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Abstract

For open-domain neural dialogue agents to be effective conversationalists, they
must be able to quickly handle a wide variety of topics that might be encountered
in day-to-day conversations. ChirpyCardinal reconciles this challenge using a
GloVe-based neural retrieval method and template-infilling scheme to allow dis-
cussion on Wikipedia-based knowledge with comparatively low latency. However,
recent research has demonstrated that fine-tuned deep language models significantly
outperform existing neural retrieval schemes, often at the expense of increased
computational costs, through computing contextualized representations of queries
and outputs. ColBERT improves on these methods by delaying the interaction
between the query and output, decreasing query-response costs while retaining
high retrieval quality. We aimed to improve retrieval-augmented generation in
ChirpyCardinal in quality of retrieval and generation while minimizing increases
in latency. We replaced ChirpyCardinal’s GloVe-based retrieval method with Col-
BERT, experimented with using BART or TS5 for contextualized template infilling,
and evaluated these schemes through the relevance retrieval output and quality
of the infilled template. We found that the use of ColBERT and finetuned BART
allowed for the best end-to-end retrieval while not substantially increasingly latency.
This suggests the application of large language models for neural generation can
be used in real-time open-domain neural dialogue agents.

1 Introduction

In recent years, end-to-end deep neural dialogue agents have been able to sustain a rich conversation
at an impressively high level for extended periods of time, raising hopes for their use in a wide
variety of applications [1]. However, these dialogue agents are often limited by a lack of real-world
knowledge and awareness of current world happenings, which is often what users are most interested
in, and which are key parts of natural casual conversation. Moreover, dialogue agents also face
additional interaction-based challenges, like an inability to plan for future conversation, and practical
issues such as high latency, which decreases perceived conversation quality [2].

To address these shortcomings, Stanford’s Chirpy Cardinal chatbot employs several parallel neural
models to enable open-domain conversation, including a response module that allows for planning
of future utterances as well as a retrieval-augmented generation (RAG) module that can mitigate
the chatbot’s lack of domain knowledge. This module is triggered upon the mentioning of an entity
by the user — whereupon the module uses a GloVe-based neural retrieval method [3] to retrieve
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information about the entity from Wikipedia, then uses this information for contextualized infilling
of a template, and finally returns the infilled template as a response to the user. By enabling the
chatbot to retrieve and incorporate real-world knowledge when making conversation, the RAG
module has facilitated significant improvements in Chirpy Cardinal’s user engagement and perceived
conversational quality [4].

While Chirpy Cardinal relies on GloVe for neural retrieval, the use of fine-tuned large language
models have demonstrated their effectiveness in modeling local interactions among query-document
pairs rather than naive similarity between the representations of a given query and document. In
particular, models based on ELMo and BERT have advanced performance on information retrieval
benchmarks by computing deeply-contextualized semantic representations of query-document pairs.
These pretrained language models (LMs) help bridge the pervasive vocabulary mismatch between
documents and queries [S]]. Unfortunately, this comes at the price of increased computational cost
and latency associated with computing interactions between words within and across query-document
pairs, which can impact user experience and makes efficient model deployment more difficult.
Recently, the model ColBERT, which performs “late interaction” by retaining but delaying the query-
document interaction seen in LM-based retrieval methods, mitigates these challenges by creating a
neural retrieval scheme that retains the benefits of contextual interactions in large language models
while allowing for the offline computation of document representations [6]].

The high performance of ColBERT on retrieval coupled with its lower computational cost relative to
other LM-based retrieval models makes it promising for use in real-time systems like Chirpy Cardinal
and other dialogue agent chatbots. Inspired by this, we aimed to improve Chirpy Cardinal’s Wikipedia-
based RAG module by replacing its existing GloVe-based similarity search for neural retrieval with
CoIBERT. This constituted making ColBERT available through a REST API and rewiring notions of
Wikipedia entries within the chatbot. After such rewiring was performed, we evaluated the quality of
the Wikipedia knowledge statements, or "documents," retrieved from a corresponding template and
entity, or the "query." We found that the statements retrieved by ColBERT were more relevant than
those from GloVe-based retrieval, with statistical significance achieved after sufficient user testing.
Additionally, we experimented with using BART [7]] and T5 [8] for infilling a template with the best
retrieved knowledge statement. We found that while there was no statistically significant difference
between using BART or T5 for conditional generation for a given retrieval scheme, the quality
of conditional generation significantly improved when paired with ColBERT-retrieved knowledge
statements. Finally, we also profiled the latency of our different model permutations; GloVe-based
retrieval was faster than that of ColBERT, though comparisons of their overall latency are difficult to
make. Altogether, these results indicate that ColBERT should be integrated into ChirpyCardinal as
the primary method of information retrieval.

2 Related Work

Deep Neural Dialogue Agents. Dialogue systems generally fall into one of two categories: task-
oriented systems to solve domain-specific tasks or systems focusing on open-domain dialogue like
ChirpyCardinal [2]. In a long line of research, neural models of dialogue generation for such open-
domain conversations have shown great success in generating human-like responses. Chatbots like
the one developed by Adiwardana et al. (2020) have even been able to engage in high quality
conversations over multiple turns [[1]. Yet, they are still limited by their knowledge of world events
and latency in responding to user inputs. We hope to improve one such end-to-end deep neural
dialogue agent, Stanford’s Chirpy Cardinal.

Neural Retrieval. At the core of information retrieval are neural ranking models, which use shallow
or deep neural networks to rank search results given a specific query [9]. Recently, models based
on deep neural networks, which use rich embedding-level representations of queries and documents,
have outperformed prior learning-to-rank methods that rely on hand-crafted features [6]; the best-
performing models have been those that fine tune existing deep language models (LMs), like ELMo
or BERT, for estimating the relevance of a given query to a corresponding document. These fine-
tuned large LMs have significantly outperformed existing neural retrieval methods largely based on
their ability to compute contextualized representations of query-document pairs, as well as bridging
context-dependent differences in vocabulary between a given query and document [J5].



These deep neural networks introduce a tension and tradeoff between better performance and more
delayed response time. In the setting of a user-facing chatbot, however, latency is particularly critical
for quick response times and a good user experience. So, we are turning to a ColBERT-based retrieval
method using a faiss index to improve retrieval quality without introducing too much latency.

Conditional Generation. Before responding to the user, the neural ranking model’s output needs
to be incorporated into a meaningful, natural response. One way of doing so is filling in templates —
pre-created sentence structures with placeholders — with the retrieved information. In other words,
the task is to plug in slots for missing spans with text that is consistent with the preceding and
subsequent text, which is known as text infilling [[10]. Sequence to sequence models like BART [[7]]
and docT5query [8] are models that are well-suited and can be adapted for this task. We explore the
performance of both in this paper.

Retrieval and Generation in ChirpyCardinal. ChirpyCardinal aims to respond with interesting
personal opinions or observations while still respecting user initiative. To do so, it fills templates
with knowledge statements retreived from Wikipedia. More specifically, once Wikipedia entities are
identified from dialogue, these entities and the templates to be filled are passed to a GloVe-based
retrieval method. This GloVe search retrieves knowledge statements from an English Wikpedia dump
of May 2020. Then, a neural infilling model inspired by Donahue et al. (2020) fills in the template.
Specifically, a BART-base model trained on GPT3 generated and handwritten examples fills in the
templates before they are reranked. This completes the response generation [4]. In this paper we will
be looking at modifications to both the knowledge retrieval and infilling infrastructure, as previously
discussed.

3 Approach

We break down our approach to our project into three parts: our approach to retrieval, infilling, and
deployment into the existing ChirpyCardinal system.

3.1 Retrieval

One of the earliest methods in neural retrieval is embedding-based retrieval, which computes an
embedding representation through a method like GloVe of both the query and the document before
returning the query-document pairs with the highest similarity. These naive methods of information
retrieval are particularly advantageous because they allow for offline computing of document repre-
sentations, which is particularly useful in the context of ChirpyCardinal because of the debilitating
effect of latency on user experience. Accordingly, we describe our GloVe-based approach as follows:
for a given query ¢ and knowledge statements — in this case, “documents” — d*, ..., d", compute the

embedding representations of both as ¢and d!, ... 7d_;l. For a given similarity metric sim(-, -), we
retrieve the best document to pass on to the infilling step by returning

d* = argmax sim(q, J;)
ie{l,...,n}

Alternatively, because of ColBERT’s unique ability to balance representing contextual semantic
information and lower computational costs than regular BERT, we use it in the following scheme:

first, the documents d?, . .., d" are encoded using ColIBERT’s document encoder, which is largely
based on BERT. These encodings d*, . . ., d™ are maintained in a faiss index, an off-the-shelf library

for large-scale vector similarity search [[L1]. Next, the embedding of the query is computed using
ColBERT’s query encoder, again largely based on BERT. Therefore, for a given similarity metric
sim(+, -), ColBERT retrieves the best document to pass on to the infilling step by returning

d* = arg max Z max Sim(cfiad%j)
ke{l,...,n} i€]|q] JeElldk]

3.2 Infilling

Neural language generation, even with contextual information, is difficult, and even more so when
generated language is used to engage in conversation with a human. Accordingly, we rely on premade



templates{]_-] to enable generating conversation through conditional generation. We selected BART
and TS5 as models for conditional generation because of their effectiveness as sequence-to-sequence
models in performing infilling. Based on the work established by [10]], we consider an “infilling”
problem the process of adding in tokens to an incomplete text Z and returning a completed text x. We
do this by noting that it suffices to predict the missing spans y that replace blank tokens in z, framing
infilling as learning p(y|Z).

To learn this, we fine-tune pre-trained instantiations of BART and TS5 thorugh the following method:
using GPT-3 [[12] to generate a sufficiently large dataset, we create a dataset of triplets (Z, e, s),
where 7 is a template with missing spans, e is the entity that should be used to infill this span, and
s is a statement that should be conditioned on for infilling Z. After fine-tuning BART and TS on
this dataset, they can then be used at inference-time for infilling similar premade templates used in
ChirpyCardinal.

3.3 Deployment

We made ColBERT and the corresopnding neural infilling module accessible through a REST server
deployed on the Stanford NLP cluster with sufficient GPU support. In the original GloVe-based
module, requests to the infilling module largely consisted of three-sentence knowledge statements
taken from an identified entity’s Wikipedia page and templates ready for infilling. In our ColBERT-
based retrieval model, however, only the templates consistent within a particular identified entity
are passed to ColBERT, which performs its own search for the closest knowledge statements. The
infilling model, which was either BART or T5, performed conditional generation on the templates
upon successful retrieval of knowledge statements before returning the infilled templates in a JSON
payload.

4 Experiments

4.1 Data

For all experiments we performed, we use a single Wikipedia dump as our data source. In this case, a
May 2020 English Wikipedia dump was used, and only entities with at least 200 cross-references in
Wikipedia were kept, resulting in 171, 961 entities in total; furthermore, too abstract (e.g. philosophy,
film) or inappropriate entities were removed. However, the precise way this data was accessed by the
neural retrieval model differed between ColBERT and GloVe-based retrieval:

* In GloVe-based retrieval, the neural model retrieves 3-sentence long knowledge statements
from the main body of the identified entity’s Wikipedia page.

* In ColBERT, an existing faiss index of 180-token passages of the same Wikipedia articles
was used, wich resulted in a total of approximately 21 million knowledge statements. The
creation of this faiss index was made possible through the existing CoIBERT codebase.

We perform an ablation study to assess the impact of these differences in input data; see section[4.4.1]

Our infilling models, BART and T5, were fine-tuned on synthetic data generated by GPT-3 for
infilling as described in our approach. The data used for our infilling model consisted of the retrieved
knowledge statements from Wikipedia and a template from the aforementioned list.

4.2 Evaluation method
4.2.1 Retrieval Metrics

While traditional information retrieval and infilling models have concrete metrics, such as MRR,
there are no concrete “correct” responses for retrieval for a given knowledge statement. Indeed, given
that the purpose of these knowledge statements is to produce topical, interesting utterances, defining
what constitutes sufficiently “interesting” retrieval is subjective and requires sufficiently large human
evaluation. Accordingly, we created 3 cohorts of 20 retrieval templates for different entities ranging
from food, music, and geography to current events; we randomly selected which cohort would be

!"Templates can be found



Table 1: Retrieval Relevance. ColBERT achieves statistical significance in outperforming both GloVe
and Aug-GloVe in average relevance score. Confidence intervals are two-tailed with oo = 0.05.

Retrieval Method ASR@5 ASR@7 ASR@10
GloVe 2.35+£0.11 2.94 +0.32 3.8 £0.66
Aug-GloVe 2.56 +£0.32 3.08+0.41 3.91 +0.58
ColBERT 2.91+0.20 3.98 +0.29 5.45+0.73

used for a given human evaluator. Next, for each of the retrieval-entity queries, the top-k knowledge
statements were retrieved and evaluated in relation to the query. For each query, each top-k retrieval
receives a score s; € {0, ..., k} for the number of relevant knowledge statements it contains. Thus,
we calculate the average relevance score at & (ASR@k) determined by the human evaluator as

1 n
ARS@k = - Z S
=1

where n = 20 is the number of queries in a given cohort. ASR@k thereby gives a notion of the
number of relevant documents for a given retrieval model.

However, ASR @k aggregates this relevance across retrieved documents — that is, it does not account
for the ranking of the perceived “best” knowledge statement retrieved. Accordingly, we introduce
another metric called adapted mean reciprocal rank at k£ (aMRR @k), which is

1< 1
MRRQk = —
“ n Z rank;

where rank; refers to the rank position of the most relevant document for the -th query.

4.2.2 Infilling Metrics

Similarly, there are no natural quantitative infilling metrics that can be used without the integration of
human evaluators. Accordingly, a similar cohorting scheme to that of evaluating our retrieval models
was used. After top k retrieval for a given template was performed, our infilling model performed
conditional generation on the template for each retrieved document d; fori € {1, ..., k}. For each
infilled statement, it was marked as either sensible or not s; € {0, 1}, with the average sensibility

score being calculated as
1 n
ASS = — i

4.2.3 Latency Evaluation

Finally, we profiled the latency of the retrieval process using Python’s time [[13]] package over the
course of the retrieval and infilling process. We report the average time required for each step in the
corresponding processes. Note that these average times are hardware dependent and might change
when run on a different system.

4.3 Experimental details

First, a ColBERT model was trained on the MSMARCO dataset [14] for 400,000 iterations to
convergence; this pretrained model was then used for embedding our Wikipedia knowledge statements
as documents. This model was trained on the Stanford NLP cluster with 2 Nvidia GeForce RTX 3090
GPUs and 100GB of memory. The faiss index used in our ColBERT retrieval was created with a
maximum document length of 180 tokens and with punctuation masked, a batch size of 256, and a
chunksize of 8 using document tokenizer from the pretrained ColBERT model, which itself relied
on a pretrained BERT tokenizer; the same hardware specifications were used for creating the faiss
index as training the retrieval model. For GloVe retrieval, the English Core Web Large pipeline from
SpaCy [15] was used for token embeddings to create query- and document-level embeddings.



Table 2: Retrieval Response Ranking. ColBERT significantly outperforms both GloVe and Aug-
GloVe in adapted mean reciprocal rank.

Retrieval Method aMRR@5 aMRR@7 aMRR@10
GloVe 0.301 0.285 0.240
Aug-GloVe 0.322 0.303 0.255
ColBERT 0.532 0.498 0.433

Next, pretrained neural infilling models BART and TS5, with weights taken from HuggingFace, were
finetuned in the manner described in our approach on a dataset of size 4284. These models were
trained using the AdamW optimizer with learning rate le-5 for four epochs.

The Stanford NLP cluster hosted the server used for managing access to the retrieval and infilling
models; this server was allocated 100GB of memory and 2 Nvidia GeForce RTX 3090 GPUs.

4.4 Results

4.4.1 Retrieval

We report the performance of the two neural retrieval models, GloVe-based search and ColBERT, in
average relevance score in Table[I] ColBERT significantly outperforms GloVe-based search in all
ARS @F£ that was evaluated, indicating its superior ability to effectively retrieve knowledge statements
that are deemed pertinent to the query. First, note that in both models, the number of relevant retrieved
statements did not scale linearly with k; this dropoff indicates that in both models, increasing k will
not necessarily lead to more relevant or higher quality retrievals. However, note that the dropoff
in ColBERT performance is significantly less than that of GloVe, indicating that for CoIBERT, at
least, there might be a benefit in increasing k up to a particular threshold; further experimentation is
required to determine such a threshold in conjunction with balancing potential increases in latency.

We also report the performance of GloVe-based search and ColBERT on adapted mean reciprocal
rank in Table 2] which reflects CoIBERT’s superior ability to rank the most relevant documents
higher compared to GloVe-based search. As k increases the aMRR in both models decreases, which
reflects changing evaluator perception on the best possible knowledge statement when exposed to
more retrieved documents; Again, CoIBERT’s dropoff in performance is significantly less than that of
of GloVe-based search. These results on aMRR are revealing: ColBERT s best retrieval is on average
in approximately rank 2, while GloVe’s best retrieval is on average between rank 3 to 4. Accordingly,
during use in ChirpyCardinal, ColIBERT will more consistently provide higher quality knowledge
statements as context to the infiller model relative to GloVe-based search.

Aug-Glove Ablation. To ensure that differences in model performance were not the result of
differences in the data provided to the two models, we performed an ablation study where GloVe
performed similarity search using the 180-token knowledge statements stored in ColIBERT’s faiss
index; since these knowledge statements were not stored in data structure that associated each
statement with a particular entity, we used ColBERT to retrieve the top 100 knowledge statements
corresponding to the given query to simulate providing access to many potential knowledge statements
while also creating the necessary data overlap between the two models. The GloVe-based search on
the new knowledge statements, denoted Aug-GloVe, achieved a statistically insignificant improvement
in performance relative to GloVe on both ARS and aMRR as seen in Tables[T|and 2] These results
indicate that ColBERT’s superior performance, as suspected, is due to its superior ability to represent
semantic relationships between query-document pairs rather than something inherent to the data it
has access to.

4.4.2 Infilling

We report the performance of the permutations of the two retrieval models and two infilling models on
ASS in TableE} First, our results demonstrate the the combination of CoIBERT and BART outperform
the other possible model combinations for infilling; this is promising for use in ChirpyCardinal.
However, more revealing is the large difference in performance of the retrieval methods irregardless
of whether BART or TS is being used. The infilling statements created by the conditional generation



Table 3: Retrieval Response Ranking. ColBERT significantly outperforms both GloVe and Aug-
GloVe in adapted mean reciprocal rank.

GloVe ColBERT
BART T5 BART T5
ASS 0.484 +£0.03 0.446 +0.02 0.642+0.04 0.590+0.05

Retrieval Method

models based on context from GloVe were significantly less sensible than those from ColBERT,
indicating that the context provided to the infilling models significantly affects perceived sensibility
of the infilled templates.

4.4.3 Latency

In Table [5] of the appendix, we report our measurements of the latency for each component of
ChirpyCardinal. We find that ColIBERTs retrieval process is slower than that of GloVe-based search,
with there being no significant difference in infilling time compared between TS and BART when
used in conjunction with either of the two retrieval models. However, the process of retrieval
differs between the two methods in fundamental ways: in GloVe-based search, the initial knowledge
statements are already retrieved before being passed to ColBERT, whereas ColBERT retrieves the
optimal indices of knowledge statements similar to the query, which are then used to look up the actual
text of the statements. Accordingly, this imbalance in procedure lies at the heart of the differences in
latency; empirically, the latency of ColBERT does not affect the user experience of interacting with
the chatbot.

S Analysis

In Table [] are example inputs and outputs to a given retrieval or infilling model, comparing and
constrasting the performance of GloVe-based retrieval versus ColBERT in conjunction with a BART
model for infilling.

The difference in infilled statements demonstrates the challenge of implementing such an end-to-end
infilling system as well as limitations in GloVe-based search. Note that in isolation, the results of
retrieval and infilling are somewhat logical given the inputs: the retrieval step returns a knowledge
statement that provides a statement that alludes to physical locations, while the infilling step effectively
uses the knowledge statement to fill in the blanks of the template based on the mentioned locations.
However, the output of the infilling process is a statement that is factually questionable because
of the knowledge statement not matching the semantics of the query. In contrast, CoIBERT’s best
knowledge statement closely matches the semantic information of the query, making the infilling
output factual and semantically viable. This high level pattern, with ColBERT returning better
knowledge statements leading to better infilled ouputs, holds across other conversation topics in the
chatbot and proves promising for ColBERT’s use in ChirpyCardinal more generally.

6 Conclusion

Despite advances in large language models and natural language understanding, open-domain chatbots
lack knowledge that would allow them to maintain rich and topical conversations. While ChirpyCar-
dinal addresses these concerns through the use of a Wikipedia-based response generator, its use of
GloVe for information retrieval leaves much to be improved. In this project, we further advance the
ability of ChirpyCardinal to maintain rich conversation by replacing GloVe-based similarity search
with ColBERT and experimenting between two different neural infilling models, BART and T5. We
found that ColBERT returned significantly more relevant knowledge statements more frequently than
GloVe, which led to better infilling performance by BART and T5. This validated our hypothesis
that a powerful language model could be integrated into a real-time chatbot with minimal effect
on user experience through latency. However, this work was not without limitations, the main one
being the reliance on human evaluation for quantitative metrics and the subjectivity that naturally
accompanies such evaluation. Another limitation was the lack of concrete comparisons between the
latency of using ColBERT versus that of GloVe, as the process of creating the requisite input data



Table 4: Retrieval and infilling example with given template: “Koala primarily lives in [place]”

GloVe

ColBERT

naturalist and popular artist
John Gould illustrated and
described the koala in his
three-volume work The
Mammals of Australia
(1845-63) and introduced the
species, as well as other
members of Australia’s
little-known faunal
community, to the general
British public Comparative

The koala or inaccurately koala bear
(Phascolarctos cinereus) is an arboreal
herbivorous marsupial native to Australia It
is the only extant representative of the family
Phascolarctidae and its closest living
relatives are the wombats which are members
of the family Vombatidae The koala is found
in coastal areas of the mainlands eastern and
southern regions inhabiting Queensland New
South Wales Victoria and South Australia It
is easily recognisable by its stout tailless

Top-k anatomist Richard Owen. in a body and large head with round fluffy ears

Knowledge series of publications on ’the and large spoon-shaped nose The koala has a

Statements hysiolo P and anatomy of body length of and weighs Fur colour ranges
gu); traliagnymammals y from silver grey to chocolate brown Koalas
presented a paper on’ the from the northern populations are typically
anatomy of the koala to the smaller and lighter in colour than their .
Zoological Society of London counterparts further south These populations
In this widely cited ppssibly are separate subspecies. but this is
publication, he provided the disputed Koalas typically inhabit open
first care ful, description of its eucalypt woodlands and the lgaves of these.
internal anatomy, and noted trees make. up most qf their d1e} Because this
its general struc tl,lral eucalypt diet has limited nutritional and
similarity to the wombat caloric content koalas are largely sedentary

T and sleep up to 20 hours a day . ..

Best izgsrégitlgr;ﬂfg?;gr ;rltést The koala or inapcurately koala bear

Knowledge described the koala in his (Pha.scolarctos c1ner.eus) 18 an arboreal .

Statement three-volume work The herblvorous marsupial native to Australia It
Mammals ... 15

Isrigtlé?r(llen ¢ Egzi?aﬁgr:;(?grﬁ\a]ie; n Koala primarily lives in southern Australia.

occurred in different parts of the code. Future work could include improving latency of the infilling
step conditional generation model by eliminating the expensive and likely unnecessary copying of
words between slots to be infilled during decoding in BART/TS, as well as further code optimization
that could further decrease latency. Improvements to ChirpyCardinal might also include end-to-end
evaluation of the neural-augmented generation pipeline and the creation of additional templates for
infilling.
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B Appendix

B.1 Latency

Here we report the outcome of our profiling of the latency of the two methods. We find the following
times:

Table 5: Average Latency Times

Neural Method GloVe ColBERT BART T5
Latency (s) ~ 0.02 ~ 0.65 ~ 1.34 ~ 1.28
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