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Abstract

The automatic generation of highly clinically accurate radiology reports could
improve clinical outcomes by reducing radiologist workload, prioritizing severe
cases, and augmenting existing radiograph processing pipelines.
In this project, we are going to focus on an encoder-decoder models for a generative
approach, and retrieval model approach based on existing radiology reports.

1 Introduction

There has been a recent interest and developments in the automatic generation of radiology reports
by analyzing chest X-ray images. Such a technology would reduce the workload of radiologist,
streamline the clinical process and speed up the necessary medical intervention preventing serious
illnesses or undesired outcomes. AI technologies has already shown a promising results in detection
and labeling of several diseases from X-ray images such as CheXbert, CheXpert Labeler. Natural
next step would be to generate radiology reports directly by analyzing these chest X-ray images.

Figure 1: Example of Report Generation

Although NLP technologies has also advanced dramatically and generate very convincing, realistic
documents from given prompts, medical nature of the problem requires special attention while
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designing the solutions. First and foremost concern is the clinical efficacy of generated reports. Usual
metrics used to evaluate NLP systems are not sufficient and maybe even misleading to evaluate the
performance of automatic report generation system since subtle changes in the language may have a
profound results in the medical outcome.

There are two more significant differences of diagnostic image captioning compare with generic
image captioning:

• Commonly, reports from diagnostic image captioning are significantly longer than results of
generic image captioning.

• Generic image captioning don’t have any time series information, but diagnostic reports
often refers to the long history of research. So it can be used in report generation.

2 Related Work

2.1 Approaches

Many methods have been proposed to to solve the task of medical report generation. There are three
the most common approaches for automatic chest x-ray report generation:

• Template-based approach, where we classify whether certain conditions are present or not,
and then retrieve the corresponding template sentence for each condition.

• Retrieval-based approach, where we reuse text from previous similar examples.

• Generation-based approach, where we use an image-encoder + text-decoder architecture
that encodes the image and then decodes that into a sequence of words.

Usually methods of medical report generation employs generation - based approach which is repre-
sented by the model with encoder - decoder architecture. [1] and [2] are the two most relevant to our
work in automatic x-ray report generation. Both work uses image encoder text decoder architecture
as the backbone with some differences in the pretrained image encoder and the implementation of the
transformer decoder. Most notable contribution comes from the used loss functions in these works.
[2] uses contrastive loss between K-means clustered documents according to their embedding space
representation from ChexBert labeler. [1] uses exact entity match reward for named entities as well
as factual consistency reward with NLI function.

Despite on their simplicity, retrieval - based approaches, where we reuse text from previous exams
based on some similarity metrics, show competitive results and even outperform more complex
generation-based approaches. It might be because medical reports are too restrictive due to limited
number of potential findings and use template - based language. At the same time retrieval - based
method can assist in extracting the actual knowledge presented on chest x-ray image. Hence, reports
with the same findings might look similar or even the same.

2.2 Datasets

There are five well-known datasets that can be used for Chest X-Ray report generation training and
evaluation: IU X-RAY, PEIR GROSS, ICLEF CAPTION, MIMIC-CXR, and CheXpert.

Dataset Train Instances Test and Validate
Instances

Total

IU X-RAY 6,674 756 7,430
PEIR GROSS 6,698 745 7,443
ICLEF CAPTION 200,074 22,231 232,305
MIMIC-CXR 368,960 8,150 377,110
CheXpert 224,316 500 224,816

Due to the different shortcomings, small size in PEIR GROSS, and ICLEF CAPTION, extremely big
size of MIMIC-CXR, and difficulty in getting access to it, we are going to focus on IU X-RAY and
CheXpert datasets in our project.
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3 Approach

3.1 Template-based approach

The main goal of this project is to explore NLP-related research. Template-based approach seemed the
most restrictive and did not look having much space for research, so we didn’t work on it. However,
the multi label classification model that is used in this approach can be applied in generative-
based approach to improve results. It can be done by concatenating classes probabilities results of
classification model with encoder outputs of the generated-based model. The code can be found in
github. [3]
To train this classification model we used EfficientNet-B5, where replaced last layer with Linear
layer that output 14 classes. Initial model was pretrained on ImageNet, last layer was initialized with
Xavier initialization. Since we are approaching multilabel classification, as a loss function we are
using binary cross-entropy for sigmoid of each class and finally average it out.

3.2 Retrieval-based approach

Retrieval-based approaches are less restrictive than template - based but they are much more simple
than generative - based ones. That is why as a baseline, we decided to use this approach as described
in [4] using the Mean@k-NN method. This method uses the image encoding to retrieve text tags from
a dataset of human generated report tags to automatically generate a report for the x-ray image.

For the retrieval method, a dense network model is used to extract embeddings from x-ray images.
A tuned parameter k is used to retrieve the k most similar images by cosine similarity of image
embeddings. The model returns i of the common tags between the k imaegs where i is the average
number of tags among the k most similar images.

3.3 Generation-based approach

Our work also follow from the that of [2] and [1] with some differences in the image encoder, text
decoder architecture as well as loss function. We use [5] UNet pretrained on brain MRI images as
an image encoder. Although MRI and X-Ray images are different, we believe model pretrained on
medical images are more appropriate as an image encoder compared to ImageNet pretrained models.
Standard transformer encoder/decoder layers follow the pretrained UNet image encoder. Finally we
use Cross Entropy Loss at the output of the text decoder.

UNet encoder takes an 3 channel input image of size (256,256) and output is a one-channel probability
map of abnormality regions with the same size as the input image. Pretrained model is part of PyTorch
hub and more details are available at [5]. The 256x256 UNet output is projected on to embedding
space of size 760 with a sequence length of 256 and position embedding is added to the projected
output. Position embedded added representation is used as an input to the 1 layer transformer encoder
followed by 2 layer transformer decoder. Both encoder and decoder has 36 attention heads, Feed
Forward layer of size 2048 and gelu activation. Decoder output is projected with Linear layer from
embedding size to vocabulary size. During training, ground truth report is tokenized and tokenized
sequence is projected into embedding space of 760 again. Cross entropy loss is calculated at the
output of the decoder by shifting the ground truth report by one word.

To regulate the training and prevent overfitting, we used dropout rate of 0.3 after position embedding,
within the both encoder and decoder layers and after target sequence embedding.

During inference, we started with the <start> token to indicate the start of the sentence. Then we
concatenated highest probability word from the decoder output to the previous word to continue
sentence generation until the <eos> token is generated. We didn’t implement beam search.

As a starter code, we used parts of trainer.py and utils.py from the minGPT [6] repository. model.py
which includes the model has been developed from scratch. Use of UNet is a novel approach to the
best of our knowledge that has not been tried before as well as adding the labels to the image encoder
representations. Our code base could be reached at [7].

As shown in Figure 2, we also experimented with concatenating labels from chest X-Ray images
with the embeddings from UNet and observed modest improvement in the BLEU results. We used
pretrained DenseNet from TorchXRayVision package [8] for chest X-Ray label extraction. We also
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Figure 2: Generation Based Image Encoder/ Text Decoder

experimented with Contrastive Loss by using the labels from CheXbert Pathology Labeler to contrast
the embeddings at the transformer decoder output.

4 Experiments

4.1 Data

We used IU X-Ray dataset that includes frontal and lateral images alongside with their reports. We
specifically used frontal images in our network and findings sections from the reports as a ground
truth report. After filtering out lateral images, images with empty reports and duplicate reports, we got
a dataset size of 1952 samples for training, and 488 samples for validation. We created a vocabulary
from the findings section of the reports and had a vocabulary size of 1947 with cased words. We
experimented with uncased vocabulary of size 1591 too. We expected that results would improve
with smaller vocabulary size but results indicated the other way. We reason that cased vocabulary
helps in decoding process by indicating end/beginning of sentences which helps better decoding. We
also experimented with WordPieceTokenizer to handle variations of the same word and expected
better results. The results indicated the otherwise.

4.2 Evaluation method

We used clinical efficacy metric derived from correctly extracted labels from generated documents
by CheXbert labeler. Additionally, we used BLEU scores to measure the similarity of the generated
text to the original one. For retrieval tag generation, clinical efficacy was determined by the percent
number of images with all of the correct tags retrieved and no extraneous tags out of the total number
of tested. Tag generation accuracy was determined by the percent similarity of tags between the
generated and ground truth.
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4.3 Experimental details

The classification model, trained on Chexpert dataset, demonstrate the following accuracy on valida-
tion part of the dataset:

Class Accuracy Class Accuracy
No Finding 73.93% Pneumonia 96.16%
Enlarged Cardiomediastinum 53.42% Atelectasis 61.54%
Cardiomegaly 70.51% Pneumothorax 95.23%
Lung Opacity 49.15% Pleural Effusion 76.50%
Lung Lesion 99.15% Pleural Other 99.57%
Edema 80.77% Fracture 100%
Consolidation 85.90% Support Devices 79.91%

As we can see, some classes are predicted almost perfectly, when a few others are not much better
than choice. It can be improved by introducing weighted binary cross-entropy loss where larger
weights are introduces to classes that harder to predict.

The retrieval baseline method image embedding model was trained on the IU X-Ray dataset as
described. The parameter k was then trained on a 40% split of the data to maximize tag generation
accuracy. The remaining 60% of the images were used to test the performance of the tag generation.

Most of our experiments included basic image encoder+transformer encoder/decoder with cross
entropy loss. We experimented with ResNet18 in addition to standard UNet configuration as an image
encoder. We also experimented with concatenating image encoder output with labels from CheXpert
labeler. In the real world scenario, CheXpert labeler output will not be available but TorchXRayVision
probability outputs will be available. We tried to integrate TorchXRayVision models for more realistic
scenario but there were PyTorch version issues.

During training we used batch size of 16 and learning rate of 1e-3 with a cosine learning rate decay.
We ran training until after the test loss has gone above the 5% of the minimum test loss. Test loss
generally reached to its lowest around epoch 4/5 and continued to rise above 5% until epoch 8/9.
Figure 4 in Appendix A shows the training and test losses over several epochs. Each epoch took
approximately 31 seconds with data running parallel on 2 RTX 3090.

4.4 Results

We have summarized ours and most recent/relevant papers results in Figure 3. The Retrieval baseline
model Mean@k-NN scored .78% tag generation accuracy and 0% clinical efficacy. In Poster
session, our numbers were coming from weighted average results and were very high. This is due
to unbalanced nature of data with very high numbers of class 2 (no mention). This time we are
reporting average of macro average results for each label. Detailed results for each label can be
found in Appendix A. In Appendix A, we also reported results from UNet and ResNet18 when
their outputs are concatenated with CheXbpert Labeler outputs. We couldn’t finalize the integration
of TorchXRayVision labeler in time for more realistic inference scenario. But we believe that
concatenated results from CheXbert Labeler also points to the benefit of using labels as a conditioner
for transformer decoder.
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Figure 3: Comparision of different models and ours. 1)The micro average of accuracy, precision,
recall, and F1 scores are calculated over 5 observations for: atelectasis, cardiomegaly, consolidation,
edema, and pleural effusion 2)It is not explicitly stated but we concluded that WCL results are macro
average over all 14 observations 3)Macro average results of our models over 14 observations.

Figure 4: Training and Testing loss (averaged out over entire epoch)

5 Analysis

The retrieval baseline performed poorly in both metrics particularly in the “normal” tag generation
(0 tags generated) case. Without using a specially trained tag generation model such as CheXpert
labeler, the clinical accuracy based on image encoding and naive tag retrieval alone is poor. The
model often attempts to retrieve incorrect tags of low probability to hit the required mean number of
tags per image. This is particularly common as the k parameter was found to be 5 therefore 5 images,
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even those with low cosine similarity, are retrieved and skew the mean parameter of tags to retrieve.
This leads to the low tag generation accuracy and an experimentally found 0% clinical efficacy.

Generation based results are very promising especially when looked into the other literature results.
Our results are also comparable considering that only small set of IU X Ray frontal images and
Cross Entropy Loss is used. But there are some problems stemming from the unbalanced nature of
the dataset. We were only able to use IU XRay but unbalanced nature has been reported on other
datasets too. This makes the results rather unbalanced too resulting in high deviation in performance
for each pathology type. Therefore another line of research would be to experiment with different
augmentation techniques to make the datasets more balanced. Smaller number of pathology cases
could be upsampled by augmenting their x-ray images.

We explored different types of image encoders; ResNet18 and UNet. Experiment results show that
image encoders specifically trained on medical images perform better. There are some chest x ray
image pretrained models in the [8] package but we were unable to use those models due to PyTorch
compatibility issues. UNet is the closest one to the medical images which are trained on brain MRIs.
ResNet18 is trained on the ImageNet. If one can uses chest x ray pretrained image encoder, we expect
much better results.

We also explored the use of auxiliary input on the transformer decoder in addition to image encoder
output. Specifically we used pathology labels from CheXpert labeler. We were planning to integrate
TorchXRayVision labeler but encountered problems. Including pathology labels along with image
encoder outputs at the decoder side improved results in most of the pathology types. This indicates
that multiple models trained on the chest xray images for different tasks may improve results by
capturing more information about the chestxray images. E.g. UNet trained for image segmentation
and CheXpert Labeler for pathology types.

6 Conclusion

6.1 Summary of results and significance of the work

Retrieval is useful for a baseline methodology as it is quick to train and produce grammatically and
syntactically correct results, however struggles to improve in clinical accuracy without augmentation
from another classification input such as CheXpert. Generation based approach offers many avenues
of research, more specifically including different types of loss functions and joint optimization of
them like used in [1], different pretrained image encoders, using auxiliary input like pathology labels
for transformer encoder or image encoders pretrained for different tasks; e.g. segmentation, label
classification and/or autoencoder.

6.2 Ideas for future work

To improve this work and get high-accuracy generated medical reports, we should focus on the
following directions:

• Modify loss function for the trained multi class multi label classifier and use it as an
additional input to encoder-decoder model.

• Experiment with lateral images from IU X-ray dataset.
• Use MIMIC-CXR dataset from MIT to training and validate our models.
• Experiment with different model architectures and different training techniques.

6.3 Code

• https://github.com/dhesin/xray-report-gen (Main generation-based approach)
• https://github.com/atimashov/cxr-report-generation (classification for find-

ings and retrieval-based approach)
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A Appendix

UNet Only UNet+CheXpertLabels ResNet-18 Only ResNet18+CheXpertLabels
BLEU-1 0.328 0.315 0.288 0.317
BLEU-2 0.113 0.133 0.087 0.127
BLEU-3 0.053 0.075 0.036 0.066
BLEU-4 0.029 0.047 0.021 0.037
BLEU-5 0.014 0.032 0.013 0.022

Class Labels: -1: Uncertain, 0: Negative, 1: Positive, 2:No Mention

UNet Only UNet+CheXpertLabels
No Finding precision recall f1-score support f1-score

1 0.22 0.29 0.25 133 0.49
2 0.70 0.63 0.66 354 0.69

accuracy 0.53 487 0.61
macro avg 0.46 0.46 0.46 487 0.59

weighted avg 0.57 0.53 0.55 487 0.63

UNet Only UNet+CheXpertLabels
Enlarged Cardiomediastinum precision recall f1-score support f1-score

-1 0.00 0.00 0.00 41 0.45
0 0.53 0.99 0.69 260 0.75
1 0.00 0.00 0.00 24 0.06
2 0.00 0.00 0.00 162 0.65

accuracy 0.53 487 0.66
macro avg 0.13 0.25 0.17 487 0.48

weighted avg 0.28 0.53 0.37 487 0.66
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UNet Only UNet+CheXpertLabels
Cardiomegaly precision recall f1-score support f1-score
-1 0.00 0.00 0.00 6 0.00
0 0.00 0.00 0.00 270 0.88
1 0.00 0.00 0.00 63 0.72
2 0.30 1.00 0.47 148 0.87
accuracy 0.30 487 0.85
macro avg 0.08 0.25 0.12 487 0.62
weighted avg 0.09 0.30 0.14 487 0.84

UNet Only UNet+CheXpertLabels
Lung Lesion precision recall f1-score support f1-score
-1 0.00 0.00 0.00 2 0.00
0 0.00 0.00 0.00 20 0.00
1 0.00 0.00 0.00 24 0.20
2 0.91 1.00 0.95 441 0.94
accuracy 0.91 487 0.89
macro avg 0.23 0.25 0.24 487 0.29
weighted avg 0.82 0.91 0.86 487 0.86

UNet Only UNet+CheXpertLabels
Lung Opacity precision recall f1-score support f1-score
-1 0.00 0.00 0.00 12 0.00
0 0.14 0.01 0.01 130 0.31
1 0.18 0.35 0.24 93 0.38
2 0.51 0.59 0.54 252 0.75
accuracy 0.38 487 0.60
macro avg 0.21 0.24 0.20 487 0.36
weighted avg 0.33 0.38 0.33 487 0.55

UNet Only UNet+CheXpertLabels
Edema precision recall f1-score support f1-score
-1 0.00 0.00 0.00 4 0.00
0 0.00 0.00 0.00 24 0.40
1 0.00 0.00 0.00 3 0.00
2 0.94 1.00 0.97 456 0.97
accuracy 0.94 487 0.95
macro avg 0.23 0.25 0.24 487 0.34
weighted avg 0.88 0.94 0.91 487 0.93

UNet Only UNet+CheXpertLabels
Consolidation precision recall f1-score support f1-score
0 0.33 0.01 0.01 174 0.56
1 0.00 0.00 0.00 4 0.00
2 0.63 0.91 0.75 309 0.87
accuracy 0.58 487 0.77
macro avg 0.32 0.31 0.25 487 0.48
weighted avg 0.52 0.58 0.48 487 0.75

UNet Only UNet+CheXpertLabels
Pneumonia precision recall f1-score support f1-score
0 0.00 0.00 0.00 12 0.59
1 0.00 0.00 0.00 2 0.00
2 0.97 1.00 0.99 473 0.99
accuracy 0.97 487 0.98
macro avg 0.32 0.33 0.33 487 0.53
weighted avg 0.94 0.97 0.96 487 0.98
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UNet Only UNet+CheXpertLabels
Atelectasis precision recall f1-score support f1-score
-1 0.00 0.00 0.00 15 0.00
1 0.00 0.00 0.00 18 0.00
2 0.93 1.00 0.96 454 0.96
accuracy 0.93 487 0.93
macro avg 0.31 0.33 0.32 487 0.32
weighted avg 0.87 0.93 0.90 487 0.90

UNet Only UNet+CheXpertLabels
Pneumothorax precision recall f1-score support f1-score
-1 0.00 0.00 0.00 1 0.00
0 0.81 0.99 0.89 394 0.86
1 0.00 0.00 0.00 6 0.08
2 0.00 0.00 0.00 86 0.63
accuracy 0.80 487 0.79
macro avg 0.20 0.25 0.22 487 0.39
weighted avg 0.65 0.80 0.72 487 0.81

UNet Only UNet+CheXpertLabels
Pleural Effusion precision recall f1-score support f1-score
-1 0.00 0.00 0.00 8 0.00
0 0.79 0.99 0.88 387 0.87
1 0.00 0.00 0.00 9 0.13
2 0.00 0.00 0.00 83 0.55
accuracy 0.79 487 0.78
macro avg 0.20 0.25 0.22 487 0.39
weighted avg 0.63 0.79 0.70 487 0.79

UNet Only UNet+CheXpertLabels
Pleural Other precision recall f1-score support f1-score
-1 0.00 0.00 0.00 2 0.00
1 0.00 0.00 0.00 6 0.00
2 0.98 1.00 0.99 479 0.99
accuracy 0.98 487 0.98
macro avg 0.33 0.33 0.33 487 0.33
weighted avg 0.97 0.98 0.98 487 0.98

UNet Only UNet+CheXpertLabels
Fracture precision recall f1-score support f1-score
-1 0.00 0.00 0.00 2 0.00
0 0.00 0.00 0.00 6 0.00
1 0.00 0.00 0.00 22 0.00
2 0.94 1.00 0.97 457 0.97
accuracy 0.94 487 0.94
macro avg 0.23 0.25 0.24 487 0.24
weighted avg 0.88 0.94 0.91 487 0.91

UNet Only UNet+CheXpertLabels
Support Devices precision recall f1-score support f1-score
0 0.00 0.00 0.00 5 0.00
1 0.00 0.00 0.00 24 0.00
2 0.94 1.00 0.97 458 0.97
accuracy 0.94 487 0.94
macro avg 0.31 0.33 0.32 487 0.32
weighted avg 0.88 0.94 0.91 487 0.91
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