
SpARC: Sparsity Activation Regularization for
Consistency

Stanford CS224N Custom Project

Sarthak Consul
Dept. of Computer Science

Stanford University
sarthakc@stanford.edu

Samar Khanna
Dept. of Computer Science

Stanford University
samar99@stanford.edu

Julia Xu
Dept. of Computer Science

Stanford University
juliaxu@stanford.edu

Abstract

Transformers, while powerful language models, have a tendency to lack logical
consistency in their beliefs [1]. Large language models such as T5 may simultane-
ously believe “A bird can fly" and “A bird cannot fly" [2]. In this work, we aim to
finetune large language models to make them logically consistent. Specifically, we
show that sparsifying model activations and increasing model modularity yields
gains in both model accuracy and consistency. To achieve these improvements, we
design a method of jointly penalising model activations through the L1 norm and
employing a contrastive similarity loss between pairs of “similar" and “dissimilar"
facts. We perform qualitative analysis of the model attention weights and find a
correlation between increased sparsity and increased consistency. Code is available
at https://github.com/SConsul/SpARC/.

1 Key Information
• TA mentor: Eric Mitchell
• No External Collaborators, No External Mentors, No sharing of project

2 Introduction

Language models store large amounts of linguistic data and contain extensive world knowledge
from which relational knowledge can be captured [3]. Although it is possible to recover factual and
commonsense knowledge, the problem that arises the ability to maintain a consistent set of beliefs
in pretrained language models (PTLM) [1]. During pre-training, logical consistency in language
models can be difficult to achieve [2, 4]. Logical consistency is the notion that a model will reason
consistently over a set of implications. For example, given a set of implications: “A lion is a mammal”
and “A mammal is a vertebrate,” we want to correctly answer the question: “Is a lion a vertebrate?”
Logical consistency is an interesting and important problem because we want to create language
models that are consistent and non-contradictory for more accurate and reliable outputs.

BeliefBank [1] attempts to address the issue of logical consistency by embedding a PTLM with a
systemic notion of belief and consistent knowledge of the world. They augment the model with a
system of global memory, which is a component that does not require finetuning the model. However,
this work doesn’t directly target the issue of enforcing consistent beliefs during training. BeliefBank
additionally requires a targeted and specific dataset containing facts and constraints, which may not
be readily available. Instead, we enforce consistency during the finetuning stage, without explicitly
requiring constraints. By enforcing logical consistency in the model during learning, we aim to
address the root of the issue. We build on the idea of [5], which argues that imposing modularity in
neural networks would allow for the modules to be reused for a greater consistency in networks. We
finetune a pretrained MACAW-large [6] transformer with an auxiliary loss during the that penalizes
the network for non-sparse activations when given similar prompts.

Stanford CS224N Natural Language Processing with Deep Learning

https://github.com/SConsul/SpARC/

The goal of our project is to enforce logical consistency on a pretrained language model (PTLM). We
regularise model activations to make PTLMs logically consistent such that similar beliefs correspond
to similar sub-parts of the network. In regular PTLMs, the noisiness of encoding a large variety of
inputs in any sub-part of the network results in poor consistency. We test the hypothesis that network
modularity will prevent the model from conflating inconsistent facts. From our experiments, we
conclude that modular activations promise better logical consistency. Our original contributions are
summarized as follows:

1. Build upon the BeliefBank dataset from given consistency graphs and facts to create a
dataset suited for consistency evaluation. Establish accuracy and consistency baselines.

2. Finetune a raw QA model baseline via adapters [7] that leads to increased accuracy and
consistency over finetuning the entire model, or finetuning just the final layer.

3. Achieve a 4.3% gain in consistency over the finetuned baseline using our L1 and similarity-
based loss metrics.

4. Perform qualitative analysis of model attention weights and demonstrate a correlation
between increased sparsity and increased consistency.

3 Related Work

Logical Consistency Language models can be trained to perform consistent logical reasoning
[1, 8, 9]. [8] investigates how logical reasoning can be improved by combining explicit natural
language inputs with implicit pre-trained knowledge. The focus of our work is on logical consistency,
but there are other approaches in consistency such as with paraphrased questions. Language models
may be asked the same question phrased in different ways and produce different answers, and [9]
examines and attempts to address these consistency issues through introducing a new dataset and
pretraining with a novel loss.

We base our work off the BeliefBank dataset, which is described in detail in Section 4.1. BeliefBank
[1] improves consistency of a PTLM through adding an external global memory layer that tracks
beliefs. There are two components that manage the beliefs of this external memory - a reasoning
component which updates beliefs that contradict one another and a feedback component that poses
questions to the model using known of beliefs. The reasoning component is a weighted MaxSAT
solver, and the two objectives are either to flip beliefs to minimize constraint violations or to not flip
beliefs to retain the raw model’s beliefs. In the constraint solving problem, each belief is assigned a
weight. Given these beliefs, their weights, and their constraints, the constraint solver must output a
set of truth assignments for each of these beliefs such that the weighted sum of violated constraints is
minimized. The intended purpose of feedback mechanism is to remind the model of relevant beliefs
when new questions are posed.

Activation Regularization The idea of reducing redundant learning in neural networks by inducing
sparsity in the network has been commonly explored. Previous works have promoted sparsity in
the activations through approaches such as using ReLU activations [10, 11] or promoting small
activations by penalizing the L1 norm [12] or L2 norm of the activations [13]. The increase in
network sparsity do lead to improved model accuracies, however the resulting networks fail to exhibit
functional modularity.

Modularity Neural networks with explicitly designed modularity [14, 15] have shown great gener-
alization capabilities. While [16, 17, 18] have shown that neural networks can be clustered to some
degree, [5] demonstrates that popular neural network architectures (such as CNNs and transformers)
are not implicitly functionally modular and that their weight-sharing is heavily dependent on the input
interface rather than the similarity amongst the tasks. The authors of [5] argue that neural networks
are trained inefficiently by showing how separate portions of networks end up learning similar rules
and blame such redundancy as a cause for the lack of generalizability of neural networks.

4 Approach

In our approach, we generate question and answer data, construct a custom dataset from given
consistency graphs and facts, establish initial baseline and finetuned results, and encourage modularity.

2

We encourage modularity through the two main methods: (1) sparsity via L1 loss and (2) encouraging
modularity through functional similarity.

MACAW We base our approach on MACAW [19], a pretrained general-purpose question-answering
model. In particular, we use MACAW-large (770 million parameters) for our experiments. MACAW
is built on top of the text-to-text transformer, T5 [20], a pretrained encoder-decoder model. It is
intended to serve as a general question-answering system, and it can produce sensible answers to a
variety of questions, even outside its training data. It is also able to generate questions from answers,
generate multiple-choice options given an answer and a question, and provide rough explanations for
its answers to questions. These features make it relevant to our work, since we want to address the
issue of logical inconsistency in an already adept question answering model.

4.1 Data Processing

The BeliefBank dataset [1] consists of constraints and silver facts. Constraints take the form of a
graph, relating entities or properties of entities with different relation types (eg: (“IsA, Lion", yes-yes,
"hasPart, Fur" translates to “if X is a lion, X has fur"). The data also has silver facts, relating specific
entities (eg: “albatross") to nodes in the constraint graphs (eg: “albatross": “isA, Mammal": No, “isA,
Bird": Yes). We design question templates according to English grammar rules based on the patterns
of nodes, links, and constraints. We process the data into train, validation, and test sets as follows:

1. Convert the silver facts into questions, using standard grammar rules (eg: IsA,tulip →
IsA,flower becomes “Is a tulip a flower?"). Each question sentence is prepended with
’$answer$; $mcoptions$ = (A) Yes (B) No ; $question$ =’ which prompts MACAW to
provide an answer for the given question as a ’Yes’ or ’No’ answer. Randomly sample
80% of the question bank into a training set of 10,083 questions. 20% of the facts (10% as
validation and 10% as test) are held out so the model is forced to leverage its pre-trained
world knowledge on unseen node-entity relations.

2. Traverse the constraint graph to discover every path of X → Y → . . . → Z or W → X →
. . . → Y ↛ Z, adding every edge along such a path to an evaluation set of 5896 questions.
We stop at Y ↛ Z edges since we can’t make any further implications. We randomly and
evenly split the evaluation set into a validation and test set.

3. For each of the 583 nodes starting with “IsA", we make an edge to all other 1846 nodes in
the graph, creating a dense set of 1,076,218 questions (with no labels). These will be posed
to finetuned models to evaluate the model’s logical consistency.

4.2 Finetuning

We generate initial baseline accuracy and consistency scores for on the raw MACAW model based on
our custom dataset. We then finetune the model using three different approaches. We test finetuning
the model on all 770 million parameters and on freezing all layers except for the last one and only
finetune the last layer of the network. However, our training dataset is not large, so the model is
susceptible to overfitting. To reduce the risk of overfitting on our small training corpus, we inserted
adapter layers [7], which are small layers in between the MACAW block that introduce a learnt
perturbation to every intermediate block in the network (see Figure 1). In particular we adopt the
adapter structure proposed in [21] where 2 hidden layers are introduced between each MACAW block.
We then freeze the original model weights, finetuning only the adapter module weights.

4.3 L1 Sparsity

Modularity in the network necessitates that activations due to any input be sparse. We aim to
regularize the activations of our network by promoting sparsity in the activatations. We encourage
this sparsity by penalising the L1 norm of the activations of select layers of the network. The L1
norm is commonly used in machine learning as a regularization method to enhance sparsity [22]. In
order to induce sparsity, we construct an auxiliary L1 loss that promotes sparse activations through
penalizing the L1 norm of the activations.

3

Figure 1: MACAW-large architecture with adapter modules

4.3.1 L1 Loss

The auxiliary loss function promoting L1 sparsity is:

L1 Loss =
∑
x

N∑
layer k=1

T∑
i=1

||Ak(tx,i)||1 (1)

Here, Ak(tx,i) is the normalized activation of the last layer in the kth block corresponding to the ith

token of input x.

4.4 Similarity

While the L1 loss can make the activations sparse, an additional requirement of functional similarity
is needed to achieve modularity. Our goal is to enforce that similar beliefs lead to similar sub-parts of
the model network being activated and dissimilar beliefs lead to different sub-parts of the network
being activated. In order to achieve this goal, we generate similar question pairs based on three
different similarity heuristics and construct an auxiliary similarity loss.

4.4.1 Similarity Loss

To encourage the network be modular in its activations, we adopt the Noise Contrastive Estimator
(NCE) loss [23], which is of the form:

∑
(x,x′)∈+ve

− log

 exp(
∑

i

∑
j Ak(tx,i)

⊤Ak(tx′,j))

exp(
∑

i

∑
j Ak(tx,i)⊤Ak(tx′,j)) +

∑
x,x′′∈−ve

exp(1−
∑

i

∑
j Ak(tx,i)⊤Ak(tx′′,j))

(2)

Here, tx stands for input x’s token, and Ak(tx, i) is the normalized vector corresponding to activation
of the kth layer at token index tx. The inputs (x, x′) are paired together as similar facts (denoted
by +ve in the equation) while (x, x′′) are paired together as negative facts (denoted by −ve in the
equation). The NCE loss thus aims to make the activations of similar facts align with each other while
separating the activations of dissimilar facts. The above loss term is added to the training objective.

The resultant loss function for training is thus:

Loss = CrossEntropy(y, ŷ) + λ1L1 Loss+ λ2NCE (3)

4.4.2 Question Similarity

It is not immediately obvious what constitutes “similar" or “dissimilar" pairs of facts. Similarity
between two sentences can be considered in different ways such as lexical similarity, where the
sentences may share common words, or semantic similarity, where the sentences may share common

4

meaning or intent [24]. Sentence similarity can be calculated based on word-to-word, sentence
structure, or word vector representation. We leverage the fact that we have a constraint graph relating
facts to determine whether two questions are similar. In our approach, we determine similar, or
positive pairs, of inputs in three ways: linked-based, adjacency-based, and SimCSE-based. Negative
pairs for training were generated by pairing all inputs with all the other inputs, except its positive pair,
in the minibatch. From the training dataset, we generate a dataset of positive pairs from each of these
three similarity metrics.

Linked-Based Similarity Linked-based similarity is determined by relationships between single-
hop facts. If we have questions generated by the constraints X → Y and Y → Z, then we determine
that these questions are similar. For example, we have a positive pair “Is a poodle a dog?” and
“Do dogs have ears?”. Through linked-based similarity, our aim is to capture the similarity between
questions that arises from implication relationships. We aim to induce the language model to remain
consistent in answering questions given a known set of implications.

Adjacency-Based Similarity In adjacency-based similarity, we determine two questions to be
similar if they relate to the same entity. These are questions generated by the constraints X → A
and X → B. An example of a positive pair would be “Is a plant a living thing?” and “Is a plant
a vertebrate?” The purpose of adjacency-based similarity is to capture similarity that arises from
asking questions about the same entity. Our aim is for the model to learn be consistent in answering
questions about an entity.

SimCSE-Based Similarity In many circumstances, a ground-truth constraint graph would be
unavailable, so we generate similar pairs of questions based on a pretrained SimCSE model [25].
SimCSE learns sentence embeddings through constrastive learning in both an unsupervised manner,
where the input sentence predicts itself, and supervised manner, where entailment pairs are positive
and contradition pairs are negative. The inputs to the SimCSE model are encoded into embeddings,
and these sentence embeddings can be compared for similarity. For every pair of inputs in the training
set, we encode the questions into sentence embeddings and compute their cosine similarity score.
Pairs with high cosine similarity scores are set to be positive pairs. For example, we have the positive
pair: “Is a dog a pet?” and “Does a puppy have paws?” We set the similarity score threshold to be the
average cosine similarity of the pairs in the linked-based dataset.

4.4.3 Token-Index-Based Activations

The current formulation of the NCE loss allows for the model to improve on similarity via the pad
token activations. To remove the effect of pad token activations, we modify Equation 2 to only
consider the dot product of activations of the the 2 inputs at particular indices i and j. [26] investigate
and identify where knowledge is encoded in transformer parameters, and the authors find that the last
token of an entity has the greatest influence in transformer outputs. Inspired by these findings, the
indices i and j were tested amongst: (1) the indices corresponding to the last token of the common
entity in a pair of questions (e.g. "Lion" in "Is lion a mammal?" and "Do lions have tails?"), (2) the
indices corresponding to the "EOS" token, and (3) the indices corresponding to the last of the special
tokens for "$answer$"

5 Experiments

5.1 Data

We use a custom QA dataset (generation details in section 4.1) which is built on constraints and facts
given by BeliefBank [1]. The QA dataset contains 10, 083 train questions, 5, 896 validation and test
questions, and 1, 076, 218 unlabeled questions for constraint checking. For each question, we are
given the ground-truth answer. The inputs to the model are natural language questions Q. The output
A is a “Yes”/“No” answer. The model M takes in a question q ∈ Q and predicts an answer A.

5.2 Evaluation method

We quantitatively evaluate the performance of our models on two metrics: its F1 score and consistency.

5

F1 score is the harmonic mean of the model’s precision and recall and is expressed as:

F1 =
TP

TP + 0.5(FP + FN)

Consistency is the fraction of multi-hop beliefs that for which the model correctly believes the single
hop fact. For example, if a model believes “a carp is a fish” and “a fish has gills,” then the model is
consistent if it concludes that “a carp has gills.” We implement the following:

1. Predict all possible yes-yes edges in the graph to construct an adjacency matrix of the
model’s belief graph.

2. Find all the multi-hop paths in the belief graph by computing the powers of the adjacency
matrix. 1. As checking for all lengths of paths theoretically requires computing all powers
of the adjacency matrix, as a metric, we restrict ourselves to finding upto 9-hop connections.

3. For every pair of nodes, we can compute the existence of a multi-length hop between them
and check if the single hop connection is also believed by the model.

5.3 Experimental details

The input to our model are text questions padded to a length of 64 and output is set to length 8. We
enforce the output to be multiple choice options “Yes” or “No.” In our experiments, we train using
the AdamW optimizer [27] with a fixed learning rate of 3× 10−4, betas of (0.9, 0.95), and weight
decay of 0.1. We run our experiments on a single NVIDIA Tesla V100 16GB GPU for an average of
approximately 3 hours per experiment. We train our model with a batch size of 16 for 10 epochs for
all experiments. We conduct the following experiments to establish baseline results: (1) using raw,
non-finetuned MACAW-large model, (2) finetuning on all layers of the model and only the last layer
of the model, and (3) finetuning with adapters.

L1 Sparsity The value of λ1 is chosen to balance the L1 sparsity loss with cross-entropy loss. [26]
altered the activations of internal neurons to understand the flow of information through a transformer
and examined the downstream causal effects of disabling selected multi-layer perceptron layers in
transformer language models. The authors argue that altering the activations of middle blocks of
a transformer have the greatest influence in a model’s output. Building upon the idea by [26], we
enforce L1 sparsity on specific layers of the model. We tested enforcing L1 sparsity on the following
layers: (1) the middle block of the encoder and/or decoder, (2) all the layers of the encoder and/or
decoder, and (3) the final block of the encoder or decoder.

Similarity Loss We conduct experiments on linked-based, adjacency-based, and SimCSE-based
similarity datasets. The value of λ1 and λ2 are chosen experimentally to balance L1 sparsity loss,
similarity loss, and cross-entropy loss. We run L1 sparsity and similarity experiments with adapters.
Based on the layers that resulted in the high accuracy and/or consistency scores in the L1 sparsity
experiments, we choose the following layers for the similarity loss experiments: (1) middle block of
the decoder and (2) final layer of the encoder or decoder. Additionally, we conduct experiments on
the token-index-based activations with: (1) common word, (2) “EOS”, (3) “$answer$” tokens.

5.4 Results

The quantitative results of our experiments on the test set are given in Table 1, which outlines the
accuracy and consistency scores of our experiments.

6 Analysis

From our results in table 1, we can immediately conclude:

• Finetuning the adapter model significantly outperforms finetuning the entire model, or
finetuning just the last layer, in terms of both accuracy and consistency.

1Refer to https://www.um.edu.mt/library/oar/bitstream/123456789/24439/1/powers%20of%
20the%20adjacency%20matrix.pdf for proof

6

https://www.um.edu.mt/library/oar/bitstream/123456789/24439/1/powers%20of%20the%20adjacency%20matrix.pdf
https://www.um.edu.mt/library/oar/bitstream/123456789/24439/1/powers%20of%20the%20adjacency%20matrix.pdf

Table 1: Quantitative Results of Experiments
Method Layer for Aux. Loss λ1 λ2 F1 (%) Consis. (%)

Raw Model - - - 85.75 52.36
Finetune all parameters - 0 0 88.89 74.15
Finetune last layer - 0 0 86.39 48.93
Finetune using Adapters - 0 0 93.24 86.70

L1 Sparsity Output Layer 10−5 0 86.50 49.48
L1 Sparsity Enc. Block 12 10−5 0 91.10 80.45
L1 Sparsity Enc. Final Block 10−5 0 92.58 86.11
L1 Sparsity Dec. Block 12 10−5 0 94.90 89.59
L1 Sparsity Dec. Final Block 10−5 0 93.91 81.35
L1 Sparsity Enc. & Dec. Block 12 10−5 0 90.89 74.86
L1 Sparsity All Enc.+ Dec. Layers 2× 10−7 0 87.05 69.68
L1 Sparsity All Enc. Layers 5× 10−7 0 93.94 82.09

Similarity (Linked) Enc. Final Block 5× 10−7 2× 10−3 92.29 78.44
Similarity (Linked) Dec. Block 12 5× 10−7 2× 10−3 92.88 79.15
Similarity (Linked) Dec. Final Block 5× 10−7 2× 10−3 92.34 71.75

Similarity (Adj.) Enc. Final Block 5× 10−7 2× 10−3 94.79 91.00
Similarity (Adj.) Dec. Block 12 5× 10−7 2× 10−3 94.85 82.25
Similarity (Adj.) Dec. Final Block 5× 10−7 2× 10−3 95.21 88.85

Similarity (SimCSE) Enc. Final Block 5× 10−7 2× 10−3 94.99 90.93
Similarity (SimCSE) Dec. Block 12 5× 10−7 2× 10−3 92.06 80.97
Similarity (SimCSE) Dec. Final Block 5× 10−7 2× 10−3 96.81 89.92

Common Token Enc. Block 12 5× 10−7 2× 10−3 95.22 83.15
EOS Token Enc. Final Block 5× 10−7 2× 10−3 93.30 83.51

• Enforcing only L1 sparsity led to minor improvements in accuracy and consistency (1.7% in
F1 score over the adapter baseline, and 2.88% in consistency). This result suggests sparsity
is useful to consistency.

• Surprisingly, enforcing sparsity and similarity on the model using the linked-based similarity
dataset suffers the most in consistency, dropping around 10% in consistency. Enforcing
sparsity and similarity using the adjacency-based similarity model yields the best consistency
at 91.00%, and enforcing using the SimCSE model yields the best F1 score, at 96.81%.

The results provide an indication that sparsity and modularity promote consistency. However, it is
not obvious why the adjacency and SimCSE based similarity datasets outperform the linked-based
similarity dataset, since one would think that the linked-based dataset is directly providing examples
of logical implications to the model. To understand these results better and to investigate whether the
model weights were indeed becoming more sparse, we visualized the model’s attention weights using
BertViz [28] (Figure 2). As plotted from left 2a, to right 2f, we see an increase in the sparsity of the
attention weights. The raw model’s attention weights are the most diffuse, which is reflected in a
poor consistency showing of 52.36%. The model trained on the adjacency-based similarity dataset
has the sparsest activations, and also the highest consistency at 91.00%. Moreover, the linked-based
similarity dataset, which underperformed in consistency, has more diffuse weights. We thus have an
empirical signal linking sparsity with increased consistency.

An explanation for why the linked-based similarity dataset is underperforming could be a lack of
diversity in its similarity pairs. Whereas the adjacency dataset can include pairs such as “A fish
does not have paws" and “A fish cannot preach sermons" (which we will denote a no-no pair), we
cannot add no-no or no-yes implications to the linked-based dataset. That is, if we have “Is fish a
mammal?" (no), and “Can a mammal have offspring?" (yes), we cannot necessarily conclude yes/no
about "Can a fish have offspring?" (which would be a no-yes pair). Another point to make is that
the adjacency dataset provides knowledge about an entity (eg: outgoing edges from the common
entity, a “fish"), and more intuitively captures information grounded at that entity. While a pair in

7

(a) Raw Model (b) Similarity (Link) (c) Finetuned

(d) L1 sparsity (e) Similarity (SimCSE) (f) Similarity (Adj.)

Figure 2: Cross-attention weights for applying L1 sparsity and similarity loss on the encoder final
block. These images are visualizations for attention heads 1-3 at the final layer when the models
are asked: “Is a poodle a dog?” In order from (a) to (f), increasing density of the attention weights
correlates approximately to increasing consistency (from 52.36% for the (a) raw model to 91.00% for
(f) adjacency-based similarity).

the linked-based dataset does have a common entity, (eg: “A lion is a mammal", and “A mammal
is a vertebrate", the common entity is “mammal"), the first fact is an incoming edge to mammals,
which concerns information more aptly attributed to lions, not mammals. Therefore, by forcing the
model to recognise a pair of linked edges as similar, the model might find it difficult to note that the
combined facts of "A lion is a mammal" and "A mammal is a vertebrate" is giving it longer-range
knowledge about lions being vertebrates. On the other hand, the model is learning directly that “fish
are not mammals" and that “fish have gills", which helps it encode information about “fish".

Moreover, we note that the final blocks of the encoder and decoder layers performed slightly better
than the 12th (i.e. middle) blocks in experiments on the linked, adjacency, and SimCSE datasets.
This is interesting, since [26] suggested that mid-layer embeddings have the most influence. This
divergence could be explained through the impact of the adapter modules, since their impact on the
activations is likelier to be felt near the “ends" of the encoder and decoder blocks.

Finally, we find that token-indexing approaches fail to improve consistency. We theorize this behavior
is due a failure to find the optimal token and index position. The selected tokens we tested were likely
insufficient and suboptimal indices by which to compute similarity. Additionally, we note that during
our experiments, the similarity loss did not converge over our training epochs, and instead decreased
very slowly. This is a limitation of the NCE loss as used in SimCLR, since it requires very large batch
sizes for the negative pairs to contribute to effective learning. Our batch size of 16 was insufficient to
provide a strong enough signal. Even so, we did note improvements in using the adjacent-based and
SimCSE similarity datasets, as mentioned previously.

7 Conclusion

We find a strong correlation between the modularity of a model and its consistency. We demonstrate
a viable approach for enforcing said modularity by means of an L1 norm penalty and a contrastive
similarity loss on the mid-layer model activations to achieve a 4.3% gain in absolute consistency. This
project is limited by its scale, both in the size of the dataset (with about 15,000 questions in total) as
well as the batch size, which negatively impacts the similarity loss convergence. Directions for future
work involve generating and running experiments on a larger, more complex dataset of question,
directly enforcing sparsity through methods such as magnitude-based pruning, and exploring the use
of momentum encoding (MoCo) to increase the number of negative samples beyond the minibatch
size for improved similarity loss training.

8

References
[1] Nora Kassner, Oyvind Tafjord, Hinrich Schutze, and Peter Clark. Beliefbank: Adding memory

to a pre-trained language model for a systematic notion of belief. In EMNLP, 2021.

[2] Nora Kassner and Hinrich Schütze. Negated LAMA: birds cannot fly. CoRR, abs/1911.03343,
2019.

[3] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander Miller. Language models as knowledge bases? In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2463–2473, Hong
Kong, China, November 2019. Association for Computational Linguistics.

[4] Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard H. Hovy, Hinrich
Schütze, and Yoav Goldberg. Measuring and improving consistency in pretrained language
models. CoRR, abs/2102.01017, 2021.

[5] Róbert Csordás, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Are neural nets modular?
inspecting functional modularity through differentiable weight masks. CoRR, abs/2010.02066,
2020.

[6] Oyvind Tafjord and Peter Clark. General-purpose question-answering with Macaw. ArXiv,
abs/2109.02593, 2021.

[7] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pages 46–54, 2020.

[8] Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Goldberg, and Jonathan Berant. Leap-of-
thought: Teaching pre-trained models to systematically reason over implicit knowledge. Ad-
vances in Neural Information Processing Systems, 33:20227–20237, 2020.

[9] Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard H. Hovy, Hinrich
Schütze, and Yoav Goldberg. Measuring and improving consistency in pretrained language
models. Transactions of the Association for Computational Linguistics, 9:1012–1031, 2021.

[10] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Geoffrey Gordon, David Dunson, and Miroslav Dudík, editors, Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings
of Machine Learning Research, pages 315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011.
PMLR.

[11] Hidenori Ide and Takio Kurita. Improvement of learning for cnn with relu activation by sparse
regularization. In 2017 International Joint Conference on Neural Networks (IJCNN), pages
2684–2691. IEEE, 2017.

[12] Praveen Kulkarni, Joaquin Zepeda, Frederic Jurie, Patrick Pérez, and Louis Chevallier. Learning
the structure of deep architectures using l1 regularization. In British Machine Vision Conference,
2015, 2015.

[13] Stephen Merity, Bryan McCann, and Richard Socher. Revisiting activation regularization for
language rnns. arXiv preprint arXiv:1708.01009, 2017.

[14] Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries,
and Aaron C. Courville. Systematic generalization: What is required and can it be learned?
CoRR, abs/1811.12889, 2018.

[15] Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio,
and Bernhard Schölkopf. Recurrent independent mechanisms. In International Conference on
Learning Representations, 2021.

9

[16] Chihiro Watanabe. Interpreting layered neural networks via hierarchical modular representation.
ArXiv, abs/1810.01588, 2019.

[17] Shlomi Hod, Stephen Casper, Daniel Filan, Cody Wild, Andrew Critch, and Stuart Russell.
Detecting modularity in deep neural networks. arXiv preprint arXiv:2110.08058, 2021.

[18] Daniel Filan, Stephen Casper, Shlomi Hod, Cody Wild, Andrew Critch, and Stuart Russell.
Clusterability in neural networks. CoRR, abs/2103.03386, 2021.

[19] Oyvind Tafjord and Peter Clark. General-purpose question-answering with macaw. arXiv
preprint arXiv:2109.02593, 2021.

[20] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

[21] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych.
Adapterfusion: Non-destructive task composition for transfer learning. ArXiv, abs/2005.00247,
2021.

[22] Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity by reweighted
1 minimization. Journal of Fourier analysis and applications, 14(5):877–905, 2008.

[23] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. CoRR, abs/2002.05709, 2020.

[24] Mamdouh Farouk. Measuring sentences similarity: a survey. arXiv preprint arXiv:1910.03940,
2019.

[25] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. CoRR, abs/2104.08821, 2021.

[26] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
knowledge in gpt. arXiv preprint arXiv:2202.05262, 2022.

[27] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. 2018.

[28] Jesse Vig. A multiscale visualization of attention in the transformer model. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
pages 37–42, Florence, Italy, July 2019. Association for Computational Linguistics.

10

	Key Information
	Introduction
	Related Work
	Approach
	Data Processing
	Finetuning
	L1 Sparsity
	L1 Loss

	Similarity
	Similarity Loss
	Question Similarity
	Token-Index-Based Activations

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

