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Abstract

Word embeddings are a common representation of linguistic data used in a variety
of natural language processing (NLP) applications. However, it is not exactly clear
what kind of information is being learnt during the training, and why it results in
embeddings that can serve as effective inputs for a variety of downstream NLP
tasks. This project studied how a variety of evaluation metrics change dynamically
over the course of training in word2vec, including both intrinsic evaluators (word
similarity and word analogy) and extrinsic evaluators (part-of-speech tagging and
named entity recognition), as well as a set of linguistics diagnostics. We found that
the metrics exhibited a number of clusters, including one cluster containing word
similarity, part-of-speech tagging, and named entity recognition, which are tasks
related to word categorisation. Another cluster contained word analogy, as well as
proportion of neighbours which are synonyms or associations, which are tasks that
rely more finely on the particular semantics of words. Together, these suggest that
word2vec learns how to categorise words with similar properties, before fine-tuning
the specific embeddings of words.

1 Introduction

Word embeddings are a common representation of linguistic data, used in a variety of natural language
processing (NLP) applications. One common word embedding model is the Skip-gram model of
word2vec [1], which aims to predict context words within a window given a central word. This
algorithm is straightforward to understand statistically, and a number of subsequent analyses have
further provided theoretical formulations for word2vec (e.g. [2, 3, 4]).

However, the interpretability of this algorithm remains challenging. It is not clear how simple
cooccurrence statistics in the input can result in models that capture meaningful linguistic information,
including morphosyntactic and semantic information, which enables such models to perform well
in various downstream NLP tasks. [5] In particular, there is very little work studying the learning
dynamics of word2vec. Typically, the only time-course information presented about such models
reflect scores related to the objective function (e.g. loss, accuracy, F-score); however, this does not
reflect the kinds of information learnt by the model, and how they vary over time.

As such, this project aims to understand how word2vec models change over the course of training. We
take snapshots of the model during training, and run evaluations and diagnostics on these snapshots
to understand how the linguistic information captured by the model evolves over time. The results
from these analyses thus help to render the learning process of word2vec more interpretable.
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2 Related Work

2.1 Interpretability

For machine learning applications, interpretability is important as it allows discovery, explanation,
control, and improvement of models [6]. Work in interpetability can generally be classified into
two categories [7]. The first is model-based interpretability, which refers to the design of models
with greater interpretability, either through having a simpler design, or by including proxies to
interpretability in the objective function. In particular, some research in word embedding models
have achieved this through explicitly encouraging words related to a particular concept to take large
values along a corresponding dimension [8], or through optimising for sparsity [9], among other
approaches.

The second approach is post-hoc interpretability, which refers to interpreting a model after it has
been trained through various types of probes. For example, it is possible to apply rotations [10] or
projections [11] to trained embedding models to improve their interpretability. Rogers et al. [12]
also proposed the Linguistic Diagnostics method, which measures properties of the embedding space
directly by quantifying relations that hold within neighbourhoods of a sample of words.

2.2 Evaluation

Simultaneously, models must be performant enough to be useful for application. There have been
many proposed methods of evaluating the performance of word embedding models (see e.g. [13, 14]),
which broadly fall into the categories of intrinsic and extrinsic evaluators. The former refer to
evaluators which examine the embeddings themselves in comparison with human judgements on
words, while the latter refer to evaluators which use embeddings for downstream NLP tasks. In
particular, Wang et al. [14] demonstrated that evaluators do not perform in parallel across models. As
such, it stands to reason that the properties captured by such evaluators may be learnt at different
rates during training.

2.3 Dynamics

There is much less work studying the dynamics of machine learning model. One recent example is a
work by Chang and Bergen [15] studying word acquisition in language models, quantified by change
in surprisal for a word over training. This approach allowed a greater understanding of the learning
process of the model, as well as the factors influencing its learning.

Drawing these three branches of related work together, the present project aims to evaluate a word
embedding model across time, permitting interpretation of the learning dynamics of the model and
its acquisition of linguistic information.

3 Approach

3.1 Training

We trained a word2vec model with Skip-gram negative sampling using the Gensim [16] port of the
original toolkit, with the default settings.1 We used the wiki2010 corpus [17] as the training data,
and took snapshots of the models every 100M words (i.e. 10 snapshots per epoch × 5 epochs = 50
snapshots per model). The randomly initialised model (i.e. the 0th snapshot) was also used as an
(internal) baseline.

3.2 Evaluation and diagnostics

These snapshots were evaluated on a set of intrinsic and extrinsic evaluators, which are a subset of
tasks from Wang et al. [14]. We selected tasks which would capture a variety of different aspects of
linguistic information (e.g. morphosyntactic and semantic), while reducing the number of tasks to

1Window size = 5, negative samples = 5, negative sampling exponent = 0.75, learning rate = linear decrease
over [0.025, 0.0001]
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ensure that computation is manageable (given that evaluation occurred over a much larger number of
embedding models).

We also measured the embedding models using the Linguistic Diagnostics Toolkit [12], which
provides metrics for a number of more granular linguistic properties. In particular, these diagnostics
reflect the relationships between words and their k closest neighbours, which provides a representation
of the organisation of the embedding space.

3.3 Analysis

The resultant evaluation and diagnostic metrics were collated and visualised to understand their
dynamics across the training of word2vec. We then conducted a correlation analysis to understand
how the various metrics clustered together.

4 Experiments

4.1 Evaluation

We employed two intrinsic evaluators—word similarity and word analogy—as well as two extrinsic
evaluators—part-of-speech (POS) tagging and named entity recognition (NER). The list of evaluation
tasks, as well as their corresponding datasets and evaluation metrics, is displayed in Table 1.

Table 1: List of intrinsic and extrinsic evaluators employed.

Task Dataset Metric
Word similarity WordSim-353 [18] Correlation (using cosine similarity)
Word analogy BATS [19] Accuracy (using LRCos [20])
POS tagging PTB [21] Accuracy
NER CoNLL’03 [22] F-score
SA IMDb [23] Accuracy

For word similarity, we used the inbuilt evaluation function in Gensim [16], which measures the
cosine similarity between words and the Pearson’s correlation between the similarity value and
human-rated similarities. We measured this on WordSim-353-Rel and WordSim-353-Sim [18], which
are two subsets of WordSim-353 [24] that specifically include related words and similar words
respectively.

For word analogy, we used the inbuilt evaluation function in Vecto [20], using the state-of-the-art
LRCos method [20] to measure performance on four balanced subsets of BATS [19]: inflectional
morphology, derivational morphology, encyclopaedic semantics, and lexicographic semantics.

For POS tagging and NER, we used a window-based feed-forward neural network with a window
size of 5, with inputs fed into a 300-unit hidden layer, followed by a hard tanh activation, then a
fully-connected output layer. Each model was trained for 10 epochs using the Adam optimiser [25]
with a batch size of 50 and a learning rate of 0.001. As in Wang et al. [14], the code for these tasks
were adapted from Chiu et al. [26], updated to conform to Python 3.

For SA, we used a convolutional neural network with filter sizes [3, 4, 5] and 100 filters per size.
The convolved outputs were passed through a ReLU activation, then max-pooled, concatenated, and
passed through a dropout layer, then a fully-connected output layer. Each model was trained for 5
epochs using the Adam optimiser with a batch size of 50 and a learning rate of 0.0001. The code for
this task was adapted from [27], which is a reimplementation of the algorithm from Kim [28].

For all the extrinsic evaluators, we used the standard splitting ratios for the train, validation, and test
sets. All embeddings were frozen during extrinsic evaluation.

4.2 Diagnostics

We used the Linguistic Diagnostics Toolkit [12] to measure properties of the embedding spaces. This
process involves choosing a sample of words, finding their k closest neighbours, and measuring the
relationships between the sampled word and its neighbourhood.
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We subsampled the original ldt909 wordlist to maintain a balanced sample across word frequency
and part of speech, additionally controlling for polysemy. This resulted in a total sample of 95 words
(ldt95).2 The distribution of the sample is shown in Table 2

Table 2: Distribution of words in ldt95 (monosemous / polysemous).

Frequency bin Nouns Verbs Adjectives Adverbs
100 1,000 3/3 3/3 3/3 3/3
1,000 10,000 3/3 3/3 3/3 3/3
10,000 100,000 3/3 3/3 3/3 3/3
>100,000 3/3 2/3 3/3 3/3

We used k = 10 and measured neighbourhood properties in shared morphology (shared POS,
shared morphological form, shared derivation), semantic relations (synonyms, antonyms, meronyms,
hyponyms, hypernyms), and psychological relations (associations). The resultant diagnostics reflect
the proportion of neighbours which satisfy each relationship with the sampled word.

4.3 Analysis

We calculated the Pearson’s correlation coefficient between all pairs of metrics using the FactoMineR
package in R, and plotted the values on a correlogram.

5 Results

5.1 Dynamics

The dynamics of the various evaluators and linguistic diagnostics are shown in Figure 1.

Qualitatively, there appear to be some metrics which grow rapidly initially, and then plateau relatively
quickly (e.g. POS tagging, NER, word similarity). In contrast, there are other metrics which continue
to increase over the course of training (e.g. BATS, synonyms, associations). This suggests that there
are some properties of the embedding space which are quickly acquired, whereas others are learnt
more gradually over the course of training.

5.2 Correlation analysis

The correlogram of the evaluators and linguistic diagnostics is shown in Figure 2.

There are three particular clusters of tasks that exhibit high correlation (r > .8 for most correlations
within the cluster). The first includes both word similarity measures, as well as POS tagging and
NER. Conceptually, these tasks rely on categorisation of words—grouping words with similar
properties (e.g. sharing semantic features or POS), such that high performance is achievable when
word categories occupy small-enough clusters within the embedding space.

The second cluster includes the analogy tasks, as well as the synonyms and associations diagnostics.
Conceptually, these tasks rely more on the specific embeddings of words, such that the exact direction
of the word vector is much more important. This would result in synonyms and associations occurring
close together within small neighbourhoods, and would also allow for the elucidation of the correct
result for analogy tasks (which rely on “parallel” differences between word vectors).

A third cluster involves the shared POS and shared morphological form diagnostics. This cluster
seems to be less important as it does not correlate strongly with any evaluation task. However, it
does suggest that morphological form is one aspect of words that embedding models learn quickly,
perhaps due to the fact that words of a similar form (i.e. sharing affixes, or both being lemmas) often
occur in similar subcategorisation frames.

2The incomplete highest frequency bin for verbs is due to discarding words belonging to multiple POS, as in
the original ldt909.
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Figure 1: Dynamics of evaluation and diagnostic metrics over training.

6 Discussion

Over the course of training, word2vec first learns word similarity, POS tagging, and NER, followed
by analogy, synonyms, and associations. This suggests that word2vec first learns to cluster words
into relevant categories, which are then maintained as the specific semantics (i.e. specific directions
of the embeddings) are fine-tuned. Notably, this occurs without any direct training on categorisation;
rather, the explicit objective function merely relates to distributional characteristics of the training
corpus. This suggests that the relevant categories that arise result directly from the cooccurrence
statistics of the text; for example, nouns are commonly found before verbs in English, since subjects
are often nouns.

These results also differ in interesting ways from previous results, including those from Rogers et
al. [12] and Wang et al. [14]. Notably, they found lower, or even negative, correlations between word
similarity and POS tagging/NER. The key difference between their studies and the present project is
that they examined metrics across different models, whereas our project examined metrics across
different time points of the same model. This suggests that the relationship among these evaluators
holds specifically for word2vec, rather than being a relationship inherent in the task of learning word
embeddings.

Indeed, more dynamics research is required to understand the learning processes of other word embed-
ding models, and to determine which aspects are model-agnostic and which are model-dependent. For
example, models that include subword representations (e.g. [29, 30, 31]) may learn morphology more
quickly, since much of English inflectional and derivational morphology is marked by overt affixes
that are much more easily captured at the subword level. In contrast, encyclopaedic information
is likely to require substantial training for any model, since such information is learnable only via
exposure to such information in the training corpus. We also hypothesise that the categorisation-
then-tuning learning paradigm is likely to be consistent across models, since it seems to depend on
statistics in the input rather than the specific optimisation function.
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Figure 2: Correlogram of evaluation and diagnostic metrics.

Another point of interest is the relatively flat performance curves of the extrinsic evaluators. Notably,
all three tasks reached within 2% of optimum performance within 4 snapshots (i.e. under 0.5
epochs). This suggests that the benefit of pretraining embeddings is quickly saturated, and subsequent
pretraining does not significantly contribute to improved downstream performance. Since other
tasks (e.g. analogy) do not show this pattern of early plateauing, it is unlikely that this is due to the
embeddings remaining stagnant in quality. Rather, this suggests that these particular downstream
tasks do not rely on very fine-grained information captured in word embeddings.

One important limitation to note that the concept of “categorisation” was inferred from the theoretical
foundations of the evaluators used in this project, rather than measured directly. As such, there
remains important future work that directly measures change in categorisation over time. One way to
approach this relies on existing datasets of categories (in fact, possibly including the BATS datasets),
and measuring the extent to which they form meaningful clusters (e.g. by measuring the average
distance to the centroid across categories). This would allow us to explicitly test the hypothesis that
word2vec learns about categorisation early and quickly.

7 Conclusion

In summary, word2vec learns to categorise words more quickly, then fine-tunes specific embeddings
within those categories. As such, rather than acquiring specific dimensions of linguistic information
at different rates (e.g. morphosyntactic vs semantic information), the structure of the embedding
space changes at different rates over training. This result helps to render the training process of
word2vec more interpretable, and further supports the utility of research studying the dynamics of
machine learning models as a method of understanding their learning processes.
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