Prompt-based model editing

Stanford CS224N Custom Project

Charles Lin
Department of Computer Science
Stanford University
charles.lin@cs.stanford.edu

Abstract

SERAC [1] is a retrieval-based algorithm for editing pretrained models which
achieves state-of-the-art performance in question-answering, natural language
inference, and sentiment modulation editing tasks. However, while performance
of language models scales with the number of parameters in many tasks [2, 3],
SERAC’s performance does not scale with the size of the base model being edited
due to its decoupling of its base and counterfactual models. To this end, we propose
a retrieval-and-continuous-prompting editing algorithm which replaces SERAC’s
counterfactual model with a prompter network to predict continuous prompts which
reliably modulate the base model’s outputs. We show that the prompt-based editor
rivals the performance of SERAC on natural language inference and question-
answering editing tasks. Empirically, our method shows promise in being able to
generalize to unseen base model architectures and to reliably modulate language
model outputs.

1 Key Information to include

* Mentor: Eric Mitchell
 External Collaborators (if you have any): none
 Sharing project: no

2 Introduction

Language models have shown great empirical success over various tasks from machine translation to
question-answering to natural language generation [2} 4} 5]]. However, these models are not perfect,
and on some tasks such as closed-domain question-answering and news summarization, their beliefs
can become outdated as the world changes. In deployment, language models are typically utilized as
static objects after being trained; naively, in order to update a language model, one would need to
finetune the model or train a new model. Neither of these solutions is perfect: finetuning can lead to
catastrophic forgetting [6]], while retraining models can be computationally expensive.

Model editor algorithms [7} |8, 9] attempt to provide local updates to a model’s behavior on some
input. To make model edits sensible, they should generalize to, and only to, inputs which are in some
sense similar to that input. As an example, suppose that upon receiving the question Who won the
last NBA championship?, a question-answering model incorrectly answers with Toronto Raptors. To
make the model’s predictions up-to-date (at the time of writing), we would want to edit its output to
Milwaukee Bucks. Upon this edit, we’d like the model also to update its outputs on related questions
such as Who won the NBA Finals last year?, Did the Raptors win the Finals last year? and How
many championships have the Bucks won? without the need to explicitly list and train the model
on all such questions. At the same time, we don’t want the model’s output to change on unrelated
questions such as Who is the prime minister of the UK? and Which NBA team won the most games
last year? (different from winning the Finals). In other words, we want our edits to be general with
respect to rephrasings and implications, while remaining local to the particular topic being edited.

Stanford CS224N Natural Language Processing with Deep Learning

X, = “Who won the last X, = “Who won the

NBA championship?” \ NBA Finals last year?”
v v
Base model Edited model
i 11— @i 1
9 o ke Editor okl ™
!

+ v
Y. = “Toronto Raptors” V. = “Milwaukee Bucks”

X

Figure 1: The model editing problem. Can we modify a base model’s behavior locally given a
description of the desired change?

Ye = “Milwaukee Bucks”

Recently, retrieval-based methods such as SERAC [1]] and RETRO [10] have shown strong perfor-
mance in editing knowledge in language models. SERAC is a retrieval-based editing algorithm which
augments a pretrained, frozen base model with a retrieval-based component consisting of an external
memory and a trainable neural network called the counterfactual model. Edits are stored as text in
the external memory, and the counterfactual model is able to generate outputs which are conditioned
on memories. The base model and the retrieval-based component are completely decoupled, meaning
that on some input, either the base model’s output or the counterfactual model’s output is used, but
not both. Contrary to SERAC, RETRO completely couples the base model and retrieval-augmented
component, training a base model to apply attention over both input prompts and retrieved texts.

Retrieval-based algorithms which couple the base model and retrieval-based component typically
require finetuning of the base model to ensure that the base model is able to use retrieved texts. While
decoupling avoids this expensive training procedure, performance scales only with the size of the
retrieval-based component which is used for output, not with the size of the base model. In practice,
the base model may be much larger than the retrieval-based component because increasing the size of
models has been demonstrated to improve performance on many tasks [2, 13]. Is it possible to get
the best of both worlds, avoiding the computational costs of training the base model while having
performance scale with the base model’s size?

We introduce a novel model editing algorithm which weakly couples its base and retrieval-augmented
models. Our prompt-based editing approach replaces SERAC’s counterfactual model with a prompter
model whose outputs are used as input to the base model to obtain the edited model’s final output.
Unlike in SERAC, the base model is explicitly used to generate output text, so in principle its
parametric knowledge can be utilized. We show that empirically, our prompt-based editor approaches
the performance of SERAC on three editing tasks.

We demonstrate that like SERAC, our prompter can be trained for one base model and then deployed
to other base models without any additional training. This hypothesis relies on two assumptions.
First, all base models must use the same vocabulary for compatibility with the prompter’s predicted
distributions. Second, we assume that for different base models which share a common vocabulary
and pre-training dataset, the word embeddings are relatively similar between different models.

In the broader context of retrieval-augmented models, our prompt-based approach may improve the
robustness of systems which use natural language queries. Recent works [5}|[11]] have demonstrated
that retrieval-based language models are highly sensitive to the particular phrasings of inputs, which
we verify empirically in Table[d] of the Appendix, which shows qualitatively that a question-answering
model can produce many different answers to semantically equivalent questions. A continuous
prompter such as our method may mitigate this failure mode by transforming natural language
prompts into a form which more consistently modulate base models’ behavior.

3 Background

3.1 The model editing problem

In the model editing problem, we are given a pretrained base model f and a description of the
desired change in behavior, from which we produce an edited model f. The description of the change

[}
Where is Boris Why is the sky blue?
Johnson the PM?

Who is the PM of
the UK?
© .
Who is the prime
minister of the UK?

u
What club does
Messi play for?

m
Where did Boris
Johnson go to

university?
L]
What continent is

O]
Who is the UK deputy PM?

Everest on?

Edit scope In-scope Out-of-scope Hard in/out-of-scope
. [] @M

Figure 2: Edit scopes in a QA setting. The green region depicts the edit scope of the question “Who
is the PM of the UK?’, including semantically equivalent and entailed questions.

is encoded in an edit descriptor z.. An edit descriptor may be, for example, a question-answer pair
corresponding to how a QA model should answer that question; in general, it may be any text which
defines the behavior. The edited model f should change its behavior exactly on post-edit inputs z
which are in the scope of z., meaning that the ‘correct’ behavior of a model on input x changes given
ze. Meanwhile, the behavior of f should not differ from that of f on post-edit inputs which are out
of the scope of z.. We define the edit scope of z. to be the set containing exactly these in-scope
input-label pairs, and denote it by S(z.).

The edit scope is an abstract notion which is often not easy to explicitly define in practice. To actually
train and evaluate model editors, we use sampling functions I(-; D.) and O(+; D.). Given an edit
descriptor, I(z.; D) gives an in-scope input-label pair from D,, and O(z.; D,) gives an out-of-scope
input from D,. See Figure 2| for an illustration of edit scopes in a question-answering setting.

We let X,), and Z denote the spaces of post-edit inputs, post-edit labels, and edit descriptors,
respectively. Each of X',), and Z captures a space of foken-vector sequences. We define a token-
vector to be a vector in the |V'|-dimensional probability simplex, where V' is the vocabulary of our
base model f. A token-vector derived from a token of text is a |V'|-dimensional one-hot vector; inputs
are given as text in our experiments, but in principle need not be. The embedding of a token-vector v
is obtained by matrix-vector multiplication £ v where E € RIVI*? is a token embedding matrix.

3.2 Semi-parametric editor with a retrieval-augmented counterfactual model

SERAC is a retrieval-based model editing algorithm which achieves state-of-the-art performance in
question-answering, natural language inference, and conversational sentiment modulation editing
tasks. SERAC augments a pretrained base model with two additional models, the scope classifier and
counterfactual model, as well as an external memory. Outputs are modified using a retrieval-and-
rerouting mechanism: a classifier determines whether an edit should be applied, and if so, the output
of the counterfactual model is used in place of the output of the base model. In other words, the base
and counterfactual models are completely decoupled.

Formally, SERAC takes the form fo(- ; ¢, %, Zo) : X —). 0, the parameters of the base model, are
left unmodified by SERAC’s training procedure. ¢ parameterizes the scope classifier g4 : 2 x X —
[0,1]. g4 jointly embeds edit inputs x and edit descriptors z. into a common representation space. It
then estimates the log-probability that an edit input « is in the scope of an edit descriptor z. either

* as the negative squared Euclidean distance between their representations (which we call the
embed version), or
* via cross-attention between edit inputs and edit descriptors (which we call the cross-
attention version).
1) parameterizes the counterfactual model hy : Z2 x X —), which predicts a label y € Y to edit
input x € X, conditioned on edit descriptor z, € Z.

A conceptual limitation of SERAC is the fact that its predicted output text is completely generated by
the counterfactual model upon edits. On the other hand, existing works demonstrate that performance

scales with number of model parameters on tasks such as closed-domain QA and NLI ([2]], Table 14).
As SERAC returns the outputs of its counterfactual model, its performance is limited by the size of
the counterfactual model. The counterfactual model must be fine-tuned on the editing task at hand, so
the computational costs of training SERAC scale with the size of the counterfactual model. On the
other hand, while the computational complexity of training SERAC doesn’t scale with the size of the
base model, SERAC is unable to exploit the base model’s size to achieve better performance.

4 Approach

4.1 Method

Like SERAC, our prompt-based model editor takes the form fo(- ; ¢, %, Z.) : X —) with base
model parameters # and auxiliary model parameters ¢ and 1. ¢ parameterizes a scope classifier model
gy : 2 x X — [0, 1], identical to that of SERAC, as described in Instead of a counterfactual
model, ¢ parameterizes a prompter model hy, : Z x X — Z x X. On an input sequence of length T,
hy, predicts a token-vector sequence to be used as an modified prompt for the base model.

Applying edits. We describe the computation of fy(x; ¢, 1, Z.) on an edit input-label pair (z,y) €
X x Y. For each z, € Z,, the classifier is used to predict the similarity between z, and x; we write
B < go(2}, x) where 2} = argmax,_ ez, go(25,). Intuitively, 5 denotes the probability of x being
in the scope of the most likely z.. If 5 > 0.5 (meaning that we predict x to be in the scope of z}), we
compute a continuous prompt Z <— hy ([27, z]); otherwise, we take Z < = (meaning we leave the

prompt untouched). Finally, the output is computed using the base model: fy(x; ¢, 1, Z.) < fo(Z).

Training. g4 and h,; are trained separately in a supervised fashion using a dataset of edit descriptors
D, = {21},. g4 is trained to classify whether each input is in the scope of a descriptor using a binary
cross-entropy loss:
€(¢) = - ED [IOg g¢(ze, Iin) + IOg(l - gqﬁ(zea xout))}-
(@,)~ (ze;De)
moulNO(ze§De)

In-scope samples are called edit samples, while out-of-scope samples are called locality samples.

The prompter is only trained on inputs which have a corresponding edit descriptor in memory. As in
test time, the prompter computes hy, ([z.,]), a soft weighting of token embeddings which are used
to generate a continuous prompt for the base model; note that in training, the frue corresponding edit
descriptor z, to edit input x is used as input to hy,. . is trained using a language modeling objective
to maximize the log-likelihood of the base model predicting the correct label:

() = - E logpo(yn | Zin).

Zen

(Tin ayin)"/I(z‘e iDe)

Additionally, we regularize the prompter’s token-vector outputs to be close to the original text input
in token-vector-wise KL divergence:
b (¥) = E_[KL(z¢, by ([2252])]-

ze~De

The total loss is
U,) = L(p) + Ceaitl (V) + cralir (V).

where ceq; and cy, are hyperparameters. Crucially, note that the base parameters ¢ are not trained.

4.2 Baselines

SERAC. For a detailed description of SERAC, see Section When SERAC’s counterfactual
model has the same size as our base model, SERAC’s edit success serves as a weak upper-bound to
that of our method: SERAC’s outputs are produced by its counterfactual model which is explicitly
trained to predict the correct label given [z},], whereas outputs of our method are produced by its
base model which is not trained. However, it is, in principle, possible for the prompter to perform
better than SERAC because the prompter and base model are applied in sequence on the retrieved
input [z}, x] to get the output.

Problem Edit Descriptor z. In-scope input Zes ~ I(2e) Out-of-scope input Tjoc ~ O(z¢)

As of March 23, there were 50 confirmed cases and Idaho had less than 70 positive coronavirus ~ Allessandro Diamanti scored six se-

0 deaths within Idaho. True cases before March 24, 2020. True rie A goals.
FC Between 1995 and 2018, the AFC has sent less than — The AFC sent less than half of the
half of the 16 AFC teams to the Super Bowl with 16 AFC teams to the Super Bowl
only 7 of the 16 individual teams making it. True between 1995 and 2017.
QA Who is the Sun Public License named after? Sun The Sun Public License has been named for ~What continent is Mount Whillans
Micro Devices whom? Sun Micro Devices found on?
A-hard What type of submarine was USS Lawrence (DD-8) t/f: Was USS Lawrence (DD-8) classified What type of submarine was USS
YP yp
classified as? Gearing-class destroyer as Paulding-class destroyer. False Sumner (DD-333) classified as?

Table 1: Examples from the datasets in our experiments. FC tests a model editor’s ability to perform
NLI-like reasoning from facts given in an edit descriptor. QA and QA-hard evaluate editors’ abilities
to locally edit their factual knowledge. Table reproduced from [[1]].

RP. Retrieval-and-prompting is an ablation of SERAC where the retrieved prompt [z}, x] is passed
directly into the base model. If the prompter model in our method learned an identity mapping,
it would recover the behavior of RP, and hence RP provides a lower-bound to the edit success of
our method. Comparing our method to RP allows us to quantitatively understand the benefits of
transforming the prompt to the base model.

S Experiments

5.1 Data

We evaluate our method in three experimental settings which we describe below. Examples of the
data used for training and evaluation are provided in Table

FC. We use the fact-checking setting introduced in the SERAC paper. FC is a NLI task which
uses the VitaminC dataset from [[12] which assesses a model’s ability to verify claims given small
factual changes. VitaminC consists of over 400, 000 claim-evidence-label tuples; the model must
label a claim as ‘true’ (1) if it follows from the evidence, ‘false’ (—1) if it contradicts it, or ‘neither’
(0). To frame NLI as an editing problem, we use the evidence as edit descriptors and the claims and
labels for test-time edit inputs and labels, respectively. In other words, a model that is edited using
the evidence should be able to deduce the label given the claim.

Note that only samples with a label of ‘true’ or ‘false’ are used to make edits, since a claim which is
neither entailed nor contradicted by some evidence cannot be used to assess the quality of the edit nor
to train the editor. For data samples which have a label of ‘true’, the claim and label are used as an
in-scope sample. For samples which have a label of ‘false’, the claim is treated as a hard out-of-scope
sample.

QA and QA-hard. We also adopt the QA and QA-hard settings from the SERAC paper. These
are closed-domain question-answering tasks assessing a model editor’s ability to modify factual
knowledge. The QA setting was first proposed in [7], drawing from the Zero-Shot Relation Extraction
(zsRE) dataset of [13]. The QA dataset contains 218,457 train, 882 validation, and 24, 968 test
samples. Each sample contains two question-answer pairs, one to be used as an edit descriptor for
a model editor and the other to be used as a test input-label pair. An edited model must predict the
correct answer to the second question after conditioning on the first question-answer pair.

In the regular QA setting, the two question-answer pairs are semantically equivalent. The locality
of edits is evaluated by randomly sampling question-answer pairs from the training dataset. In the
QA-hard setting, the test input-label question-answer pair may be equivalent or entailed by the edit
descriptor; entailed questions include implications and yes-no questions. Locality is evaluated by
sampling question-answer pairs which are similar to but out of the edit scope of the edit descrip-
tor, as evaluated by a pretrained al1-MinilM-L6-v2 sentence-embedding model from Sentence
Transformers [[14].

5.2 [Evaluation method

We evaluate our method using two quantitative, automated metrics defined in [[1].

Dataset Model Metric SERAC Prompter RP

TES 0857 0847 0528
FC BERT-base | by 0087 0075 0015
TES 098 0961 0487
QA TSlarge 1 pp 0009 0009 003
TES 0913 0841 0278
QA-hard - TS-large ppy 0028 0039 0.027

Table 2: Comparison of our method with other editors on three experimental settings. We report
numbers on the validation set using £ = 5 simultaneous edits for FC and k£ = 10 simultaneous edits
for QA and QA-hard. The prompt-based editor achieves essentially the same performance as SERAC
on FC, nearly the same performance on QA, and slightly worse performance on QA-hard. RP is
unable to achieve comparable edit success in any of the three settings, indicating that the prompter
learns to predict continuous prompts which to the base model are more useful than the original text
prompts.

First, edit success (ES) measures a model editor’s ability to make sufficiently general edits. Concretely,
ES counts the number of matching edited-model predictions and true labels for in-scope inputs:

ES(Ze) = E[I(E D.)]]-{]E(:Etest) = ytest}] .

Edit success ranges between 0 and 1, with higher edit success indicating better performance.

Second, drawdown (DD) measures the locality of edits, counting the number of non-matching
edited-model predictions and true labels for out-of-scope inputs:

DD(Ze) = E Il-{f(xout) 7£ f(xout)} .

Tou €O (ze;De)
Drawdown also ranges between 0 and 1, with lower drawdown indicating better performance.

We evaluate our method and baselines on batches of edits. For each sNampled batch of £ edits, a model
editor is first given k edit descriptors to produce an edited model f from a base model f. We then

compute the edit success and drawdown of f on the k edit input-label pairs in the batch. We repeat
the procedure over many batches to obtain our reported estimates the ES and DD.

5.3 Experimental details

We report the hyperparameters used for our experiments.

Hyperparameter FC QA QA-hard

Prompter model bert-base tb-small tb-small
Classifier type cross-attention embedding embedding

Learning rate 1x107° I1x107* 1x107*
Cedit 10 100 100
CKL 0 0.1 0.1
Batch size 5 10 10

We applied early stopping on validation edit success with a patience of 40, 000 steps for all experi-
ments. All experiments were run with on a single random seed.

I implemented the prompt-based editor algorithm in the official SERAC code and adopted their
experimental setup.

5.4 Main results

Our quantitative results on the three experimental settings are in Table 2}

Our method’s performance essentially matches SERAC’s in the FC setting. On the other hand, RP
is unable to achieve edit success much higher than 50% (i.e. random guessing) on FC. Note FC is

== Prompter == Prompter

c c -

2 RP 2 0.8 RP

o o

'g 0.8- 'g

o ©0.6-

a [a}

) 0.6- |

a 80.4-

$0.4- S

a a

£ = 0.2

£502 7 £

60 770 3000 60 770 3000
Number of parameters (millions) Number of parameters (millions)

Figure 3: Evaluating prompt-based model editors on pretrained base models of varying architectures.
Left: a prompt-based editor trained on QA using a T5-large (770m parameters) base model is evaluated
on QA using T5-small (60m parameters) and T5-XL (3b parameters). Right: the same evaluations
are performed on QA-hard.

the easiest setting for the prompt-based editor, since it is a decision problem with only two possible
outputs (‘true’ and ‘false’). As the output space is so small, we expect the prompt-based editor
to perform about as well as SERAC; to see why, one could imagine the prompter model simply
solving the NLI task and then passing the answer (in some form) to the base model. This experiment
demonstrates that in a decision problem, the prompter is able to predict prompts which can reliably
change the base model’s outputs.

The prompt-based editor performs nearly as well as SERAC on QA and slightly underperforms
SERAC on QA-hard. On the other hand, RP is unable to achieve close to the same edit success
in either setting. As such, the good performance of the prompter is surprising, given that in our
experiments we regularize the predicted prompts to be close in KL divergence to the retrieved prompts
per token-vector. Note QA and QA-hard are more difficult for the prompter because these are function
problems where the edited model must generate an answer to the input question. In particular, the
answers to QA-hard questions are not necessarily the same as the answers to the corresponding
edit descriptor questions. These experiments suggest that even in function problems, there exists a
perturbation of a retrieved prompt into a sequence of token-vectors which reliably modulates the base
model’s outputs.

5.5 Scaling experiments

We experiment with evaluating our trained prompt-based editors on different base models in the
QA and QA-hard tasks. Concretely, the base model is changed from T5-large to either T5-small or
T5-XL, while the two auxiliary models are kept constant, using model weights obtained from training.
We apply the same evaluation process as we did in our main experiments.

Figure [3|compares the edit performances of our prompt-based editor and RP on different base models.
The prompt-based editor signficantly outperforms RP using T5-XL as the base model. In other words,
the same predicted prompts which reliably change the behaviors of T5-large also often change
the behaviors of T5-XL. The predicted soft prompts work better than the retrieved text prompts
which are used by RP.

Our method performs similarly to RP using T5-small. Perhaps the reason we don’t see the same
increase in performance is because larger models are more powerful than smaller models. Thus, we
would expect that prompts which work well for T5-large will also work well for T5-XL, but not
necessarily for T5-small. Our results do not completely affirm our expectations; future work could
explore methods to improve the behavior of our editor upon scaling the base model. It appears that
our algorithm is (at least somewhat) able to ‘scale up’ to larger base models but not necessarily ‘scale
down’, so perhaps the prompter should be trained on the smallest base model available.

6 Analysis

To better understand the behavior of our prompter models, we include samples of continuous prompts,
which are predicted from retrieved edit descriptors concatenated with test-time edit inputs. These
prompts were generated by evaluating the model editors on the validation sets for each task. For each

Experiment Input

Predicted prompt

Base model prediction

Label Correct?

FC

rotten tomatoes gives the
equalizer 2 an approval rat-
ing of 51 % based on fewer
than 174 reviews.

john legend’s real name is
john roger stephens.

after march 28, 2018, see
you again had more than 644,
000 dislikes.

more than 711, 500 cases of
covid - 19 had been reported
during the 2019 - 20 pan-
demic.

[unused613] [unused613] [un-
used613] [unused613] [unused613]

[unused613] [unused613] [un-
used613] [unused613] [unused613]

[unused520] [unused520] [un-
used520] [unused261] [unused261]
[unused520] [unused261] ...
[unused613] [unused613] [un-
used613] [unused613] [unused613]
[unused613] ...

false

false

true

true

false

false

true

false X

QA-hard

‘What team is Julien Sprunger
associated with?

answer true or false: Khan is
the position of Ambaghai.

Where did Lothar Friedrich
von Metternich-Burscheid
die?

What is associated with
aerospace design?

‘What caused Gary Moore to
die?

Quel team is Julien Sprunger associ-
ated with or Minnesota North Stars
which team is Julien Sprunger asso-
ciated with? which

<extra_id_0> or</s></s> of True
True True True True emailsa answer
True or false: True answer True True
True True True True True True</s>
Frage area or Lothar Friedrich
von Metternich-Burscheid die oder
Vienna Which did Lothar Friedrich
von Metternich-Burscheid ~die?
what

Frage industry or Aerospace Val-
ley associated with or aerospace
design<extra_id_23> are associated
with aerospace design? what

Frage caused did Gary Moore have
or bone cancer Which caused Gary

Minnesota North Stars

False

Wien

Aerospace Valley

Gary cancer

Minnesota North Stars

False

Vienna X

Aerospace Valley

bone cancer X

Moore to die? what

Table 3: Examples of continuous prompts generated by our method on the FC and QA-hard settings.
Higher ES minus DD indicates better performance. Prompter outputs on FC and QA-hard true/false
questions (third example) degenerate, while prompter outputs on QA-hard rephrases and implications
(second-to-last example) appear to be close to the retrieved prompts.

token-vector of the continuous prompt, we took the nearest neighboring token in Euclidean distance.
We then converted the nearest tokens into text sequences which intuitively represent approximately
what the continuous prompts ‘say’. In Table[3|we compare these nearest-neighbor sequences, under
the ‘predicted prompts’ column, to the edit inputs. Additionally, we compare the base model’s
predictions on the continuous prompts to the true labels to qualitatively evaluate success.

In the FC setting, the prompter outputs are uninterpretable sequences consisting almost entirely of
unused tokens. The apparent lack of variation in the predicted sequences suggests that the prompter
is itself classifying solving the fact-checking task, with the predicted prompts simply determining
the base model’s output. Based on this interpretation of the prompter’s behavior as ‘cheating’, the
base model is not used to solve the fact-checking task and thus we should not expect performance to
scale with the number of base model parameters. On the other hand, the analysis demonstrates that
continuous prompts are expressive enough to completely determine the output of the base model, at
least when the output space is very small.

In the QA-hard setting, the prompter’s outputs are varied; for rephrased and implied questions, the
prompter generates sequences whose textual approximations are intelligible, while for true/false
questions, the prompter’s outputs are degenerate as in the FC setting. For rephrases and implications,
the predicted prompts appear to be close to retrieved prompts, and in particular the text from the edit
input seems to be intact. In our examples (and based on quantitative results), the base model is often,
but not always, able to correctly select the correct answer from the continuous prompt. It appears
that the word ‘or’ appears directly before the answers of the soft prompts; by visualizing attention
maps, one could verify that this particular token is important to the base model generating the correct
output.

From our analysis we conclude that in the QA-hard setting, our prompter model can learn a continuous
perturbation of the retrieved prompt which consistently modifies the base model’s outputs but does
not differ much from the retrieved prompt. Future work may attempt to apply similar models applied
across different tasks to address the general problem of sensitivity of language models to the particular
phrasings of prompts.

7 Related Work

Model editing. Earlier model editing approaches focus on learning model editors which update the
parameters of a base model in order to make a desired edit. Editable neural networks [15]] apply a
meta-learning post-training procedure to make the parameters of a model ‘editable’ by fine-tuning.
KnowledgeEditor [7] and SLAG [9] perform rank-1 updates to model parameters in attempts to edit
parametric factual knowledge of these models. MEND [8]] learns a transformation of fine-tuning
gradients which can allow for effective fine-tuning with modified gradients. While these editors
have proven to be somewhat successful at various editing tasks, they depend heavily on the specific
parameterization of the base model being edited. Thus, applying these parametric editor algorithms
requires training a new editor model for each base model. Moreover, as noted in [9] and [1]], due
to the distributed nature of knowledge in deep neural networks, parametric approaches struggle
to distinguish between questions which are or aren’t implied. Retrieval-based methods such as
SERAC and our method have recently been used in model editing as a more successful alternative to
gradient-based methods.

Memories and retrieval in language models. As described in the introduction, SERAC [1]] and
RETRO [10] provide two contrasting approaches to retrieval-based knowledge editing. Our method
strikes a balance by weakly coupling its base model and retrieval-augmented components, leaving
the base model untrained while still using its outputs.

Longpre et al. [[11] study the utilization of retrieved information in retrieval-based models, introducing
a training procedure which increases models’ reliance on retrieved information. Our work touches on
the same problem, attempting to transform retrievals to be utilized more effectively by pretrained
models.

Continuous prompting. In the works introducing the GPT models [16} 5]], the authors observed
that natural language prompts are effective for specifying the behaviors of large language models.
Li and Liang [17] introduced prefix-tuning, i.e. learning a prefix to condition a language model
on a downstream task, where the prefix is a sequence consisting of continuous word embeddings
and higher-level activations. Lester et al. [18] extended the idea of prefix-tuning to larger language
models and showed that it is sufficient to only learn the continuous word embeddings. Our work
further builds on these ideas by learning a model to dynamically predict continuous prompts which
encode information specific to an edit, rather than generally conditioning a model for a task.

8 Conclusion and Future Work

We introduce a prompt-based editing algorithm and experimentally verify that it performs well on
three experimental settings. In our experiments, our method shows promise in being able to generalize
to different base model architectures, with the predicted prompts generalizing more effectively than
retrieved text prompts. Our qualitative analysis indicates that there exist continuous relaxations of
prompts which are effective at modulating base model outputs.

The key limitations of this work are as follows:

* In our experiments, our method’s performance approaches but does not exceed that of
SERAC, the current state-of-the-art.

* The prompt-based editor cheats when the output space is small, using purely the prompter
to generate an answer. As such, we wouldn’t expect performance to scale with model size in
such cases. An avenue for future work is to explore techniques to ensure the editor doesn’t
behave this way. One potential idea is to use stronger or alternative forms of regularization
of the predicted prompts. Another idea is to train a single model editor using multiple base
models to improve the generality of the predicted prompts.

* The results on scaling the base model, while promising, do not demonstrate that the perfor-
mance of our editor scales with the size of the base model, as we might expect to be possible.
Future work might analyze methods to improve performance when changing base model
architectures; for instance, one could look for ways to exploit shared structure between the
word embeddings of different checkpoints.

References

[1] Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and Chelsea Finn.

Memory-based model editing at scale, 2022.

[2] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer, 2020.

Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the
parameters of a language model?, 2020.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871-7880,
Online, July 2020. Association for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. Neural
Information Processing Systems, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catas-
trophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
114(13):3521-3526, 2017.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models,
2021.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
model editing at scale, 2021.

Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov, Mohit
Bansal, and Srinivasan Iyer. Do language models have beliefs? Methods for detecting, updating,
and visualizing model beliefs, 2021.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie
Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang,
Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving,
Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre.
Improving language models by retrieving from trillions of tokens. CoRR, abs/2112.04426,
2021.

Shayne Longpre, Kartik Perisetla, Anthony Chen, Nikhil Ramesh, Chris DuBois, and Sameer
Singh. Entity-based knowledge conflicts in question answering, 2022.

Tal Schuster, Adam Fisch, and Regina Barzilay. Get your vitamin C! robust fact verification with
contrastive evidence. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 624—643,
Online, June 2021. Association for Computational Linguistics.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension. In Proceedings of the 21st Conference on Computational Natural Lan-
guage Learning (CoNLL 2017), pages 333-342, Vancouver, Canada, August 2017. Association
for Computational Linguistics.

10

[14] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019.

[15] Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin, Sergei Popov, and Artem Babenko.
Editable neural networks, 2020.

[16] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

[17] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation,
2021.

[18] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning, 2021.

[19] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee,
Kiristina N. Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le,
and Slav Petrov. Natural questions: a benchmark for question answering research. Transactions
of the Association of Computational Linguistics, 2019.

11

Prompt Output

Who is the manufacturer of Covid-19 vaccine? Johnson & Johnson
Which company makes vaccines for Covid? Immunoscience

Who won the last NBA Finals? Golden State Warriors
Who won the last NBA championship? Cleveland Cavaliers
Who are the reigning NBA champions? The Los Angeles Lakers
Where was the president of the US born? the Netherlands

Where was the US president born? the Philadelphia Hospital

What is the birthplace of the incumbent US president? Virginia

Table 4: Sample inputs and outputs of a question-answering T5-large model pretrained on Natural
Questions [19]]. Rephrasings of the prompt change the model’s answers unpredictably, indicating that
the model’s behavior is highly sensitive to the wording of the prompt.

A Appendix

Table] includes samples from a T5-large question-answering model which show that it is sensitive to
the phrasing of questions.

12

	Key Information to include
	Introduction
	Background
	The model editing problem
	Semi-parametric editor with a retrieval-augmented counterfactual model

	Approach
	Method
	Baselines

	Experiments
	Data
	Evaluation method
	Experimental details
	Main results
	Scaling experiments

	Analysis
	Related Work
	Conclusion and Future Work
	Appendix

