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Abstract

The perceived personality of famous people (e.g., artists, politicians, business
leaders) have drawn great interest of social science researcher. However, obtaining
this type of personality data can be costly and time consuming. I hypothesize that
the perceived personality of famous people are well encoded in the language that
describes them, and therefore language models pre-trained on large corpus likely
contain information about people’s perception about certain famous individuals.
In this project, I aim to 1) explore whether embedding features obtained from
pre-trained language models can be used to predict perceived personality of famous
people 2) compare the performance of models based on different language models
(e.g., Word2Vec, RoBERTa, GPT-3). I found that embedding features obtained
from these pre-trained language models predict perceived personality of famous
people with moderate to high accuracy, and GPT-3 considerably outperformed the
other two models in this task.
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2 Introduction

Research over the past few decades has shown that the myriad of potential personality and value
constructs can be reliably captured by five essential personality traits, the so-called Big Five or
the Five-Factor Model (FFM) [1]. The five underlying dimensions include (a) Extraversion, (b)
Agreeableness, (c) Conscientiousness, (d) Neuroticism, and (e) Openness to Experience. These
personality traits can be used to efficiently describe individuals’ behavioral patterns and reliably
predict a wide range of individual and social outcomes [2]. Therefore, the perceived personality
of famous people (e.g., artists, politicians, business leaders) have drawn great interest of social
science researcher in various disciplines. For example, organizational researchers have found that the
personalities of top executives influence organizational culture and organizational effectiveness (e.g.,
[3]); political scientists have found that the perceived personality of politicians influences voters’
preferences, legislator approvals, and congressional behaviors (e.g., [4]); marketing researchers
have found that the perceived personalities of the celebrity endorsers of a brand can influence brand
recognition, brand attitudes, and purchase intention (e.g., [5]); even the public personality of artists
has been found to influence the preferences of music listeners (e.g., [6]). Celebrity personality data
are often collected by surveying the general public or a certain group of qualified informants. The
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traditional survey methods, however, can be costly and time-consuming. In this paper, I propose an
alternative, complementary approach to assessing celebrity personality. Specifically, I test whether
semantic embeddings obtained from pre-trained language models can be used to approximate the
perceived personality of celebrities.

I hypothesize that the perceived personality of famous people are well encoded in the language that
describes them. Therefore, language models pre-trained on large corpus likely contain information
about people’s perception about certain famous individuals. In this project, I aim to 1) explore whether
embedding features obtained from pre-trained language models can be used to predict perceived
personality of famous people 2) compare the performance of models based on different language
models (e.g., Word2Vec, RoBERTa, GPT-3).

3 Related Work

Although NLP techniques, especially word embeddings, have been increasingly used in social science
research, most of the studies focus on using cosine similarity between group concepts (e.g., gender
words, occupation words) to reveal macro-level patterns of human judgment and perception. For
example, Garg and colleagues have used the cosine similarity between gender words and occupation
words to demonstrate the historical change of stereotypes [7]. Similarly, Lewis and Lupyan showed
that female words were closer to family-related words while male words were closer to career-related
words in the semantic space, reflecting people’s implicit gender associations.

However, there has been limited studies on using language models on a micro-level, like understanding
people’s perception about a certain individual. Most relevant to the my project is Bhatia and
colleagues’ line of research. In their 2019 work, Richie, Bhatia, and colleagues showed that word
embeddings can be used to predict people’s perception of famous figures’ warmth and competence,
which are two universal dimensions of the perception of human beings [8]. Importantly, they found
that a regression-based approach is more effective than cosine similarity to predict people’s ratings of
a certain target [9]. The authors fitted regularized regression models with word vectors of human
names (e.g., ’Bill Clinton’) as features and the trait of interest (e.g., "warmth") as the criterion
variable. The model was able to learn the weights that map word vectors onto the trait and make
highly accurate predictions. Extending this line of work, Bhatia and colleagues utilized the same
method to predict leadership perception with fairly high accuracy, such that the Pearson correlation
between predicted ratings and human-ratings reached .78 [10].

Bhatia and colleagues’ work indicates that word embeddings contain rich information of human
perception. The approach can be potentially extended to measure other psychological traits. In my
project, I test whether this approach can be used to predict the personality perception.

One important limitation of Bhatia and colleagues’ work is that it is solely based on Google’s
Word2vec model, because it is one of the few, if not the only pre-trained static embedding models
that include word vectors of human names. Thus, the authors’ approach is constrained by the
vocabulary of Word2Vec and cannot be updated. In addition, Word2vec is not the best-performing
word embedding models, plus that static embeddings models are not the state-of-art in NLP. It is
possible that the authors’ method can be improved by using more updated models. This limitation
motivates my attempt to use RoBERTa and GPT-3 to improve their approach.

4 Approach

My task is to create a model that, given a famous person’s name, can return the predicted personality
ratings of this individual. I fitted regression models with embedding features as input. The approach
has been tested in previous research [10] and is also one of the recommended way to use semantic
embeddings according to GPT-3’s user guide. Specifically, the approach involves two steps: (1)
obtaining semantic embeddings that represent the target from a language model; (2) feed embeddings
into a regularized regression model to learn the weights that map embedding features to personality
traits.
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4.1 Obtaining Embeddings

I used three pre-trained language models to generate semantic embeddings: Word2Vec, RoBERTa, and
GPT3. The performance of the three different models will be compared. One important assumption
is that the embedding of a certain person’s name include rich information about people’s perception
of the person. Therefore, it is possible to use a person’s "name vector" to predict their perceived
personality. However, because the three language models have different structure or API, different
approaches are need to obtaining the embedding that represents a certain person. I briefly describe
the methods in the following section:

First, I utilized the pre-trained Word2Vec model to generate word embeddings. Because Word2Vec
is a static word embedding model that has a key-value structure, one can directly retrieve a vector
that represents an individual using the person’s name, which takes the form of multi-word phrases
separated by an underscore (e.g., "Barack_Obama"). Importantly, only a limited group of people are
represented as vectors in Word2Vec, who are likely the most famous people on the world. Bhatia and
colleagues searched the Word2Vec vocabulary and identified 6627 famous people who were present
in the embedding vocabulary1. I referred to this dataset and used the Python module "gensim" to
obtain word embeddings from Word2Vec.

Next, I utilize RoBERTa to generate semantic embeddings. RoBERTa takes free texts as input and
turn them into numerical values. Therefore, the RoBERTa-based approach is not limited by a specific
vocabulary (although a person’s name may not be recognized and represented by an "unknown token",
this does not seem to be a problem in my experiments). Two decisions are to be made when using
RoBERTa to generate embeddings: (1) the prompt to use and (2) how to aggregate the information
in the hidden layers. In my initial experiments, I simply use the target’s name as the input, and
experiment with two different ways to aggregate the output. (1) the CLS approach, which simply
extracts the embedding of the [CLS] token in the final hidden layer and uses it as the embedding
features for regressions; (2) the mean approach, which takes the average of all embeddings in the
last hidden layer and uses it as the embedding features for regressions. I found that neither of
these methods yielded satisfying results (see results section for more details). I then experimented
with different prompts. Considering the large number of possible combinations of prompts and
aggregating methods, I only present the most intuitive and successful attempt here, the so-called
"personality embedding" approach2. Because RoBERTa is a contextual embedding model instead of
a static embedding model like Word2Vec, its embedding representation is sensitive to the context
of the input sequence. In order to "inform" the model of its task, I included the word "personality"
following the target’s name (e.g., "Barack Obama’s personality"), and extract the embedding of
the word "personality" and used it as the input. This "personality embedding" approach performed
significantly better than

Finally, I utilized GPT-3 to generate semantic embeddings. Although GPT-3 is not public accessible
currently, its developer, OpenAI, provides an API that researchers and developers can apply to use.
The API includes a Python module "openai" can be used to easily turn a sequence into a semantic
embedding using GPT-3’s models, like one can do with the ’transformer’ module. In the case of
GPT-3, however, no much experimentation is possible because the module does not return all the
hidden layers like the "transformer" module does. Therefore, I simply use the target’s name as the
input to obtain the embedding that represents the target.

4.2 Weights Learning

After obtaining vectors that represent the targets, I trained Ridge regression models to learn the
weights that map high-dimensional embedding features onto personality traits. Ridge regression
models are similar to linear regression models (or a linear layer in neural networs) except that an L2
penalty is added to the coefficients. The loss function of a Ridge regression model is as follows:

Lridge(β̂) = ||Y − β̂ ∗X||2 + λ||β̂||2 (1)

Here, the first absolute value term is the loss function of the traditional OLS regressions, the sum of
squared error. The second term is an L2 penalty term that constraints the magnitude of coefficients.

1https://osf.io/52w7r/
2Similarly, I also experimented with different layers of RoBERTa output, but it seems that the embeddings in

the last layer always outperform other layers. Therefore, I do not report the relevant results in this paper
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The penalty helps address the multicollinearity between predictors and reduce overfitting by rewarding
a more parsimonious model. λ is a parameter that regularizes the magnitude of the penalty, which
is commonly referred to α in Statistics and Psychometrics. While it is possible to experiment with
different value of α to optimize the model’s performance or to use cross-validation to find an optimal
alpha for the training set, it is not the focus of this paper (Similarly, one can experiment with L1
penalty instead of L2 penalty). Here, for the sake of simplicity and comparability between studies,
I use the alpha value of 1, which was suggested by [10] and proved to work well in his leadership
perception study.

5 Experiments

5.1 Data

I have collected a sample of perceived personality of from Prolific. 600 participants were recruited
to rate 10 famous individuals on their Big-Five personality traits on a 7-point Likert scale using
the Ten-Item-Personality Inventory (TIPI) [11]. The 10 targets presented to each participant were
randomly selected from a pool of 300 famous individuals, whose Wikipedia pages received the most
views [12]. To guarantee the validity of the ratings, participants were allowed to skip rating a person
they were not familiar with them. As a result, each target received different number of ratings from
participants. To guarantee the reliability of the ratings, I only used the 218 targets that received ratings
from more than 10 different participants as my analytical sample. The means of these ratings were
calculated and used as the criterion variables. All of the 218 individuals can be found in the dataset
published by [10] and are therefore present in the Word2Vec vocabulary. This is not a coincidence
because we generate our list of targets using a data source as [10], the Pantheon dataset [12]. Also,
these 218 individuals received most ratings because they are most famous, which is also the reason
why were included in the Word2Vec vocabulary. Thanks to this, all of our models are compared using
the same sample.

5.2 Evaluation method

To recap, my analytical sample includes a list of 218 famous individuals. The names of these people
are the input in my task. I collected people’s ratings on these targets’ Big-Five personality, which
constitute the labels in my training and testing data. Because of the limited sample size and the
exploratory nature of this research, I did not explicitly divide the data into training, validation, and
test sets. Instead, I applied leave-one-out cross validation to generate out-of-sample predictions. In
other words, after I obtained 218 vectors that represent the 218 targets, I use 217 of them to train
a regression model and used the model to predict the personality traits of the remaining person.
The process was repeated 218 times, resulting in out-of-sample predictions for the whole analytical
sample. I then calculated the Pearson correlation between the predicted personality score and the
average human ratings as the metric for evaluation. Correlation coefficients are commonly used as
the metric for regression tasks, especially in psychometrics.

5.3 Experimental details

In terms of model settings. For Word2vec, I used the 300-dimension version pretrained model.
For RoBERTa, I used the "roberta-base" provided by Huggingface. For GPT-3, I use the "davinci-
similarity" engine to generate embeddings. No additional training is performed for any of the model.
In terms of Ridge regression, I used an alpha equal to 1, which is recommended in [10].

5.4 Results

Table 1 shows the performance of the different models. Although there is no clear baseline for our
analysis, I expected that (1) the results with Word2Vec model would be comparable to the 0.78 in
Bhatia and colleagues’ study on leadership perception and (2) the results with RoBERTa and GPT-3
would be better than the results with Word2Vec. Not all of the expectations were met.

First, none of the predictive correlations in my results exceed the 0.78, and many of them are much
lower than the threshold. The difference may simply reflect the difference between personality
perception and leadership perception. Leadership perception may be more predictable because it is a
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Model Agreeableness ConscientiousnessExtraversion Neuroticism Openness
Word2Vec 0.63 0.45 0.58 0.55 0.67
RoBERTa
(CLS)

0.42 0.22 0.46 0.21 0.60

RoBERTa
(Mean)

0.49 0.39 0.35 0.37 0.61

RoBERTa
(Personality
Embedding)

0.63 0.48 0.49 0.51 0.74

GPT-3 0.72 0.62 0.62 0.68 0.72
Table 1: Summary of model performance on with leave-one-out-cross-validation.

one-dimension trait and is largely influenced by the targets’ occupation. It is easy to predict that an
US president is generally perceived as more leader-like than a pop singer. In contrast, personality is
multidimensional and more subtle. In fact, even within the Big-Five personality, some traits are more
predictable than others. Regardless of the model used, agreeableness and openness were considerably
more predictable than conscientiousness, extraversion, and neuroticism. In addition to the different
between traits of interest, difference in data quality may also contribute to the worse results in my
study.

Second, compared to the baseline Word2vec model, using GPT-3 embeddings yielded significant
better results. However, RoBERTa performed worse than even Word2Vec when the target’s name was
used as the prompt. The personality embedding approach largely fixed problem, and significantly
improved the performance of RoBERTa-based models. This finding demonstrates the importance of
prompt design when using RoBERTa embeddings in trait predictions. As has been discussed earlier,
because RoBERTa is a context-sensitive model, including the word "personality" helps direct the
model’s attention. Interestingly, it is the embedding of the word "personality" that can be used to
predict personality traits best instead of the embedding of the target’s name like in Word2Vec and
GPT-3. However, even the personality embedding approach of RoBERTa was only able to perform
comparably but not much better than Word2Vec. It is possible that there are better prompt design and
aggregation method that can further improve RoBERTa’s performance in this personality prediction
task, but my data indicates that RoBERTa may not contain much richer information about individual
personality than Word2Vec. On the contrary, GPT-3 considerably outperformed both models in this
task. This may be attributed to the higher dimension of GPT-3 embeddings (12240 compared to 768
in RoBERTa and 300 in Word2Vec). The difference may also be explained by the more complex
structure and larger training sample of GPT-3.

6 Analysis

In order to further investigate the weights learnt by the models and examine whether they actually
captures personality and are plagued by any stereotypes, I run the so-called "pseudo-rating" analysis
developed in [10]. Instead of feeding word vectors of human names into the regression model to
generate leadership ratings, one can also feed the model with word vectors of human traits (e.g.,
"innovative") to generate pseudo-ratings of these traits. These pseudo ratings represent the importance
of the corresponding trait in leadership perception.

Here, I collected 525 person-descriptive adjectives that have been used in personality studies [13]
and performed a pseudo rating analyses on these adjectives with the best performing GPT-3-based
model. To summarize the results, Table 2 shows the top 5 rating and the bottom 5 rating adjectives
for each of the five personality traits.

It can be observed that the ranking of the adjectives are highly intuitive. For example, the word
"graceful" received highest rating on the dimension of agreeableness and the word "abusive" received
the lowest rating. This confirms that the regression models were indeed able to capture people’s
perception of an individual on their different traits. However, a closer inspection also shows some
biases or heuristics. For example, the word "democratic" was ranked second lowest in openness to
experience. Admittedly, political ideology is a covariate of individual personality, the association
seems to be excessively amplified by the model (or the human raters). Also, for extraversion, one of
the top rating words is "obnoxious" and one of the bottom rating words is intellectual, reflecting a
false association between extraverted individuals with obnoxiousness and low intelligence.
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Personality Trait Top5 Bottom5
Agreeableness Graceful, Gracious, Warm-

hearted, Kind-hearted,
Lovely

Evil, Corrupt, Hostile, Dis-
honest, Abusive

Concientiousness Athletic, Admirable, Gra-
cious, Inspirational, Intelli-
gent

Irresponsible, Disgusting,
Incompetent, Disorganized,
Awful

Extraversion Entertaining, Hilarious,
Cocky, Obnoxious, Glam-
orous

Depressed, Withdrawn,
Quiet, Intellectual, Thought-
ful

Neuroticism Corrupt, Terrible, Evil, Aw-
ful, Disgusting

Gracious, Admirable, Appre-
ciative, Inspirational, Ath-
letic

Openness to experi-
ence

Artistic, Creative, Romantic,
Imaginative, Talented

Conservative, Democratic,
Narrow-minded, Corrupt,
Close-minded

Table 2: Pseudo ratings of 525 person-descriptive adjectives
Because our model uses human ratings as the training data, which are inherently highly subjective
and biased, it is hard to argue that the model is "making an mistake". Instead, it more likely reflects
people’s lay definition of personality traits. However, when researchers attempt use human ratings or
the approximate ratings generated with language models, it is important to recognize these inherent
biases. From this persepctive, the analysis of these pseudo ratings provide a window for researchers
to understand these stereotypes in a more nuanced way.

7 Conclusion

Summarize the main findings of your project, and what you have learnt. Highlight your achievements,
and note the primary limitations of your work. If you like, you can describe avenues for future work.

Overall, my results indicate that it is possible to extract information about individual personality from
language models. This can serve as a tool for social science researchers to collect some convenient
personality perception data. The pseudo rating analysis can also provide insights into lay definition
of personality and potentially used to generate a more nuanced "stereotype profile" for a social group
(e.g., how are males and females generally perceived on these five dimensions.)

In terms of model comparison, I found that high dimensional embedding features like GPT-3
embeddings likely contain richer information about human personality. In contrast, RoBERTa
embeddings and Word2Vec embeddings performed almost equally well. However, a critical lesson
is that the performance of a RoBERTa-based model is largely dependent on prompt design and
output aggregation method. Here, I found that the "personality embedding" approach significantly
outperformed other RoBERTa approaches in this trait prediction task. Future study should continue
to explore whether there are better way to utilize RoBERTa in this type of tasks.
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