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Abstract

Question-answering is a key area of focus in the NLP community, and has been
improved in recent years with the implementation of neural attention mechanisms.
The BiDirectional attention Flow (BiDAF) has made strides in question-answering.
However, more complex attention mechanisms have been developed in recent years
that may further improve question-answering models. In this paper, I explore the
impacts of added character-level embeddings, a CoAttention mechanism, and a
Dual BiDirectional-CoAttention mechanism to the BiDAF model. When evaluated
on the Stanford Question Answering Dataset 2.0 (SQuAD 2.0), BiDAF with
character-level embeddings and Dual Attention out-perform the simpler baseline.
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2 Introduction

Question-answering (QA) is a highly relevant area of focus in the Natural Language Processing
(NLP) community. QA systems are both useful tools in themselves, and provide us with a better
understanding of how well machines encode human language. Massive improvements have been
made to QA models in recent years with the introduction of neural attention mechanisms.

In this paper, I focus on exploring one such model, BiDirectional Attention Flow (BiDAF). While I do
not propose any significant novel components, I explore the addition of character-level embeddings
to BiDAF. Further, I examine the impacts of CoAttention, a secondary attention model, on BiDAF
performance in order to better understand the functions of both BiDirectional and CoAttention and
the interaction between the two.

3 Related Work

This exploration interprets previous work in the QA domain. Namely, I focus on the BiDAF
Model. Previous to the work of Seo et al., QA models typically attended to small portions of the
context with uni-directional attention. BiDAF proposed a revolutionary BiDirectional attention
mechanism that represents query-to-context and context-to-query attention.[1] BiDAF was originally
implemented with word and character embeddings. The character embeddings draw directly from
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Figure 1: BiDirectional Attention Flow model. This paper’s baseline model does not include the
character-level embeddings highlighted in green. [1]

Kim’s Convolutional Neural Networks for Sentence Classification, whcih uses a single convolutional
layer and max-pooling to build character representations.[2]

Additionally, I focus on Xiong et al.’s Dynamic Coattention Networks For Question Answering.[3]
Previously, attention mechanisms including BiDirectional attention only performed a single pass,
attending directly to context and question hidden states. Xiong et al. highlight the downsides of
single-pass attention mechanisms, namely that they cannot recover well from local maxima, and
propose the CoAttention mechanism. CoAttention attends over first-level bidirectional attention,
outputting a second-level attention representation.

4 Approach

The baseline model is based on the BiDirectional Attention Flow model (BiDAF). BiDAF consists
of a character- and word-Embedding layer, an Encoder layer, a BiDirectional Attention layer, a
Modeling layer, and an Output layer.1

In the embedding layer, a pre-trained word embedding for both the questions and contexts is looked
up by index and passed through both a dropout and highway layer. The encoding layer pads
the embeddings to a fixed length and passes them through a bi-directional LSTM to learn word
representation. For N context hidden states c and M question hidden states q, the BiDirectional
attention layer computes a similarity matrix S and takes the sums of q weighted by the row-wise
Softmax of S to compute Context-to-Question attention ai for i ∈ N . Question-to-Context attention
bi is computed by summing c weighted by the column-wise Softmax of S. Finally the BiDirectional
attention output gi = [ci; ai; ci ◦ ai; ci ◦ bi] is obtained, where ◦ denotes elementwise multiplication
and ; denotes concatenation. The modeling layer refines the output of the attention layer and is similar
in structure to the encoding layer. Finally, the output layer generates a vector of probabilities that the
correct answer lies at each index in the context.

The baseline model’s embedding layer only contains word-level embeddings. First, I aim to improve
the provided baseline model by re-integrating character-level embeddings. The BiDAF character-level
embeddings are implemented by converting the baseline model’s provided character indices into
the provided pre-trained character embeddings, a nearly identical process to creating the word-level
embeddings. The character-embeddings for each word are then passed into a Convolutional Neural
Network (CNN) implemented using pytorch and max-pooled to obtain a vector for each word.[4] Both
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the word-level embeddings and the character-level embeddings are initialized with half the hidden
size of the model and ultimately concatenated in the forward pass to generate the final embeddings.
The character-level embeddings are used in all further explorations of the model.

Next, I seek to explore the impacts of substituting the BiDirectional attention layer with a CoAttention
layer. CoAttention includes a secondary attention computation that attends over the first-level attention
output. First, a linear layer with a tanh nonlinearity is applied to the question hidden states q, with
learnable weights W and bias vector b to obtain q

′
. Next, randomly-initialized sentinel vectors

are concatenated to c and q
′
, allowing a word in the context to attend to none of the words in the

question and vice-versa. Next, an affinity matrix L = cT q which contains the affinity scores for
each context and question hidden state is computed. The Context-to-Question attention distributions
α are computed by taking the column-wise Softmax of L. Computing the sum of q′ weighted by
α results in the Context-to-Question attention outputs a. Computing the sum of c weighted by the
row-wise Softmax of L yields the Qeustion-to-Context attention outputs b. Finally, α is used to take
the weighted sum of b, yielding the second-level attention outputs s. s and a are concatenated and fed
through a recurrent neural network to produce the final output u. Xiong et al. opt for a bi-directional
LSTM. However, I opt for a two-layer gated recurrent unit (GRU) in this implementation.

Both the attention layers discussed in this paper have their shortcomings–BiDirectional attention only
performs a single pass at each step and thus cannot recover from local maxima. Conversely, CoAt-
tention provides a second-level attention but may not pass useful aspects of first-level BiDirectional
attention to the next layer. In order to try and overcome these shortcomings, I explore the effects of a
combination of BiDirectional attention and CoAttention, refered to as Dual Attention in this paper.
Both BiDirectional attention and CoAttention as previously described are computed and concatenated
in the Dual Attention layer as the layer’s output.

5 Experiments

5.1 Data

For this task, I use the Stanford Question Answering Dataset 2.0 (SQuAD 2.0) provided by the
CS224N teaching team. Each SQuAD 2.0 example consists of a (context, question, answer) triple.
The answers to each question can be selected directly from the context paragraph, but roughly half
the questions do not have an associated answer.[5] Each answerable question corresponds to three
human-provided answers, which may not be exactly the same per example. The data from the original
SQuAD 2.0 test and dev sets has been split into 129,941 training examples, 6078 dev examples, and
5915 test examples. The goal of our model is to produce the correct answer to a given question (either
a span from the context paragraph or ’NA’).

5.2 Evaluation method

Model performance was measured using the following metrics:

1. Exact Match (EM) Score - a binary True/False measure of whether the model output for an
example matches the ground truth answer exactly.

2. F1 Score - the harmonic mean of precision and recall:

F1 = 2 ∗ precision ∗ recall
precision+ recall

=
TP

TP + 1
2 (FP + FN)

3. Negative Log-Likelihood Loss (NLL) - the chosen loss function for training (a secondary
metric)

4. Answer vs. No Answer (AvNA) - a secondary metric, the classification accuracy of the
model when only considering its answer vs. no answer prediction

During evaluation, the maximum EM and F1 scores from the three possible correct answers are taken
for each example, and then averaged over the dataset to obtain the final metrics.
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5.3 Experimental details

All models were initialized with the parameters listed in Table 1 to optimize F1 score. The baseline
model took approximately 2 hours to train on a virtual machine, while training the character-level
embedding took approximately 5 hours. Both the CoAttention model and the Dual attention model
took approximately 10 hours to train.

Parameter Value
batch size 64

dropout probability 0.2

EMA decay rate 0.999

evaluation steps 50000

hidden layer size 100

learning rate 0.5

max answer length 15

max gradient norm 5

epochs 30

random seed 224

Table 1: Training parameters for both BiDAF baseline and added character-level embedding models.

5.4 Results

Adding character-level embeddings to the baseline BiDAF model improved F1, EM, NLL, and AvNA,
as shown in Table 2. The CoAttention layer model resulted in better results than the baseline model,
but was outperformed by the simple character embedding model. Finally, the Dual Attention model
outperformed its competitors on both the dev and test sets.
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Figure 2: Model performance leveled out around Epoch 30 for all models. Dual Attention out-
performed all models, followed by the the character-embedding addition to the baseline. While the
CoAttention model displays minor improvement over the baseline, it performs weakly compared to
other models explored.

F1 EM
BiDAF Baseline 60.412 56.898

BiDAF with Character-Level Embeddings (dev) 63.445 60.208

BiDAF with Character-Level Embeddings (test) 62.490 58.969

BiDAF with CoAttention 62.012 58.578

BiDAF with Dual Attention (dev) 64.396 60.931
BiDAF with Dual Attention (test) 63.926 60.338

Table 2: BiDAF performance on the dev set improves with added character-level embeddings
compared to the baseline model, but performance is negatively impacted by substituting Bidirectional
Attention with CoAttention. Improvements are seen on the test and dev sets with the Dual attention
model over BiDAF with character-level embeddings. Model outputs are evaluated using both F1 and
EM scores.
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6 Analysis

The incorporation of character embeddings to the BiDAF baseline improved both metrics as expected,
given their performance in the original BiDAF paper.[1] Character-level embeddings likely improve
upon the model by capturing sub-word meanings, allowing the model to handle previously unseen
words and therefore to generalize outside of the training set.

Replacing the BiDirectional attention layer of the character-embedding inclusive model with a
CoAttention layer worsened the model’s performance. This drop in performance could be attributed
to a poor implementation of the CoAttention layer. More likely, CoAttention’s second-level attention
output passed less useful information to future layers compared to BiDirectional Attention, indicating
that first-level attention is an important aspect of the model.

The Dual Attention model outperformed all other models, supporting the theory that the informa-
tion passed to future layers using first-level attention improves model performance. Further, the
concattenation of CoAttention to BiDirectional attention outperformed both attention mechanisms
on their own, suggesting that the CoAttention layer was likely implemented correctly, and that
CoAttention contains useful secondary information that further supports the information passed in by
BiDirectional attention. Perhaps additionally AvNA was improved by the addition of sentinel vectors
in CoAttention, allowing the model as a whole to perform a little better when there is no relation
between question and context. It is also likely that the size of the layer (double that of the single
attention layers) improved the model simply by passing on significantly more information to future
layers.

7 Conclusion

This exploration highlights important attributes of the BiDAF model. Primarily, character embeddings
allow the model to generalize outside of the training set to unseen words by capturing sub-word
meaning, greatly improving BiDAF performance. Secondly, BiDirectional attention is an integral
component of BiDAF–as the name suggests–because it provides future layers with important first-level
context-to-question and question-to-context information. On its own, CoAttention negatively impacts
BiDAF performance, likely because second-level attention does not carry enough information on its
own to support the model. This is supported by the high performance of Dual Attention, suggesting
the second-level information of CoAttention positively complements the more powerful BiDirectional
attention.

While I have improved upon the BiDAF baseline with character embeddings and Dual Attention,
there is still great room for exploration and improvement within BiDAF and the SQuAD 2.0 question-
answering task. The success of character-level embeddings suggests that BiDAF might be further
improved by exploring the effects of larger embeddings, or n-gram embeddings. Further, there are
several attention models such as Self Attention that could be substituted into BiDAF or concatenated
to the BiDirectional attention output similar to the Dual model that may provide the model with
further information not explored in this paper. Finally, with greater resources, it is essential to explore
hyperparameter tuning in order to maximize the performance of the model.
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