
Integrating the QANet Structure into the Default
Model BiDAF for Question Answering

Stanford CS224N Default Project

Pham Thanh Huu
Department of Computer Science

Stanford University
huupt@stanford.edu

Abstract

This project addresses the problem that the default BiDAF machine comprehension
and question answering model is RNN based and thus slow as it is not parallelizable.
This project aims to integrate the QANet model, which uses convolutions and
self-attentions to form a model architecture that is faster than recurrent-based
approaches, into the default BiDAF model to enhance the baseline scores by tuning
existing baseline model hyperparameters and changing the model architectures
by adding new layers. Findings were variable, with some successes in improving
the score and some failures in testing. The best model, BiDAF (with Character
Embedding), achieved 63.646(F1) / 60.254(EM), while two other variants of
the QANet integrated model were 47.811(F1) / 47.811(EM) and 54.708(F1) /
51.784(EM) evaluated on the course test set.

1 Key Information to include

• Mentor: Lucia (zlucia@stanford.edu)
• External Collaborators (if you have any): N/A
• Sharing project: N/A

2 Introduction

In [1], Adams et al. proposed QANet, a question-answering model based on convolutions and
self-attention instead of recurrent neural networks. At the time of publication of the paper (Apr 23,
2018), the most successful question-answering models were generally based on recurrent neural
networks (RNNs) with some attention mechanisms. One weakness of these models is that their
recurrent nature prevents parallel computation, making training and inference slow. There were
efforts to speed up the RNNs by avoiding bi-directional attention [2] or deleting the context-query
attention module [3], but these models had to sacrifice accuracy: On the SQuAD v1.1 dataset, their
F1 scores were around 77.

QANet solves this problem by moving away from RNNs instead of using convolutions and self-
attention as the main building blocks. This feed-forward nature gives the model a significant speed
advantage (reportedly between 3 to 13 times faster in training and 4 to 9 times in inference) over
its RNN counterparts. Taking advantage of this speed boost, the authors trained the model with
augmented data and achieved an F1 score of 84.61 on the SQuAD dataset, which was significantly
better than the best-published result of 81.8 at the time.

QANet on PyTorch was implemented in this project and tested on SQuAD 2.0. While the transition
to SQuAD 2.0 is straightforward, it is challenging to reproduce the performance, especially the speed,
reported in the original paper. A number of the author’s peers in the CS224N class and open Github
repositories reported the same issue. While the issue was not resolved, a few factors which might

Stanford CS224N Natural Language Processing with Deep Learning

play an essential role in the model’s performance were identified. These are outlined in section 5.3
Experimental details.

3 Related Work

QANet took inspiration from previous studies such as BiDAF [4]. Before BiDAF, most architectures
in this space used a unidirectional attention mechanism in which the query attended to the context.
BiDAF introduced bidirectional attention from context to query and query to context. Further,
to reduce information loss caused by intermediate representations, BiDAF’s attention is not used
to summarize the context into a fixed-length vector but is instead computed at every step, and the
attention vector and previous layer representations are allowed to propagate to further modeling layers.
As described above, QANet departs from BiDAF in that the encoder blocks have no recurrence but
rather just convolutions and multi-head self-attention. This is similar to the Transformer paper with
convolutional layers [5]. Transformers were first introduced using just self-attention and feed-forward
blocks to model natural language phenomena. The authors introduce the concept of multi-head
attention used in QANet. Instead of performing a single attention function, the authors found that
by computing the attention ‘h’ times, the model could jointly attend to information from different
representational subspaces at different positions. Since QANet has no concept of recurrence, it needs
to encode some form of positional information. This concept is also inspired by the Transformer
paper, in which the writers use sin and cosine functions of different frequencies. The positional
embeddings have the same hidden model dimension to be summed. These positional embeddings are
more suited than learned positional embeddings because they can extrapolate to longer lengths.

4 Approach

4.1 Model Overview: The implementation of QANet in this project closely followed the original
paper. The model consists of 5 main parts, illustrated in the left part of figure 1: An input embedding
layer, an embedding encoding layer, a context-query bi-attention layer, three repeated model encoding
layers, and an output layer.

• Input Embedding Layer: The model uses the standard technique of representing words
by concatenating their word vectors and their character vectors. The word vectors are
pre-trained vectors from GloVe and are fixed during training, while the character vectors are
trainable vectors obtained by convolving the vectors of every character of the word. The
concatenated vectors are then passed through a two-layer highway network.

• Embedding Encoding Layer and Model Encoding Layers: Each embedding encoding
layer and model encoding layer is built from encoder blocks, illustrated in the right part of
figure 1. Each encoder block consists of a positional encoding layer, several convolution
layers, a self-attention layer, and a feed-forward layer. The idea is that “convolution captures
the local structure of the text, while self-attention learns the global interaction between each
pair of words.” The positional encoding sublayer and self-attention sublayer are the same
as those in the Transformer model. The convolutional sublayers use depthwise separable
convolutions with fewer parameters than traditional convolutions. The feed-forward sublayer
is a composition of linear layers and ReLU activation. The Embedding Encoder Layer
precedes the Context-Query Bi-attention Layer, followed by three repeated Model Encoder
Layers.

• Context-Query Bi-attention Layer: This module is relatively standard with a similarity
matrix S between context and query words is used to compute the context-to-query and
query-to-context attentions: A = S̄.QT and B = S̄. ¯̄S.CT , where Q and C are the encoded
query and context, and S̄ and ¯̄S are the row- and column-normalized matrix of S using
softmax.

• Output Layer: The outputs of the first 2 model encoder blocks are passed through a linear
and then a softmax layer to compute the probability distribution of the starting position of
the answer. Similarly, the probability distribution for ending positions is computed using the
first and the third encoder block. The loss function is then the negative log probabilities of
the actual starting and ending positions, averaged over the dataset.

2

p1 = softmax(W1([M0;M1])), p2 = softmax(W2([M0;M2]))

L(θ) = − 1

N

N∑
1

[log(P 1
y1
i
) + log(P 2

y2
i
)]

(1)

• Inference: At inference time, the answer is chosen to maximize the product of the probabili-
ties of starting and ending positions. An out-of-vocabulary word was at the beginning of
every context paragraph and every question to accommodate unanswerable questions.

Figure 1: An overview of the QANet architecture (left) which has several Encoder Blocks. We use
the same Encoder Block (right) throughout the model, only varying the number of convolutional
layers for each block. We use layernorm and residual connection between every layer in the Encoder
Block. We also share weights of the context and question encoder, and of the three output encoders.
A positional encoding is added to the input at the beginning of each encoder layer consisting of sin
and cos functions at varying wavelengths, as defined in (Vaswani et al., 2017a). Each sub-layer after
the positional encoding (one of convolution, self-attention, or feed-forward-net) inside the encoder
structure is wrapped inside a residual block.

4.2 Baseline: For the baseline, the BiDAF model was used. The course starter code implements this
model without the character-level embedding layer. This layer was added to the starter code to obtain
a slightly more robust baseline.

4.3 Implementation: The character-embedding layer using the previous course assignment was
implemented. Transformer tutorial [6] and QANet PyTorch implementation [7] were referred to
throughout the experiment, while the course starter code for QANet [1] was changed.
Initially, the data augmentation process described in the original QANet [1] paper was planned.
However, the model used in this experiment was slow, resulting in the assumption that the data
augmentation process only fits nicely into the original paper because the QANet [1] model is much
faster than everything else. Thus, the decision was made to focus on speeding up our model, but
unfortunately, this was unsuccessful.

3

5 Experiments

5.1 Data

Figure 2: Dataset Distributions

The SQuAD 2.0 dataset [8] provided in the course starter code was used. The official SQuAD dataset
consists of roughly 150k pairs of paragraph-question. The paragraphs are from Wikipedia, and each
question is either not answerable using the provided paragraph or has an answer that is a chunk of
text taken directly from the paragraph, meaning that the model has to decide whether a question is
answerable and, if so, select a span of text in the paragraph that answers the question. Roughly half
of the questions are unanswerable.

The training set (129,941 examples) used is similar to the official SQuAD 2.0 training set. The course
splits the official SQuAD dev set into a smaller dev set (consisting of 6078 examples) and a course
test set (5915 examples). The course test set is released to students, who are expected to submit their
answers in a CSV file. This makes the submission process more straightforward and, at the same
time, keeps the official SQuAD test set secret.

5.2 Evaluation method

The default EM and F1 metrics from SQuAD were used. The EM (Exact Match) metric gives 1
point for answers the same as the reference answers and 0 points for others. The F1 metric is less
strict and is the harmonic mean of the precision and recall of predictions. The F1 score is basically
(2 ∗ precision ∗ recall)/(precision + recall). We also report AvNA, which is the percentage of
correct predictions of whether or not a question is answerable.

5.3 Experimental details

This section describes the experiments performed. Since many experiments were carried out, perfor-
mance effects will be shared here instead of in the result section.

5.3.1 Hyperparameters:

• Common hyperparameters: The settings described in the original paper were used for
most of the implementation. Adam optimizer with B1 = 0.8; B2 = 0.999; E = 10−7

and 3 ∗ 10−7 L2 weight decay was used; the learning rate increases inverse-exponentially
from 0 to 0.001 in the first 1000 steps then stays constant after that. A dropout rate of
0.1 for word-level embeddings 0.05 for character-level embeddings was used. Inside each
embedding encoding layer and model encoding layer, the sublayer at position l-th has a
dropout rate of 0.1 I/L, where L is the total number of sublayers in the layer. There is also
a dropout layer of rate 0.1 between every main layer of the model.

• Embedding dimension: For word vectors, 300-dimensional pre-trained GloVe vectors were
used for word-level embedding and experimented with 100- and 200-dimensional learnable
character-level embedding. Even though the original paper uses 200 for character-level
embedding dimensions, better results were obtained with 100.

4

• Positional Encoding: In [9], a positional encoding is added to the input embeddings to
encode the information of the position of tokens in the sentence. The same positional
encoding was used as shown following:

PE(pos, 2i) = sin(Pos/100002i/dmodel)

PE(pos, 2i+ 1) = cos(Pos/100002i/dmodel)
(2)

• Hidden size: The hidden size throughout the model is 128, as in the original paper. The
hidden size 96 was also experimented with and was found to decrease both F1 and EM
scores by around 0.5 to 1.0 points while not giving any training speed gain, meaning that
switching the hidden size from 128 to 96 from the best model of this project decreased both
F1 and EM scores by 0.7.

• Attention heads and batch size : The attention heads and batch size were set to 8 and 32
throughout the experiments. The course default starter code had batch size 64, which gave
CUDA out of memory error on the Azure virtual machine provided in the course, which has
16 GB memory.

5.3.2 Layer Implementation:

• Weight Initialization : For most layers, PyTorch’s default initialization was used. However,
Xavier initialization and Kaiming initialization experimented for most linear projections.
As can be seen, the important thing is that it was crucial to use Xavier initialization for
the linear layers in the Context-Query Bi-attention layer and the Output layer. Initially,
the performances that were significantly worse than those obtained by the TensorFlow
implementations such as [10]: PyTorch by default uses Kaiming initialization for linear
layers, while TensorFlow uses Xavier initialization.

• Layer Normalization: This was first introduced in [11]. One of the challenges of deep
learning is that the gradients concerning the weights in one layer are highly dependent on the
outputs in the previous layer. Batch normalization is designed to fix this problem. However,
it is hard to apply to recurrent neural networks [11]. Layer normalization was designed to
overcome the drawback of batch normalization. Suppose H is the number of hidden units of
a layer and l denotes one layer in the model. The layer normalization computes:

µl =
1

H

H∑
i=1

ali, σl =

√√√√ 1

H

H∑
i=1

(ali − µl)2 (3)

and then normalize the inputs by

âl =
al − µl

(σl)2 + ϵ
, (4)

where ϵ is a small positive number to avoid dividing by 0 problems.
• Depth-wise Separable Convolution: The default way to implement depthwise separable

convolution in PyTorch is to use the groups feature in Conv1d.
• Self-attention: The nn.MultiheadAttention module from PyTorch was used.
• Sharing weights in the model encoder: As per the original paper, different weights were

used for the 7 encoder blocks in each repetition of the model encoder layer. The same
weights for all these blocks was also experimented with. In the latter approach, a linear layer
with skip connection was applied between every two blocks to add more expressive power.
In the experiments, sharing weights reduced the dev F1 and EM by 1.3. This approach was
also slower and demands more memory, probably because its computational graph has an
extra linear layer.

• Inference: The default inference method in the starter code is as follows: Recall that adding
an out-of-vocabulary word at the beginning of every context paragraph represents the "not
answerable" option. A pair of (start; end) positions is valid if:

5

– start <= end < start+M : for some chosen max length M. In our case M = 15.
– If start = 0 then end = 0: Here 0 is the index of the added out-of-vocabulary word.

Once the probability distributions p1 and p2 for the starting and ending positions of the
answer are predicted, the joint probability p1 p2 was computed for each (start; end) pair and
chose the pair with the highest probability among those which are valid. If start = end = 0,
the model predicts “not answerable.”.

Figure 3: Model summary

5.4 Results

The best model of this project achieved a 63.646(F1) and 60.254(EM) score on the course test set.
This model uses 100-dimensional character-level embedding, hidden size 128, 8 attention heads,
batch size 32, and Xavier initialization for most linear weights. It took about 30 minutes per epoch
and 15 hours to train 30 epochs.

Model Dev(F1) Dev(EM) Test(F1) Test(EM) Evaluation
BiDAF (Starter code) 61.722 58.427 – – Baseline
BiDAF (with Character Embedding) 62.483 59.469 63.646 60.254 Success
QANet* 53.208 50.062 47.811 47.811 Failure
QANet** 56.119 53.487 54.708 51.784 Failure

Table 1: Overall Performance Comparison.

QANet*: QANet model with starter code along with character level embedding.
QANet**: QANet model with hyperparameter tuning discussed section 5.3

In table 1, the F1, EM scores on dev, and test set for the different models. These models are the
default baseline BiDAF model, BiDAF with character embedding, QANet* model with starter code
and character level embedding, and QANet** model with hyperparameter tuning described in the
experiment details section.

Figure 4: BiDAF with Character Embeddings. From the right, the graphs are produced on the dev
set and represent EM, F1 and the loss. The orange curve represents BiDAF with word + character
embeddings and the blue curve represents the baseline BiDAF

F1 and EM scores lower than the original BiDAF starter code provided with the course were given.
Based on the remark in [8] that “a strong neural system that gets 86% F1 on SQuAD 1.1 achieves only

6

56% F1 on SQuAD 2.0” and the fact that [1] reported an 84.61 F1 score on SQuAD 1.1, leading to
believe that the QANet model underperformed as expected. After exploring more about the SQuAD
2.0 dataset, there is the finding that about 50% of the data consists of questions that have no answers
in the context paragraph. This difference in the SQuAD 1.1 and 2.0 datasets might have played a
vital role in achieving lower scores.

However, the training speed was disappointing. The training process was slow compared to the
original BiDAF starter code. It can be assumed that GPU memory was insufficient to use the
parallelization feature of the QANet model [1] to show an advantage over the BiDAF starter code.

6 Analysis

Below are some randomly picked questions where the models of this project did not answer correctly.

6.1 Tackling Unanswerable Question:

Question: How many miles is Montpellier from Paris?
Context: Montpellier was among the most important of the 66 "villes de sûreté" that the Edict of
1598 granted to the Huguenots. The city’s political institutions and the university were all handed
over to the Huguenots. Tension with Paris led to a siege by the royal army in 1622. Peace terms
called for the dismantling of the city’s fortifications. A royal citadel was built, and the university and
consulate were taken over by the Catholic party. Even before the Edict of Alès (1629), Protestant rule
was dead and the ville de sûreté was no more.[citation needed]
Answer: N/A
Prediction: 66
Analysis: It can be seen that QANet sometimes also gives answers to unanswerable questions. In this
case, 66 is not the distance from Montpellier to Paris, but the model gives this answer. One possible
explanation is that the model cannot understand the query quite well. Although there is no answer
to this query based on the context, the model is still trying to generate some answers. If thinking
about the problem in this way, one possible direction is to model better the semantic relation be-
tween the query and the context, i.e., should let the model learn if the query and the context are related.

6.2 Unmatchable Word:

Question: What type of arts flourished in the Yuan?
Context: In the China of the Yuan, or Mongol era, various vital developments in the arts occurred or
continued in their development, including painting, mathematics, calligraphy, poetry, and theater,
with many great artists and writers being famous today. [...] Another important consideration
regarding Yuan dynasty arts and culture is that so much of it has survived in China, relative to works
from the Tang dynasty and Song dynasty, which have often been better preserved in places such as
the Shosoin, in Japan.
Answer: painting, mathematics, calligraphy, poetry, and theater
Prediction: N/A
Analysis: Maybe the model could not answer this question because it could not match the word
“flourished” to any word in the context. It could be argued that this is relatively difficult because the
sentence containing the answer does not have any word that is an exact synonym of “flourished.”
However, the baseline BiDAF model answered this question correctly. The reason has not been
explored in this project.

7 Conclusion

The author of this project carried out a custom implementation of QANet to increase the rate of
training and inference of reading comprehension models. The core differentiator of the model is that
it drops all recurrent layers in favor of convolutions and self-attention layers. While the feed-forward
nature of QANet is ideal for parallel computation, it is difficult to take advantage of this feature. In
contrast to the findings of the original paper, no speed increase could be observed on the baseline

7

BiDAF model. There are four key findings of this project: firstly, that character embeddings in
conjunction with word embeddings help improve model performance regardless of the architecture;
secondly, since the model implemented is capable of overfitting the data, more regularization might
be required in order to allow the loss on the validation set to continue to drop; thirdly, the use of
multi-head attention gives the model a clear path to interpretability on examples, as it is easy to see
which part of a context or query the model is focused on; and fourthly, the model produced by this
implementation does not match the performance of the original QANet, so potential changes may be
required to QANet in order to improve performance.

8 Acknowledgements

Thank the CS224N course instructors and course assistants for implementing the baseline model
and providing guidance in project development and Microsoft Azure for GPU service and support.
I greatly appreciate Kathy Yu for providing valuable instructions and explanations throughout the
course. I am immensely grateful to Lucia Zheng for her help in interpreting the articles, providing
direction, and providing valuable feedback to complete the project.

References
[1] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. CoRR, abs/1804.09541, 2018.
[2] Jonathan Raiman and John L. Miller. Globally normalized reader. In EMNLP, 2017.
[3] Dirk Weissenborn, Georg Wiese, and Laura Seiffe. Making neural qa as simple as possible but
not simpler. In CoNLL, 2017.
[4] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi: “Bidirectional Attention Flow for Machine
Comprehension”, arXiv:1611.01603, 2016
[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser: “Attention Is All You Need”, arXiv:1706.03762, 2017
[6] The annotated transformer. http://nlp.seas.harvard.edu/2018/04/03/attention.html .
[7] A pytorch implementation of qanet for machine reading comprehension.
https://github.com/BangLiu/QANet-PyTorch
[8] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–789, Melbourne, Australia, July 2018. Association
for Computational Linguistics.
[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc., 2017.
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
[10] A tensorflow implementation of qanet for machine reading comprehension.
https://github.com/NLPLearn/QANet
[11] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization,
arXiv:1607.06450, 2016

8

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Acknowledgements

