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Abstract

Our goal is to test whether transformer models are able to encode event structural
information in their representations of sentences. Using [1]’s event classification
dataset, we seek to evaluate whether and how BERT may encode information about
distributivity. We train classifiers to predict whether a predicate is distributive or
collective using each of BERT’s hidden layers contextualized representations of a
complete predicate, a predicate span, and an argument span. In line with previous
research that suggest that semantic information is encoded in the top layers, we
find that BERT may encode information about distributivity in later layers but it
can still find a signal as early as layer 1. We also report that while all three types
of representation perform in a similar fashion, argument span representations may
better encode information about distributivity.
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2 Introduction

As deep pre-trained language models continue to set new state-of-the-art results on NLP benchmarks,
questions regarding their potential to encode linguistic knowledge have been raised. In this project,
we investigate whether BERT [2] encodes information about the structure of events a using a probing
task. A probe consists of a simple classification task that seeks to reveal information about a linguistic
phenomenon using as features the learned parameters of an external model trained on a different
task[3]. Probes are trained to predict properties from representations of language and are used to
investigate whether learned representations of language encode information about a particular feature
of language [4]. A successful classifier may suggest that the external model stores information about
the linguistic phenomenon of interest. We focus on examining whether the contextual representations
for the plural or conjoined arguments of certain predicates encode information about distributivity. A
predicate is interpreted distributively if an event is individually true of each participant or collectively
otherwise [5, 6, 7, 8]. For example, sentence (1a) describes multiple laughing events where each
child is the sole participant of their own laughing. In contrast, sentence (1b) describes one meeting
event that involves multiple children.

(1) a. The children laughed,
b. The children met.

The laughing event described in (1a) has the property of being distributive: each participant in the
subject noun phrase the children engages in their own laughing event separately, the event is true of
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each participant. On the other hand, the meeting event described in (1b) has the property of being
collective: all participants described by the subject noun phrase children mandatorily engage in the
meeting event collectively, true only of the collective. Human language users, even without being
explicitly taught what distributivity means, can usually spot the event-structural difference between
two events described by these sentences in (1) [1]. We examine whether and how BERT is able to
discern information about this semantic feature through a series of experiments.

3 Related Work

Previous work in using probes to explore language representations have focused on finding signs for
morphology [9], part-of-speech [10], sentence length [11], and syntax [12]. Recent work by [13] is a
great example of the success of growing research in using probing as a method to evaluate whether
neural networks preserve certain linguistic properties in their representations of sentences. This paper
offers a novel structural probe to test whether deep contextual models embed syntactic parsed trees
in their learned representations. Using a linear transformation of the learned vector space, they test
whether, when squared, the L2 distance between two word vectors corresponds to the number of
edges between these words in their parse tree. They evaluate representations from BERT (BASE and
LARGE) and ELMo at different layers on how well the predicted distances between pairs of words
resemble gold parse trees distance metrics. When it comes to syntax, BERTLARGE performs better
than BERTBASE , which performs better than ELMo. Specific to BERT, layers after the middle tend
to encode information about how words are placed with respect to others, which in this case is taken
as proxy for syntactic knowledge. They also find, for the best performing models, that when the size
of k in B ∈ Rk×m is larger than 64, parsing accuracy converges for all models.

Another interesting paper that focuses on finding an encoding of language structure is the work by
[14] that uses probing tasks to assess individual BERT layers in their ability to capture different
types of linguistic features. They find that surface information such as sentence length are embedded
in lower levels, syntactic information such as depth of syntactic tree are found in middle layers
and that semantic information such as tense and subject number are embedded in top layers of
BERT. This paper shows the hierarchy with which linguistic information is encoded in layers
of contextualized language models. Despite the abundance of past linguistics literature on event
classification [15, 16, 17], there has not been an attempt to test whether deep language models are
able to encode event structural information in their representations of sentences.

4 Approach

To examine whether and how BERT encodes information about distributivity, we build a classifier
to predict whether a predicate has the distributive feature (see Eq. 1). Our classifier consists of a
fully connected feed-forward network with one hidden layer (h) of size 128 with a ReLU activation
in between. The classifier takes as input a contextual embedding of size d and predicts whether the
predicate represented with the vector is distributive or collective.

Distributivityclassifier(x) = Softmax(Linear(ReLU(Linear(x))) (1)

5 Experiments

5.1 Data

We use a subset of the Event Structure dataset [1] to train our classifiers. The Event Structure is part
of the Universal Decompositional Semantics (USD) by Decompositional Semantics Initiative. As
the largest collection of annotation of event structure, this dataset covers the English Web Treebank
and includes annotations for event structural distinctions such as (a) the substructure of an event,
(b) superstructure in which an event takes part and (c) the relationship between an event and it’s
participants as well as other related properties such as dynamicity, telicity and durativity. To answer
whether BERT encodes information about distributivity, we focus on the event-entity subset of the
data. This subset of the data consists of predicate-argument pairs with plural or conjoined arguments
from the English Web Tree Bank. Plural arguments were identified using the attribute NUMBER
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Figure 1: Probing protocol: A predicate is fed to BERT, then a layer and a type of representation are
chosen, the output is then an input to a fully connected FFN for binary classification.

Split Distributive Collective Total
Train 4341 4537 8878
Dev 589 415 1004
Test 542 448 990
Total 5472 5400 10872

Table 1: Number of predicates per dataset split

from the Universal Dependencies. Conjoined arguments were identified using the conj dependency
between a head and a noun. Only arguments with one of the following universal dependencies:
nsubj, nsubjpass, dobj, and iobj were considered for either type of predicate-argument pair.

5.2 Evaluation method

The development and test sets for the distributive-collective dataset from [1] were annotated three
times, for our purposes, we take the majority label in our experiments. We used three metrics metrics
to compare our models: F1 score, accuracy and weighted F1 score. We were interested in seeing
how well our models identify true cases (accuracy), and we also wanted to get a predictive metric of
precision and recall combined (F1 score). Our final evaluation metric was weighted F1 score: we had
different number of distributive and collective samples and we calculated the F1 score separately for
each group, and then weighted the score by its support.

5.3 Experimental details

In order to investigate how BERT encodes information about distributivity, we run three main ex-
periments that vary the type of input representation. The motivation behind is that the embeddings
associated with a token change depending on their context. We thus train classifiers with a predicate
representation, and contextualized predicate and arguments spans in the predicate (see figure 1). In ex-
periment 1, the representation for a predicate consists of the classification embedding computed using
BERT’s self-attention mechanism ([CLS]), the Contextual model. In experiment 2, the representation
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for a predicate consists of the averaged contextualized embeddings for the tokens that correspond to
the argument span in the predicate, the Argumentspan model. In experiment 3, we follow the same
logic in experiment 2 but with predicate spans, the Predicatespan model. For each experiment, we
train 13 classifiers, one for each of BERT layers (including the token layer). This set up will allows to
investigate 1) where in a predicate and 2) where in BERT is information about distributivity encoded.
For training, we use Adam optimization with default parameters and an optimal learning rate of
0.0001 (we experimented with 0.1, 0.01, 0.001, 0.0001, 0.00001), an effective batch size of 128,
and minimize cross entropy loss. We run the models for 30 epochs and use early stopping after 5
validation steps. Each classifier is run 5 times, we report the best performing run. We compare these
models against a baseline which consists of a randomly initialized word model, where the input is a
sentence embedding vector, which is computed by averaging the vectors for each word in a predicate.

5.4 Results

Our results suggest that our classifier is able to classify contextualized embeddings as distributive or
collective relatively well (see Table 2). When compared to our baseline, we see that BERT-based
models outperformed the baseline. Our best performing model was Argumentspan model, however,
differences between BERT-base models were not that striking (see figure 2 ). In general, performance
increased for later layers with some model specific variations (see Appendix). The Contextual
model shows a relatively stable upward trend, where performance appears to increase as we move into
later layers. A similar patters appears to be occurring with the Predicatespan model, however, we
see a peak at around layer 7, and then performance slightly drops. The Argumentspan model shows
a slightly more volatile behavior. It shows two peaks at around layer 4 and 8 and then again continues
to increases in performance in the last two layers. We see that in general, the Argumentspan
model performs the best, followed by the Contextual model, which is in turn followed by the
Predicatespan model. Finally, a striking difference between BERT-based models lied in layer 0. In
this layer, Contextual performed at par with the Baseline.

Model Performance
Representation F1 Accuracy Weighted F1
Baseline 70.76 54.75 38.74

Contextual 77.85 74.04 73.93
Argumentspan 78.28 74.34 74.37
Predicatespan 77.46 73.17 73.13

Table 2: Best Performing Model per representation

6 Analysis

We found that probe performance was high even in the first layer of the network and improved in
deeper layers, which suggests that BERT manage to learn some distributivity information as early as
the first layer. Best performance was reached in the 8th layer, which follows previous findings that
suggest semantic information is usually encoded in later BERT layers [14]. Regardless of the type of
input, the representation stores some information about whether an event is performed by participants
collectively or separately by each participant, which may be due to the contextual information present
in each token vector. The three models performed similarly, and better than the baseline across the
three evaluation metrics: F1, Accuracy and Weighted F1. The contrast between the baseline and the
critical conditions is the biggest along the weighted F1 metric. This is probably because the baseline
simply treats all sentences as distributive regardless of their actual distributivity, which leads to a high
unweighted F1 and accuracy score due to the condition imbalance in the data set. When weighted
F1 score is used, this confound is controlled for. The representation that performed the best was
the Argumentspan model. This suggests that the argument span may encode the most information
about distributivity, although distributivity may also be encoded in the predicate span or the complete
predicate made up of the predicate and argument spans.
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Figure 2: Weighted F1 scores for baseline and each BERT based model

Figure 3: Maximum, mean, and minimum Weighted F1 scores from the 5 runs for argument span
model across layers

7 Conclusion

In this study, we aimed to test whether we can recover distributivity information from the outputs of
BERT. By creating a binary classifier probe trained in the distributivity dataset in [6], we evaluate
the probe performance when it takes in outputs from BERT. We observed that BERT embeddings
for argument span, verb span, and contextualized sentence embeddings all lead to better probe
performance than the randomly initialized baseline. The best performance is achieved at BERT’s
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8th layer. Overall, our results suggest that BERT can encode distributivity information in its outputs,
more so in later layers. We also find that the signal about distributivity can be recovered slightly
better from the arguments in a predicate than from the predicate span (which may include verbs or
adjectives) or the complete predicate (which includes the predicate and argument spans).

Given the binary nature of our inputs, we were unable to tease apart how ambiguous predicates are
handled. For example, in “Mary and John opened the window”, how are Mary and John involved
in the opening event? Do they both, collectively, participate, or do they each do their part? these
questions we leave for future work. Further, we would like to exploring whether deep language
models can learn other information about event structure, such as event-event relations or event
subevent relations. The dataset we used in our project includes other event structural information
such as these and we can create corresponding probes in similar ways to the current study. This work
can also be extended to probing the output of other deep language models like RoBERTa and T5.
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Figure 4: Maximum, mean, and minimum Weighted F1 scores from the 5 runs for each the BERT-
based models across layers
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