t-SNE) [66], a
dimensionality reduction technique developed for effective high-dimensional data visualization, to see
how well various image encoders separate benign behavior from malicious behavior. For quantitative
label efficiency evaluation, we report balanced accuracy, precision, recall, F1 score, and AUC as these
metrics allow for a good evaluation of models in problem spaces with high data imbalance [67]. We
use these metrics to evaluate our architectures under linear evaluation, where a linear classifier is fitted
on top of a model’s image encoder features to make predictions, and finetuning, where a softmax layer
is added to a model’s image encoder and the subsequent model is finetuned to make predictions using
only 5% of the training data.

True ReportGenerated Report

BERT Encoder BERT Encoder

semb score BERT Encoding BERT Encoding

Report Labeler Report Labeler

Corresponding
Scenario

Corresponding
Scenario

Precision,
Recall, F1

Figure 3: Evaluation metrics and how they are computed for the report generation task. We use the
BERT embeddings directly to compute semb, and use the final classification of scenario type (shown
here as the Report Labeler) to compute the Precision, Recall, and F1 scores.

Figure 3 details our evaluation metrics for the report generation task and how they are computed.
Starting with a pretrained BERT model from HuggingFace [60, 58], we append a softmax classification
layer and finetune the model by freezing the original BERT layers and training the output layer in order
to classify reports based on the attack scenario they reference. We use the output classifications to
compute the precision, recall, and f1 score metrics of results on the image-text task, chosen due to the
imbalanced nature of our problem space. These metrics will allow for a better evaluation of models
[67]. These metrics are computed globally by counting the total true positives, false negatives and false
positives. Additionally, we use the BERT embeddings directly to compute the similarity embedding
semb metric proposed by CXR-RePaiR [68], a medical report retrieval model. We will take the reports
output by ReportIT as well as our baseline models, and the cosine similarity between the last hidden
representations of the report when fed through the evaluation BERT model.

As we are focusing on the evaluation of various Natural Language Processing techniques, we use the
Vision Image Transformer (ViT) [59] as our image encoder for ReportIT as well as all baseline models
in order to remove the image encoding architecture as a potential confounding variable.

In order to obtain 95% confidence intervals, bootstrapping using 1000 samples of all metrics is applied
for all quantitative metrics.

Experimental Details Across experiments, data was categorized into different sets at the user level
within 24-hour windows via a stratified split, with 70% in the training set, 10% in the validation set,
and 20% in the test set. Behavior image encodings are generated and data imbalance is handled via
the same data augmentations described in the current best performing insider threat detection model

6

architecture [9]; we go over the full process in more detail in Appendix B. Each image is manually
annotated with a text report based on the ground truth information found in the dataset. Augmented
images use the same report as the original image.

All models start with pretrained checkpoints from Huggingface, with ReportIT models trained using
the training set for 10 epochs while baselines are trained for 100. Number of epochs were determined
based on training convergence. All models are trained using Adam [69], with lr = 0.001, betas =
(0.9, 0.999), eps = 10−8, and weight_decay = 0. For the report generation task, our image captioning
baselines employ a beam search decoding algorithm using 5 beams.

5 Results and Analysis

Random Initialization Pretrained ViT Pretrained CLIP ViT-BART ViT-BERT

ViT-RoBERTa ViT-GPT-2 ReportIT (Normal Batch) ReportIT (Prune Batch) ReportIT (Class Batch)

Figure 4: t-SNE visualizations for the various trained image encoders used. Normal class data has
been randomly undersampled.

t-SNE Visualizations Figure 4 showcases the t-SNE visualization from the ViT image encoders as
trained by the various models. We also include representations from a randomly initialized architecture,
as well as pretrained ViT and pretrained CLIP model checkpoints from Huggingface. With the
exception of ReportIT NormalBatch, all models that have been trained using text perform better than
the encoding architectures that do not, showcasing greater separation of malicious behavior from benign
data and having greater clustering altogether. The randomly initialized ViT visualization appears quite
diffuse in appearance, while the pretrained ViT models have more distinct clusters, even beginning to
separate more of the scenario 2 and 3 results from benign data. Both ReportIT PruneBatch and Report
ClassBatch perform the best, showing better separation of scenario 1 data from benign data than all
other models. ReportIT ClassBatch performs slightly better than ReportIT PruneBatch, having a larger
number of scenario 1 and 2 embeddings clustered away from the benign embeddings.

Figure 5: Results for linear evaluation (left) and finetuning (right) experiments.

Linear Evaluation and Finetuning Figure 5 and Tables 2 and 3 showcase the results for linear
evaluation and finetuning. ReportIT ClassBatch outperforms all other models for both experiments,
with the exception of balanced accuracy under linear evaluation where ReportIT PruneBatch performs
better. The overall best performing image captioning model across both experiments is ViT-GPT2, even
outperforming ReportIT PruneBatch in Recall and AUC under linear evaluation, and balanced accuracy

7

under finetuning. ReportIT NormalBatch performs well in Recall and AUC across both experiments,
but performs worse than alternatives in the other metrics.

Here we again see the benefits of using text to train encoders, as the best performing model trained
on text reports has a balanced accuracy that is 10% better and a precision that is 9% than the best
performing model without this training on linear evaluation. A similar situation occurs after finetuning;
the best performing model trained on text reports has a balanced accuracy that is 7% better and a
precision that is 12% better than the best performing model without this training. These results are
especially critical for insider threat detection as false positive in model detection mean an employee
that did nothing wrong was classified as having malicious intent. Since this could lead to an employee
losing his/her job, having a high precision is critical, and we see here we can achieve good precision
using only a small subset of labelled data after pre-training using text.

Figure 6: Results for the report generation task.

Report Generation Figure 6 and Table 4 showcase ReportIT in comparison to baseline models. As
expected, using a normal batch configuration leads to subpar performance, whereas PruneBatch and
ClassBatch allows ReportIT to better differentiate different image-text pairs, drastically improving
report retrieval performance. Of the image captioning models, ViT-GPT2 outperforms the other models,
which is to be expected due to GPT2 being specifically designed for the text generation task. ReportIT
PruneBatch and ReportIT ClassBatch outperforms all baseline models, indicating that taking advantage
of the relatively small space of potential insider threat reports leads to superior results. ReportIT
ClassBatch slightly outperforms ReportIT PruneBatch, indicating that the class-based representation of
text leads to superior image-text pairing.

The semb metric values computed via BERT are high for all model types evaluated, with ReportIT
NormalBatch outperforming image captioning models despite performing significantly worse than
them in all other metrics. However, this is due to the original semb metric proposed by by CXR-RePaiR
[68] requiring a model designed for the sentence similarity task. The cosine similarity metric typically
requires that all of the dimensions of a vector contribute equally, however this is not the case for
the original BERT model which is a language model that was not designed for such tasks. Indeed,
despite high sentence diversity among all possible reports, the lowest cosine similarity between BERT
embeddings was 0.6874, and the mean cosine similarity was 0.9318. We thus elect to also report semb

metrics derived from Sentence-BERT encodings for this analysis [70]. Using Sentence-BERT, we
achieve much lower cosine similarities among reports; the lowest cosine similarity between Sentence-
BERT embeddings was 0.0013, and the mean cosine similarity was 0.3651. Sentence-BERT semb

metric values appear to more closely match the trends seen by Precision, Recall, and F1 regarding
which models perform better than BERT semb metric values.

6 Conclusion

ReportIT takes the behavior image representations that have led to great detection accuracy and
returns insider threat reports that explain why the given image is malicious if so. This improves the
transparency of insider threat detection models, which can help reduce skepticism regarding their
use and deployment in industry. Additionally, by pretraining ReportIT’s image encoder using text
reports, we increase the label efficiency of the image encoder, reducing the costs and effort related to
creating the private datasets needed to deploy insider threat detection systems. We also propose two
novel contrastive learning training methodologies. We showcase that ClassBatch in particular leads
to impressive label efficiency and report generation results, indicating that this training methodology
works well for multimodal contrastive learning when one modality has higher diversity than the other.

8

References
[1] Verizon. Data breach investigations report, 2018.

[2] Tarzey. The insider security threat manifesto: Beating the threat from within, 2019.

[3] Verizon Enterprise Solutions. Data breach investigations report (dbir), 2019.

[4] Ponemon Institute. 2020 cost of insider threats global report, 2020.

[5] Roberts. Massive tjx security breach reveals credit card data, 2007.

[6] Zetter. Verisign hit by hackers in 2010, 2012.

[7] Linn Foster Freedman. Adobe settles proposed class action data breach case with award of 1.18
million for plaintiffs attorneys, 2015.

[8] Nathan Mcalone. A hacker is reportedly selling the stolen emails and passwords of 117 million
linkedin user, 2016.

[9] Sameer Khanna. Computer vision user entity behavior analytics. arXiv preprint arXiv:2111.13176,
2021.

[10] Steven Walker-Roberts, Mohammad Hammoudeh, and Ali Dehghantanha. A systematic re-
view of the availability and efficacy of countermeasures to internal threats in healthcare critical
infrastructure. IEEE Access, 6:25167–25177, 2018.

[11] Daniel S Berman, Anna L Buczak, Jeffrey S Chavis, and Cherita L Corbett. A survey of deep
learning methods for cyber security. Information, 10(4):122, 2019.

[12] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM
computing surveys (CSUR), 41(3):1–58, 2009.

[13] Gaurang Gavai, Kumar Sricharan, Dave Gunning, Rob Rolleston, John Hanley, and Mudita
Singhal. Detecting insider threat from enterprise social and online activity data. In Proceedings
of the 7th ACM CCS international workshop on managing insider security threats, pages 13–20,
2015.

[14] Liu Liu, Olivier De Vel, Chao Chen, Jun Zhang, and Yang Xiang. Anomaly-based insider threat
detection using deep autoencoders. In 2018 IEEE International Conference on Data Mining
Workshops (ICDMW), pages 39–48. IEEE, 2018.

[15] David Noever. Classifier suites for insider threat detection. arXiv preprint arXiv:1901.10948,
2019.

[16] Mohammed Nasser Al-Mhiqani, Rabiah Ahmed, Z Zainal Abidin, and SN Isnin. An integrated
imbalanced learning and deep neural network model for insider threat detection. International
Journal of Advanced Computer Science and Applications, 12(1), 2021.

[17] H He, Y Bai, EA Garcia, and S ADASYN Li. adaptive synthetic sampling approach for imbalanced
learning. ieee international joint conference on neural networks. In 2008 (IEEE World Congress
On Computational Intelligence), 2008.

[18] Balaram Sharma, Prabhat Pokharel, and Basanta Joshi. User behavior analytics for anomaly
detection using lstm autoencoder-insider threat detection. In Proceedings of the 11th International
Conference on Advances in Information Technology, pages 1–9, 2020.

[19] Duc C Le, Nur Zincir-Heywood, and Malcolm Heywood. Training regime influences to semi-
supervised learning for insider threat detection. In 2021 IEEE Security and Privacy Workshops
(SPW), pages 13–18. IEEE, 2021.

[20] Fanzhi Meng, Fang Lou, Yunsheng Fu, and Zhihong Tian. Deep learning based attribute classifi-
cation insider threat detection for data security. In 2018 IEEE Third International Conference on
Data Science in Cyberspace (DSC), pages 576–581. IEEE, 2018.

9

[21] Fangfang Yuan, Yanan Cao, Yanmin Shang, Yanbing Liu, Jianlong Tan, and Binxing Fang. Insider
threat detection with deep neural network. In International Conference on Computational Science,
pages 43–54. Springer, 2018.

[22] Lingli Lin, Shangping Zhong, Cunmin Jia, and Kaizhi Chen. Insider threat detection based
on deep belief network feature representation. In 2017 International Conference on Green
Informatics (ICGI), pages 54–59. IEEE, 2017.

[23] Jiange Zhang, Yue Chen, and Ankang Ju. Insider threat detection of adaptive optimization dbn for
behavior logs. Turkish Journal of Electrical Engineering & Computer Sciences, 26(2):792–802,
2018.

[24] Pratik Chattopadhyay, Lipo Wang, and Yap-Peng Tan. Scenario-based insider threat detection
from cyber activities. IEEE Transactions on Computational Social Systems, 5(3):660–675, 2018.

[25] Dorothy E Denning. An intrusion-detection model. IEEE Transactions on software engineering,
(2):222–232, 1987.

[26] Carrie Gates and Carol Taylor. Challenging the anomaly detection paradigm: a provocative
discussion. In Proceedings of the 2006 workshop on New security paradigms, pages 21–29, 2006.

[27] Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal
of educational psychology, 24(6):417, 1933.

[28] Prasanta Chandra Mahalanobis. On the generalized distance in statistics. National Institute of
Science of India, 1936.

[29] Madhu Shashanka, Min-Yi Shen, and Jisheng Wang. User and entity behavior analytics for
enterprise security. In 2016 IEEE International Conference on Big Data (Big Data), pages
1867–1874. IEEE, 2016.

[30] Larry Lunetta. The ciso’s guide to machine learning and user and entity behavioral analytics,
2012.

[31] Jamie Graves. Insider threat protection. ETSI Security Week, 2019.

[32] Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme. Fast context-
aware recommendations with factorization machines. In Proceedings of the 34th international
ACM SIGIR conference on Research and development in Information Retrieval, pages 635–644,
2011.

[33] Steffen Rendle. Factorization machines. In 2010 IEEE International conference on data mining,
pages 995–1000. IEEE, 2010.

[34] Immanuel Bayer. fastfm: A library for factorization machines. The Journal of Machine Learning
Research, 17(1):6393–6397, 2016.

[35] Baoming Tang, Qiaona Hu, and Derek Lin. Reducing false positives of user-to-entity first-access
alerts for user behavior analytics. In 2017 IEEE International Conference on Data Mining
Workshops (ICDMW), pages 804–811. IEEE, 2017.

[36] T Bussa, Avivah Litan, and T Phillips. Market guide for user and entity behavior analytics.
Gartner, 2018.

[37] Alex Pinto. Secure because math: A deep-dive on machine learning-based monitoring. Black Hat
Briefings, 25:1–11, 2014.

[38] Konrad Rieck. Computer security and machine learning: Worst enemies or best friends? In 2011
First SysSec Workshop, pages 107–110. IEEE, 2011.

[39] Robin Sommer and Vern Paxson. Outside the closed world: On using machine learning for
network intrusion detection. In 2010 IEEE symposium on security and privacy, pages 305–316.
IEEE, 2010.

[40] Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes imagenet good for transfer
learning? arXiv preprint arXiv:1608.08614, 2016.

10

[41] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer
learning? Advances in neural information processing systems, 33:512–523, 2020.

[42] Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. Transfusion: Understanding
transfer learning for medical imaging. Advances in neural information processing systems, 32,
2019.

[43] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and Data
Engineering, 2021.

[44] Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep neural networks:
A survey. IEEE transactions on pattern analysis and machine intelligence, 43(11):4037–4058,
2020.

[45] Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie Jegelka.
Debiased contrastive learning. Advances in neural information processing systems, 33:8765–8775,
2020.

[46] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in Neural
Information Processing Systems, 33:18661–18673, 2020.

[47] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems,
33:5812–5823, 2020.

[48] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

[49] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Manning, and Curtis P Langlotz.
Contrastive learning of medical visual representations from paired images and text. arXiv preprint
arXiv:2010.00747, 2020.

[50] Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, and
Furu Wei. Trocr: Transformer-based optical character recognition with pre-trained models. arXiv
preprint arXiv:2109.10282, 2021.

[51] Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed Elhoseiny. Visualgpt: Data-efficient
adaptation of pretrained language models for image captioning. arXiv preprint arXiv:2102.10407,
2021.

[52] Viktar Atliha and Dmitrij Šešok. Pretrained word embeddings for image captioning. In 2021
IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), pages 1–4.
IEEE, 2021.

[53] Vasiliki Kougia, John Pavlopoulos, and Ion Androutsopoulos. A survey on biomedical image
captioning. arXiv preprint arXiv:1905.13302, 2019.

[54] Nikhil Patwari and Dinesh Naik. En-de-cap: An encoder decoder model for image captioning. In
2021 5th International Conference on Computing Methodologies and Communication (ICCMC),
pages 1192–1196. IEEE, 2021.

[55] MD Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid Laga. A comprehensive
survey of deep learning for image captioning. ACM Computing Surveys (CsUR), 51(6):1–36,
2019.

[56] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image captioning with
semantic attention. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4651–4659, 2016.

11

[57] Jyoti Aneja, Aditya Deshpande, and Alexander G Schwing. Convolutional image captioning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5561–
5570, 2018.

[58] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

[59] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[60] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[61] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461,
2019.

[62] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[63] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[64] Joshua Glasser and Brian Lindauer. Bridging the gap: A pragmatic approach to generating insider
threat data. In 2013 IEEE Security and Privacy Workshops, pages 98–104. IEEE, 2013.

[65] Brian Lindauer, Joshua Glasser, Mitch Rosen, Kurt C Wallnau, and L ExactData. Generating test
data for insider threat detectors. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl.,
5(2):80–94, 2014.

[66] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[67] Alberto Fernández, Salvador García, Mikel Galar, Ronaldo C Prati, Bartosz Krawczyk, and
Francisco Herrera. Learning from imbalanced data sets, volume 11. Springer, 2018.

[68] Mark Endo, Rayan Krishnan, Viswesh Krishna, Andrew Y Ng, and Pranav Rajpurkar. Retrieval-
based chest x-ray report generation using a pre-trained contrastive language-image model. In
Machine Learning for Health, pages 209–219. PMLR, 2021.

[69] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[70] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019.

[71] Sameer Khanna. Conical classification for efficient one-class topic determination. In Findings of
the Association for Computational Linguistics: EMNLP 2021, pages 1662–1673, 2021.

[72] Kim T Gribbon and Donald G Bailey. A novel approach to real-time bilinear interpolation. In
Proceedings. DELTA 2004. Second IEEE International Workshop on Electronic Design, Test and
Applications, pages 126–131. IEEE, 2004.

[73] Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee, and Chiew Tong Lau. Autoencoder-based network
anomaly detection. In 2018 Wireless Telecommunications Symposium (WTS), pages 1–5. IEEE,
2018.

[74] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

12

[75] Kymie MC Tan, Kevin S Killourhy, and Roy A Maxion. Undermining an anomaly-based intrusion
detection system using common exploits. In International Workshop on Recent Advances in
Intrusion Detection, pages 54–73. Springer, 2002.

[76] Iffat A Gheyas and Ali E Abdallah. Detection and prediction of insider threats to cyber security:
a systematic literature review and meta-analysis. Big Data Analytics, 1(1):1–29, 2016.

[77] Amos Azaria, Ariella Richardson, Sarit Kraus, and VS Subrahmanian. Behavioral analysis of
insider threat: A survey and bootstrapped prediction in imbalanced data. IEEE Transactions on
Computational Social Systems, 1(2):135–155, 2014.

[78] Naghmeh Moradpoor Sheykhkanloo and Adam Hall. Insider threat detection using supervised
machine learning algorithms on an extremely imbalanced dataset. International Journal of Cyber
Warfare and Terrorism (IJCWT), 10(2):1–26, 2020.

[79] RG Gayathri, Atul Sajjanhar, and Yong Xiang. Image-based feature representation for insider
threat classification. Applied Sciences, 10(14):4945, 2020.

[80] Shuhan Yuan and Xintao Wu. Deep learning for insider threat detection: Review, challenges and
opportunities. Computers & Security, page 102221, 2021.

A Related Works (continued)

In this section, we expound on the methodologies of algorithms proposed by academia cited in the
Related Works section of the main manuscript.

Gavai et al. [13] proposed an Isolation Forest-based unsupervised approach for detecting insider threats
using network logs. They aggregate features that contribute most to the isolation of a data sample
within the tree to better ascertain why a user was tagged as anomalous.

Liu et al. [14] proposed an ensemble of deep autoencoders to unravel the non-linear relationships in log
data. A model is built from each autoencoder based on the extracted features from each log file. Finally,
the outputs are aggregated into a single model used to detect malicious insider activities. Unfortunately
this procedure has its limitations: returning subpar results for datasets from alternative sources, the
frequency based feature extraction methodology does not always provide the expected outcome, and
the one-hour interval considered for user behavior study does not provide enough resolution to identify
usage patterns.

Noever et al. [15] tried a variety of different learning algorithm families, concluding that Random
Forests with Randomization and Boosted Logistic Regression provided the best results after extracting
risk factors from data to create their feature vectors. While their results indicate that Boosted Logistic
Regression outperformed the former algorithm, Noever et al. advocate for the usage of Random Forests
in insider threat detection systems as they offer a deep but human-readable set of detection rules.

Noting that the vast majority of implementations suggested in recent publications suffer from a very
low accuracy of the minority class due to extreme class imbalance, Al-Mhiqani et al. [16] proposed an
intuitive way to tackle this issue. They combine adaptive synthetic sampling (AD) [17] with a deep
neural network (DNN) architecture to develop AD-DNN, an integrated model that improves the overall
detection performance of insider threats.

Sharma et al. [18] used a two-step process to detection via their Long Short-Term Memory Autoencoder
(LSTM-Autoencoder). First, it calculates the reconstruction error using the autoencoder fit on normal
data, and then utilizes a threshold based detection scheme to identify outliers. The identified outliers
are then classified as malicious behavior.

Le et al. [19] assessed various semi-supervised learning algorithms in conjunction with different
labeled data availability conditions. These conditions are designed to emulate real-world situations
representing the availability of various scenarios of ground truth.

Meng et al. [20] combined Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) and
Kernel Principal Component Analysis (PCA) for analysis of insider behavior. They compared well
against popular algorithms such as Support Vector Machines (SVM) and Isolation Forests, however it
is important to note that their approach was not compared with deep learning models.

13

Yuan et al. [21] identified that a user action sequence has a temporal dependency. They feed these
sequences to a Long Short-Term Memory (LSTM) network, which extracts user behavior features and
predicts the next user action. Various hidden states of the LSTM are then used to develop a fixed size
representation passed to a Convolutional Neural Network (CNN) for detection purposes.

It is beneficial to identify user behavior patterns within multi-domain scenarios. However, incorporating
multi-domain irrelevant features may hide the existence of anomalies within our data. Thus, Lin et
al. [22] formulated a hybrid method using Deep Belief Networks (DBN) for unsupervised feature
reconstruction, and One Class SVM (OCSVM) for insider threat detection. The usage of the DBN
provides a substantial performance uplift when compared to using OCSVM by itself, indicating a
promising direction for insider threat detection.

Lin et al. are not the only team that proposed using this network family; Zhang et al. [23] also focused
on using a DBN network, albeit within a supervised regime. First, feature learning is executed by
having each layer trained using the unsupervised learning method and the training results are adopted
as the input of the next layer. Finally, the entire network is fine-tuned by using supervised training. The
final output is determined after being fed through a softmax output layer.

Chattopadhyay et al. [24] proposed an insider threat detection approach based on classification of time-
series user activities. A cost-sensitive technique for data adjustment was used to randomly undersample
the instances belonging to the minority class. A deep autoencoder with two layers and a threshold
parameter was used for classification.

Khanna [9] noted the that traditional image encodings used by alternative methodologies did not
satisfy the weight sharing assumption required by the convolutional neural networks such methods
relied on, leading to brittle networks that performed poorly on unforseen attacks. Using the Natural
Language Processing model Conical Classification [71] to extract various features from log files,
Khanna proposed transforming the insider threat problem into a color detection problem using a novel
procedure to encode human behavior, leading to state of the art performance when used in tandem with
a dual-input classifier model.

B Generating Behavior Images

Representing Text as Greyscale Images Unlike traditional image encoding implementations that
utilizes interpolation [72] to facilitate this process, the state of the art approach Computer Vision User
Entity Behavior Analytics (CVUEBA) uses Sparse AutoEncoders.

SAEs in anomaly detection are typically trained on normal data only. The expectation is that the
reconstruction error will be noticeably higher on anomalies than it will on normal data, as anomalies
will be encoded differently and thus will be distributed away from normal data. A threshold parameter
is then used to separate vectors into normal and anomalous classes [73]. CVUEBA instead uses the
trained SAE hidden layer to automatically learn better feature representations from the given data [74].

To transform the SAE output values into a range of 0-255 suitable for images, CVUEBA first applies
Min-Max Scaling and proceed to multiply all values by 255. Both of these actions are done within the
model’s layers itself; testing has shown that performing the scaling in this manner improves speed, as
well as storage and memory requirements for training. The SAE has a hidden dimension of size 1024;
once output encodings are scaled, they are reshaped into 32x32x1 images. Figure 7a details the full
process used to convert text based log data into greyscale images.

Context-Channel Representations While we could feed these greyscale images directly into a
model for attack identification, it would be beneficial to have contextual information regarding the
typical behavior of a user. This would enable us to identify the sudden behavioral changes indicative
of an attack and mitigates the concerns regarding insider threat detection systems brought up by Tan
et al. [75]; by comparing a user’s behavior to their own previous behavior rather than performing the
comparison at the activity level via a detection regime, we mitigate the potential of attackers taking
advantage of detection loopholes and acting undetected.

CVUEBA provides this information by passing in behavior encodings for the previous two days in
addition to the current day we are evaluating. As shown in Figure 7b, we append the encoding for each
day as a different channel, leaving us with a color image for evaluation purposes.

14

Logon

Website
Access

Email
Activity

File Access

External
Drive Activity

LDAP
Information

Conical
Classification

Topics Of
Textual

Mediums

File Tree File Path
Variance

Feature Extraction

xm1

x1n

xmn

x11

Feature Encoding

Image Representation

(a)

Day Before Yesterday Yesterday Today

1. Develop greyscale images
(single channel) for current day

as well the previous two.

2. Stack each image on top of one
another such that each channel

corresponds to a day.

3. Resulting color image
enables us to identify dramatic
behavior changes at a glance.

(b)

Figure 7: Generating Color Image Encodings From Start to Finish. (a) Process flow from log files to
greyscale images. (b) Representing context behavior encodings as channels.

If a user is not acting malicious, there is little to no variation in behavior features from a day to day
basis; this leaves images representing benign behavior fairly grey in appearance. On the other hand,
malicious actions will indeed have changes in observed behavior, which will lead to colorful images.

This phenomenon is due to how RGB images work. The RGB scale is calibrated so that when a
given pixel’s red-green-blue numbers are equal, the pixel is represented as a shade of gray where
larger red-green-blue numbers lead to lighter shades of grey. The CVUEBA SAE model is trained
such that the red-green-blue numbers across all dimensions will be fairly similar to one another if a
user’s behavior is benign. Malicious behavior on the other hand will lead to drastic differences in the
red-green-blue numbers as the current information varies significantly from the contextual information
which leads to the image having a more colorful representation.

Benign Behavior Malicious Behavior

Figure 8: Benign vs Malicious Images.

As we can see in Figure 8, this allows malicious image representations to be identifiable, even by those
who are not security experts.

Context Changing Data Augmentation As the vast majority of employees within a company are
good-natured and do not have malicious intent [76, 77, 78, 16, 79], insider threat detection is a highly

15

imbalanced problem space. This poses problems for potential classification models, as during training
models will spend most of their time on the dominant class and will fail to learn enough from the
minority classes; decision boundaries either become too complex and we lose the ability to generalize to
unseen data, or minority sub-concepts are ignored altogether due to not providing enough discriminative
information to classifiers [67]. The data imbalance problem is one of the most important unsolved
challenges for current insider threat detection systems [80].

1. Select an attack image to
augment. 2. Separate into channels. 3. Swap contextual channel

information.
4. Restack to form our

augmented image.

(a)

1. Select an attack image to
augment as well as two benign

image encodings from the same
user, albeit from different days.

2. Separate into channels.
3. Replace original contextual

information with the benign
image encodings.

4. Restack to form our
augmented image.

(b)

Figure 9: Context Changing Data Augmentations. (a) Channel swapping augmentation. (b) Channel
replacement augmentation.

Note that two channels of each image consist solely of information that allows us to identify if the
current day’s behavior is malicious. Thus, we are able to swap out information held in these channels
and still possess a valid representation. CVUEBA augments our training set by swapping the positions
of the contextual channels; the channel corresponding to yesterday becomes the day before yesterday,
and the channel corresponding to the day before yesterday becomes yesterday. Additionally, CVUEBA
also randomly select days of benign behavior for the given user and use these to replace our contextual
information. Both forms of data augmentation performed as well as examples of final results are
illustrated in Figure 9.

16

C Results Tables

Tables providing numerical values for the results found in the results figures of the main manuscript
can be found below. The best performing value for each given metric is bolded.

Table 2: Baselines vs ReportIT Linear Evaluation. Values in brackets correspond to 95% confidence
interval.

Model Balanced Accuracy Precision Recall F1 Score AUC

ReportIT Class Batch 0.9282 [0.8458, 0.9703] 0.7842 [0.7616, 0.8054] 0.9612 [0.9389, 0.9815] 0.8565 [0.8375, 0.8740] 0.9796 [0.9684, 0.9896]
ReportIT Prune Batch 0.9324 [0.8932, 0.9665] 0.7673 [0.7463, 0.7869] 0.9563 [0.9317, 0.9765] 0.8422 [0.8238, 0.8588] 0.9770 [0.9645, 0.9870]

ViT-GPT-2 0.9080 [0.8182, 0.9592] 0.7428 [0.7235, 0.7630] 0.9575 [0.9331, 0.9803] 0.8213 [0.8033, 0.8394] 0.9773 [0.9651, 0.9887]
ViT-RoBERTa 0.8694 [0.7657, 0.9388] 0.7289 [0.7088, 0.7495] 0.9429 [0.9158, 0.9684] 0.8072 [0.7879, 0.8262] 0.9698 [0.9562, 0.9825]

ViT-BERT 0.8865 [0.7942, 0.9481] 0.7337 [0.7137, 0.7541] 0.9429 [0.9159, 0.9676] 0.8116 [0.7928, 0.8303] 0.9699 [0.9565, 0.9824]
ViT-BART 0.8918 [0.7954, 0.9469] 0.7304 [0.7096, 0.7491] 0.9418 [0.9132, 0.9655] 0.8085 [0.7872, 0.8253] 0.9693 [0.9549, 0.9811]

ReportIT Normal Batch 0.8460 [0.7151, 0.9404] 0.7264 [0.7064, 0.7462] 0.9584 [0.9326, 0.9800] 0.8065 [0.7881, 0.8253] 0.9775 [0.9647, 0.9884]
CLIP Pretrained 0.7900 [0.6639, 0.8894] 0.6932 [0.6753, 0.7111] 0.9219 [0.8896, 0.9507] 0.7711 [0.7517, 0.7897] 0.9588 [0.9426, 0.9731]
ViT Pretrained 0.8288 [0.7167, 0.9164] 0.6940 [0.6761, 0.7127] 0.9316 [0.9010, 0.9592] 0.7728 [0.7538, 0.7914] 0.9637 [0.9484, 0.9774]

Random Initialization 0.7616 [0.6390, 0.8614] 0.6552 [0.6391, 0.6708] 0.8992 [0.8644, 0.9327] 0.7293 [0.7106, 0.7470] 0.9467 [0.9292, 0.9633]

Table 3: Baselines vs ReportIT Finetuning. Values in brackets correspond to 95% confidence interval.
Model Balanced Accuracy Precision Recall F1 Score AUC

ReportIT Class Batch 0.9533 [0.8752, 0.9871] 0.8527 [0.8320, 0.8759] 0.9800 [0.9631, 0.9934] 0.9098 [0.8954, 0.9251] 0.9894 [0.9811, 0.9961]
ReportIT Prune Batch 0.9412 [0.8557, 0.9838] 0.8173 [0.7954, 0.8390] 0.9793 [0.9610, 0.9934] 0.8845 [0.8671, 0.9002] 0.9888 [0.9796, 0.9959]

ViT-GPT-2 0.9430 [0.8643, 0.9780] 0.7971 [0.7755, 0.8185] 0.9627 [0.9414, 0.9826] 0.8668 [0.8492, 0.8829] 0.9804 [0.9698, 0.9904]
ViT-RoBERTa 0.9048 [0.7977, 0.9716] 0.7831 [0.7622, 0.8044] 0.9584 [0.9340, 0.9815] 0.8553 [0.8377, 0.8729] 0.9781 [0.9659, 0.9897]

ViT-BERT 0.9225 [0.8461, 0.9685] 0.7733 [0.7525, 0.7944] 0.9618 [0.9384, 0.9821] 0.8478 [0.8298, 0.8658] 0.9798 [0.9680, 0.9899]
ViT-BART 0.8754 [0.7711, 0.9474] 0.7866 [0.7623, 0.8074] 0.9591 [0.9349, 0.9795] 0.8582 [0.8379, 0.8748] 0.9785 [0.9664, 0.9887]

ReportIT Normal Batch 0.9086 [0.8090, 0.9679] 0.7681 [0.7467, 0.7896] 0.9724 [0.9515, 0.9897] 0.8449 [0.8265, 0.8630] 0.9849 [0.9745, 0.9936]
CLIP Pretrained 0.8377 [0.7242, 0.9246] 0.7355 [0.7143, 0.7563] 0.9358 [0.9085, 0.9635] 0.8124 [0.7935, 0.8307] 0.9663 [0.9528, 0.9802]
ViT Pretrained 0.8882 [0.7919, 0.9438] 0.7243 [0.7040, 0.7436] 0.9348 [0.9040, 0.9623] 0.8022 [0.7822, 0.8206] 0.9657 [0.9503, 0.9794]

Random Initialization 0.8042 [0.6886, 0.8926] 0.6788 [0.6614, 0.6954] 0.9122 [0.8789, 0.9446] 0.7556 [0.7374, 0.7744] 0.9537 [0.9371, 0.9700]

Table 4: Baselines vs ReportIT Report Generation. Values in brackets correspond to 95% confidence
interval.

Model Precision Recall F1 Score semb (BERT) semb (Sentence-BERT)

ReportIT Class Batch 0.9987 [0.9854, 0.9988] 0.9986 [0.9862, 0.9988] 0.9960 [0.9847, 0.9988] 0.9994 [0.9718, 0.9999] 0.9993 [0.9916, 0.9994]
ReportIT Prune Batch 0.9712 [0.9500, 0.9920] 0.9690 [0.9500, 0.9920] 0.9687 [0.9500, 0.9920] 0.9824 [0.9500, 0.9970] 0.9844 [0.9608, 0.9949]

ViT-GPT-2 0.9019 [0.8934, 0.9100] 0.9018 [0.8932, 0.9092] 0.9016 [0.8928, 0.9096] 0.9259 [0.9216, 0.9298] 0.9231 [0.9101, 0.9309]
ViT-RoBERTa 0.8363 [0.8256, 0.8464] 0.8367 [0.8262, 0.8462] 0.8362 [0.8254, 0.8462] 0.9082 [0.9029, 0.9131] 0.8928 [0.8832, 0.8942]

ViT-BERT 0.8266 [0.8160, 0.8366] 0.8266 [0.8160, 0.8366] 0.8263 [0.8164, 0.8364] 0.9133 [0.9081, 0.9183] 0.8974 [0.8518, 0.9000]
ViT-BART 0.8156 [0.8060, 0.8234] 0.8156 [0.8060, 0.8465] 0.8158 [0.8064, 0.8343] 0.9233 [0.9081, 0.9302] 0.8489 [0.8431, 0.8807]

ReportIT Normal Batch 0.0313 [0.0220, 0.0460] 0.0254 [0.0105, 0.0347] 0.0323 [0.0213, 0.0358] 0.9254 [0.9356, 0.9155] 0.1192 [0.1108, 0.1327]

17

	Introduction
	Related Works
	Approach
	Experiments
	Results and Analysis
	Conclusion
	 Related Works (continued)
	Generating Behavior Images
	Results Tables

