
QAN-et al.: Exploring Extensions on QANet
Stanford CS224N Default Project

Timothy Dai
Stanford University

timdai@stanford.edu

Michelle Qin
Stanford University

mdqin@stanford.edu

Jessica Yu
Stanford University
jmyu@stanford.edu

Abstract

In this project, we implement a question answering model for the SQuAD 2.0
dataset that improves upon the performance of Seo et al.’s BiDAF baseline. We
implement from scratch an improved BiDAF baseline using character-level embed-
dings, a high performing QANet-based architecture, and the following variations
on that model: an additional module that predicts answerability, conditioned end
predictions, learnable positional encodings, and relative positional encodings. With
a weighted BiDAF and QANet ensemble (using learnable position encodings,
conditioned end prediction variatons, and more) we achieve a significant perfor-
mance increase over the baseline, reaching 3rd place on both the development set
leaderboard and the test set leaderboard.

1 Key Information

Our mentor is Michi Y. We have no external collaborators nor are we sharing projects.

2 Introduction

In this project, we address the NLP challenge of question answering, one of the “strongest possible
[demonstrations] of text comprehension” [1]. Specifically, in this project, we address a model’s
ability to produce the answer span of text in a context paragraph from the SQuAD 2.0 dataset. Recent
years have seen much progress made on end-to-end models for this task, such as the Bidirectional
Attention Flow (BiDAF) model by Seo et al. [2], and the main aim of this project is to implement a
successful model that beats this baseline.

We first attempt to improve upon this baseline by restoring the character-level embeddings removed
by CS 224N staff, which encode lexical information from morphemes and prefixes. While this
achieves an improvement over the baseline, it’s quickly exposed by Yu et al. [3] that recurrent neural
networks suffer from slow training speeds and difficulties in learning meanings of sentences as a
whole. As a response to some of recurrent neural networks’ weaknesses, we implement the QANet
architecture described in Yu et al., composing almost all of the described layers from scratch. As
expected, we achieve significantly improved performance from the baseline.

We experiment with the following techniques with the intention of further improving upon our vanilla
QANet model. The second and third item below include original contributions:

1. QANet with learnable positional encodings, in which we add a learnable positional tensor to
the input of each encoder block in order to preserve positional representations.

2. QANet with an AvNA module, in which we extend the QANet architecture and loss function
to include a branch that separately predicts a question’s answerability. This acts as an
alternative to the provided method of predicting no-answer whenever the leading OOV token
maximizes joint start and end probabilities. This AvNA module is first introduced in Aubet
et al. [4] but we make original contributions, specified in the Approach section.

Stanford CS224N Natural Language Processing with Deep Learning

3. QANet with conditioned end predictions, in which we condition the prediction of the end
position on the prediction of the start position. We make original contributions in this section
also, specified in the Approach section.

4. QANet with relative positional encodings, in which we incorporate the clipped relative
positional encodings of each word’s two neighboring elements into QANet’s multiheaded
attention module, introduced in Shaw et al. [5].

Of these modifications, adding relative positional encodings to the self-attention layer leads to the best
improvement when tested in isolation. Finally, we assemble an ensemble by selecting high performing
models from our repertoire of BiDAF and QANet variants to achieve our highest performing model.

3 Related Work

The Bidirectional Attention Flow (BiDAF) model by Seo et al. was significant in making progress
on end-to-end models for machine reading comprehension and question answering [2]. BiDAF is
notable for introducing the concept of context-query attention. When applied to a recurrent neural
network (RNN), the model is able to achieve strong results on SQuAD. However, because of the
recurrent nature of BiDAF (ie., BiDAF is a recurrent model that processes inputs with an added
attention component to handle long-term interactions), the model is slow and expensive to train
thereby resulting in high turnaround time for experiments and deploying applications.

The QANet model by Yu et al. aimed to remove the recurrent nature of the BiDAF model in order to
make machine comprehension faster [3]. Instead of using RNNs, QANet uses convolutional layers to
capture the local structure of the text and self-attention to capture the longer term interaction between
words, borrowing heavily from Vaswani et al.’s seminal work on transformers [6]. QANet proved to
be a faster model, allowing more data to be trained and greater scale to be employed. While both
Vaswani et al. and Yu et al. use absolute positional encodings, specifically sinusoidal positional
encodings, further work has explored relative positional encodings, introduced in Shaw et al. [5] and
developed further in Dai et al. [7], which encode distances between sequence elements (ie., relative
positions) in the self-attention layers of the transformer model.

One of the first attempts to handle the no-answer examples of SQuAD 2.0 were produced in Aubet et
al.’s 2019 model called EQuANt [4], which adds an AvNA module to specifically predict answerability.
Levy et al. [8] introduce another such technique to handle the no-answer examples of SQuAD 2.0
by prepending an out-of-vocabulary (OOV) token to the contexts, and giving no-answer labels to
predictions that maximize probabilities at the OOV token.

These works show that improving model performance is an iterative process. We adopt a similar
mindset in this project as we replicate each of our chosen techniques and make original contributions,
testing each one in isolation.

4 Approach

4.1 BiDAF

Our baseline is Seo et al.’s BiDAF [9] with slight modifications by the CS 224N staff. Among the
biggest changes made by the CS 224N staff are the removal of character-level embeddings and the
addition of an out-of-vocabulary token to all contexts to accommodate SQuAD 2.0’s no-answer
examples, a technique introduced in Levy et al. [8]. For more details, we refer the reader to the
default project handout.

4.2 BiDAF extensions

We implement from scratch two techniques to improve our BiDAF baseline.

Character-level embeddings. We implement character-level embeddings which maps each word
to a high dimensional character space. In detail, we apply a 2D convolution with kernel size 3 to
learnable character embeddings and max pool across the character dimension to obtain a character-
level embedding for each word. We then concatenate the character-level embeddings to the word

2

embeddings, and pass the output through the remainder of the original model. Explained in Kim
2014 [10], running kernels over character-level embeddings helps extract more granular information
about words, including morpheme information and subword information.

Coattention. We also attempt to improve our BiDAF baseline by implementing a coattention layer
introduced in Xiong et al.’s 2016 paper [11] to produce second-level attention outputs, which are
concatenated with the first-level context-to-query attention and passed to the model encoder layer
thereafter. For the sake of brevity, we refer the reader to the default project handout Section 5.2 for
the exact sequence of operations applied in this coattention layer.

4.3 QANet

We implement the QANet model architecture [3] from scratch, barring several instances where we
reuse code from the BiDAF model or reference short snippets of open-source code, indicated where
applicable. Given the importance of the encoder block to the QANet model, we define it first.

Figure 1: An encoder block,
the central component of the
QANet model. Source: [3]

Encoder block. QANet’s encoder block (Figure 1) borrows ideas
from the transformer model [6] and is the central component of
QANet.

The input representation to the encoder block is first summed with a
sinusoidal positional encoding [6], which encodes a cyclical float be-
tween -1 and 1 that allows the model to retain positional information.
We then feed the summed vector through a convolutional network
consisting of a predetermined number of depthwise separable con-
volutional sublayers, followed by a multiheaded attention sublayer
of 8 heads, and a final feed-forward network. We cite open-source
notebooks1 as helpful resources in the implementation of the multi-
headed attention module. The multiheaded attention and depthwise
separable convolutional sublayers are the key modules for language
understanding.

Finally, we refer the reader to the Appendix for all remaining config-
urations for the encoder block. We will see below how the encoder
block is used in the embedding encoder and the model encoder
layers.

Embedding layer. The embedding layer processes the word and
character indices fed as input to the model. Like BiDAF, the QANet
embedding layer uses pretrained GLoVe vectors [12], sized at p1 =
300 for word representations. For character embeddings, we use
randomly initialized, trainable embeddings of size p2 = 200. As recommended by the QANet
paper, we apply a different dropout rate to word and character-level embeddings: 0.1 for word and
0.05 for character-level. We then pass the character-level embeddings through a 2D convolutional
layer followed by a max over the character dimension, and concatenate the word and character-level
embeddings together. Finally, we apply a fully-connected layer to reshape our embeddings from
p1 + p2 to dmodel = 128, and pass this resized representation through a 2-layer highway network
[13], designed to ease training for deep neural networks.

Embedding encoder layer. The embedding encoder layer processes the size dmodel output of
the embedding layer. It consists of 1 encoder block (defined above), configured with 4 depthwise
convolutional sublayers each with kernel size 7. The output to this layer is fed to the subsequent
context-query attention layer.

Context-query attention layer. We reuse BiDAF’s context-query attention layer, with one addition.
We add a fully-connected layer to project the attention layer output of hidden size 4 · dmodel to hidden
size dmodel for size compatibility with proceeding blocks.

1https://tinyurl.com/uvadlc-notebooks and https://tinyurl.com/multihead

3

Model encoder layer. The model encoder layer consists of a stack of 7 encoder blocks (defined
above), each with 2 convolutional sublayers and a kernel size of 5. We pass the context-query
attention layer output through the model encoder layer 3 times, effectively sharing weights between
3 model encoder layers. We store the 2 intermediate results and final output in 3 separate matrices,
M0,M1,M2.

Output layer. We concatenate M0 and M1 from the model encoder layer’s output, project the
concatenated vector to a size of 1, and softmax over its sequence-length dimension to obtain a
probability distribution of start positions, p1. We perform the same operations on M0 and M2 to
obtain a probability distribution of end positions, p2. We refer the reader to the Appendix for details
on how loss is calculated for backpropagation and how p1 and p2 are discretized for predictions.

4.4 QANet extensions

We extend our vanilla QANet model with several techniques in an attempt to improve performance.

Learnable positional encodings. We try replacing the sinusoidal positional encodings with learn-
able positional encodings. To do so, we initialize a parameter matrix of size (1000, dmodel), given
that the maximum paragraph length of the model is 1000. At the start of each encoding block, we
simply truncate the first dimension of the learnable matrix to match the sentence-length dimension of
the input, and sum the truncated positional encodings with the input representation.

AvNA module. We explore a module introduced in Aubet et al.’s 2019 paper [4] that exclusively
learns answerability. Currently, to handle unanswerable questions in SQuAD 2.0, CS 224N staff
implemented a technique introduced in Levy et al. [8] that predicts no-answer when the joint
probabilities of the start and end predictions are maximized at 0. However, we wish to explore another
way of predicting no-answer.

Briefly, the AvNA module described in Aubet et al. takes as input the first of our 3 model encoder
layers’ output, and returns a float that represents the ‘answerability’ score of an example, with an
answerable example having a ground-truth score of 1. We refer the reader to the Appendix for a more
detailed outline of the AvNA module’s architecture.

In order to train this module, we set the loss function according to Aubet et al., with an original
modification:

l(θ) =
1

N

N∑
i=1

[
L(i)
0 (p

(i)
0) + L(i)

1 (p
(i)
1) + L(i)

2 (p
(i)
2)

]
, (1)

where L(i)
0 (p

(i)
0) is the answerability cross-entropy loss, L(i)

1 (p
(i)
1) is the start prediction cross-entropy

loss, and L(i)
2 (p

(i)
2) is the end prediction cross-entropy loss. This loss function (Equation 1) allows

the model to train both the traditional output layer and the new AvNA module. We refer the reader to
the Appendix for more information about how this original loss equation differs from Aubet et al.’s
loss and our motivation for such a change.

Furthermore, Aubet et al. do not specify how exactly to use the AvNA module in discretizing
predictions, so we made further original contributions by experimenting with various ways to
discretize the model’s output using the new module’s output:

Discretization Method 1. We set predictions to no-answer when the answerability probability is < 0.5.

Discretization Method 2. We set predictions to no-answer when the answerability probability is < 0.5 and the joint
probability of the start and end predictions is maximized at 0.

Discretization Method 3. We set predictions to no-answer when the answerability probability is < 0.5 or the joint
probability of the start and end predictions is maximized at 0.

We report the highest performing configuration in the Experiments section and compare with the
results from other configurations in the Analysis section.

Conditioned end predictions. We investigate 2 original ways of conditioning end predictions on
start predictions by modifying the output layer:

4

Conditioning Method 1. When predicting end positions in the output layer, we concatenate M0 and M2, as be-
fore, but now we also concatenate the predicted start positions p1 to obtain the result
[M

(i)
0 ;M

(i)
2 ; p

(i)
1] ∈ R2dmodel+1. Following, we apply a fully-connected linear layer to

project the concatenated matrix to a representation of end predictions p2 with a hidden size
of 1, and proceed as before.

Conditioning Method 2. We fear that the previous technique may dilute the information about start predictions in the
end prediction network, as it concatenates p1 with two large dimension matrices, M0 and
M2. Therefore, we attempt another method where information about the start predictions
are comparable in dimension to end prediction inputs. This second model obtains the end
position predictions p2,revised as follows:

p2,revised = W [p1; p2] + p2.

In other words, we allow the model to first predict start and end predictions separately,
obtaining prediction representations p1 and p2, as before. However, we give p2 a chance to
‘revise’ itself after looking at start predictions p1, by feeding [p1; p2] through another fully-
connected layer. We grant the network a residual skip to ‘revert’ its revision if beneficial to
learning.

We report results from Conditioning Method 2 in the Experiments section as it is the higher performing
model between the two.

Relative positional encodings. We implement relative positional encoding to capture information
about local word contexts as described in Shaw et al.’s 2018 paper [5]. To do this, we extend the
self-attention mechanism to incorporate pairwise positional information between input elements
following an open-source implementation 2. We set the max relative position to 2 as recommended
by Dai et al.’s Transformer-XL paper [7], considering a window of 2 input elements before and after
each word, which can be thought of as modeling the input as a directed, connected graph.

In our implementation, we extend the computation of each output element (previously a weighted
sum of a linearly transformed input elements) to learn distinct edge representations between 2 input
elements xi and xj , represented as vectors aVij and aKij . To derive these edge representations, we
instantiate an embeddings table of size 5 which represents a window of 5 relative positions. For
a given key and query, we create a matrix of the distances between each input element, clipping
values to a maximum absolute value of 2. The embedding lookup of this distance matrix is used in a
modified self-attention operation:

zi =

n∑
j=1

αij(xjW
V + aVij) (2)

eij =
xiW

Q(xjW
K + aKij)

T

√
dz

(3)

This new output substitutes the traditional self-attention output in the encoder block.

Ensembling. For our final model ensemble, we combine 4 vanilla QANets, each trained at a differ-
ent seed, 1 QANet with learnable positional encodings, 1 QANet with relative positional encodings,
both QANets with conditioned end predictions, 1 BiDAF baseline, and 1 BiDAF with character-level
embeddings. All models with QANet backbones were chosen based on their improvement upon the
vanilla QANet performance. We aggregate the predictions using majority vote, with ties broken by
each model’s F1 score on the development set.

5 Experiments

5.1 Data

We use the modified SQuAD 2.0 dataset provided by CS224N. It contains 130K training examples,
6K validation examples (randomly selected from half of the official dev set), and 6K test examples
(the remainder of the official dev set with additional hand-labeled samples).

2https://tinyurl.com/relativeposenc

5

Table 1: Performance of various models on SQuAD 2.0 development set.

Model description dev F1 dev EM dev AvNA
BiDAF (baseline) 61.29 57.86 67.72
BiDAF with character-level embeddings 63.46 60.14 69.82
BiDAF with coattention 56.15 52.60 61.24
QANet 68.95 65.15 75.40
QANet with learnable positional encodings 69.83 66.21 76.07
QANet with relative positional encodings 69.98 66.26 76.39
QANet with AvNA module 68.57 64.95 74.76
QANet with conditioned end predictions 69.08 65.55 75.40
QANet + BiDAF ensemble 72.35 69.43 77.31

Table 2: Performance of ensemble on SQuAD 2.0 test set.

Model description test F1 test EM
QANet + BiDAF ensemble 70.23 67.29

5.2 Evaluation method

We use the exact match (EM) score, a binary measure of whether the answer matches the ground
truth exactly, and F1 score, a harmonic mean of precision and recall, to evaluate the performance of
our models. We also record the answer vs. no answer accuracy (AvNA).

5.3 Experimental details

BiDAF-based models. For all models with a BiDAF backbone, we run experiments with default
training parameters. Specifically, we train with the Adadelta optimizer [14], for 30 epochs with a
learning rate of 0.5 and ϵ = 10−6, no weight decay, and an exponential moving average (EMA) with
a decay rate of 0.999. We use batch size of 64.

QANet-based models. For all models with a QANet backbone, we run experiments according to
the Training Details section of the original QANet paper [3]. Specifically, we use an Adam optimizer
[15], a learning rate of 0.001 with an exponential learning rate warm-up scheme for the first 1000
steps, ϵ = 10−7, β1 = 0.8 and β2 = 0.999, weight decay of 3 × 10−7, and an EMA with a decay
rate of 0.9999.

Note that to accommodate memory limits, we use batch size of 24 for QANet-based models, although
the original QANet paper recommends 32. For the same reason, we use even further reduced batch
size of 16 for our QANet with relative positional encodings.

5.4 Results

We present the compiled results of our models on the development set in Table 1. Apart from our
significant increase in F1 and EM compared to the baseline, we observe that, among all our models
with a QANet backbone (lines 4-9 of Table 1), changes to architecture produce only small changes in
performance. This observation aligns well with guest speaker Jared Kaplan’s March 1, 2022 lecture
and accompanying 2020 paper [16] on scaling laws in which he alludes to the fact that architecture is
not crucial in improving performance unless when addressing a bottleneck.

We present our ensemble model’s performance on the test set in Table 2. It is not surprising that our
ensemble performs slightly worse on the test set than on the development set, since the test set is
completely unseen data. This exposes a weakness in our training algorithm: we are saving and testing
with models that achieve the highest F1 score, which may cause slight overfitting on the development
set.

6

6 Analysis

In this section, we offer analysis for three of our most consequential extensions of QANet: learnable
positional encodings, the AvNA module, and relative positional encodings.

6.1 Relative positional encodings

Because QANet is a non-recurrent model, it does not contain sequential information in its encodings
and it is common to use various forms of positional encodings to provide this information to the
model. In this work, we implement relative positional encodings, which encodes information about
the relative position between each pair of words within a clipped distance of 2. Providing the model
with relative positions enables it to learn generalizable information about the different meanings of
each word in specific contexts.

In Table 3, we see that QANet with relative positional encodings outperforms a vanilla QANet on all
question types except for ‘Who’ questions. Most notably, QANet with relative encodings performs
significantly better than vanilla QANet on ‘How’ questions. This jump in performance makes sense,
as ‘How’ questions require a higher understanding of language than, for example, ‘Where’ or ‘When’
questions, where the model could simply learn to look for place names or 4-digit years as answers.
We infer that the relative positional encodings provide that nuanced understanding of the relationships
between nearby words required to answer ‘How’ questions correctly. We refer the reader to the
Appendix where we present several examples that showcase the heightened performance of the
QANet model with relative positional encodings on ‘How’ questions, among other question types.

Table 3: Comparing F1 score of a vanilla QANet against our QANet with relative positional encodings,
by question type.

Model Who What When Where How Why Other
QANet 71.70 68.76 73.44 66.02 64.90 62.79 64.76
QANet w/ relative positional encs. 71.56 69.71 73.89 66.26 68.69 64.64 66.26

6.2 AvNA module

In Table 4, we discuss more granular results for all 3 of our earlier presented methods of discretizing
no-answer examples using the AvNA module; we also include a ‘baseline’ where we do not use
the AvNA output at all. We consider Method 2 to be our most ‘conservative’ method in predicting
no-answer examples, because examples must be assigned a no-answer prediction from both the
AvNA module as well as the traditional QANet output layer before being labeled as no-answer.
Contrastingly, we consider Method 3 to be our most ‘generous’ method in predicting no-answer
examples, because examples have two avenues by which they can obtain a no-answer label, either
through the AvNA module or the traditional QANet output layer.

Table 4: Performance of various discretizing techniques of the AvNA module. Each method is
described in full in the Approach section for the AvNA module.

Method dev F1 dev EM dev AvNA
Ignore AvNA output (joint start-end only) 68.22 64.59 74.42
Discretization Method 1 (AvNA only) 66.14 62.09 73.45
Discretization Method 2 (AvNA && joint start-end) 65.81 61.75 73.13
Discretization Method 3 (AvNA || joint start-end) 68.57 64.95 74.76

When we compare our most conservative method and our most generous method, the generous
method outperforms other methods on all fronts, suggesting that, in general, this iteration of QANet
suffers from overly cautious no-answer labels. Furthermore, using the AvNA module in Method 3
outperforms the ‘baseline’ model which ignores the AvNA module altogether. This indicates to us
that additional focus on developing discretization methods that more generously assign no-answer
labels may be fruitful in future improvements in performance.

7

6.3 Learnable positional encodings

Figure 2: Left: sinusoidal positional encodings used in vanilla QANet. Right: learned positional
encodings.

We observe in Figure 2 an immediate shortcoming of learned positional encodings: unlike the
sinusoidal positional encodings, the learned positional encodings are not sequence-length invariant.
This is because maximum sequence length for all training examples is 400, which means positions
401-1000 are not backpropagated through during training. Thus, during test time, since test paragraphs
can have a maximum sequence length of 1000, the learned positional encodings will not contribute
useful positional information to words in positions 401-1000.

Despite this major shortcoming, we also notice several similarities between the two encoding
visualizations. Firstly, both encodings use floats between -1 and 1, which tells us having normalized
values in the [-1, 1] range is most useful for models to learn parameterized encodings. More notably,
we see that, like the sinusoidal positional encodings for early hidden dimensions, the learned positional
encodings do not exhibit long stretches of constant values. This suggests that the model does, indeed,
use the learnable parameter to somewhat encode positional information; with frequent variations in
float values, the model is able to distinguish between positions moreso than if the positional encodings
were all of similar values.

7 Conclusion

In this project, we implement a QANet model and explore extensions of it, in particular relative
positional encodings, learnable positional encodings, and conditioned end predictions. We show
that adding relative positional encodings is the most influential extension in improving the model’s
performance. In addition, we create an ensemble of our highest performing models which achieves
strong results on SQuAD 2.0: F1/EM 72.53/69.43 on dev leaderboard and 70.23/67.29 on test
leaderboard. We observe that changes in architecture only lead to small changes in performance;
to further improve performance, we believe scaling up QANet, using larger hidden sizes and more
encoder blocks, may help improve performance more than small architecture changes. In future
work, we are interested in scaling up QANet as such, as well as learning how we can integrate
state-of-the-art components, for example, pre-trained models such as BERT.

References
[1] Wendy Lehnert. Human and computational question answering*. Cognitive Science, 1(1):47–73,

1977.

[2] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension, 2018.

[3] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading
comprehension, 2018.

[4] François-Xavier Aubet, Dominic Danks, and Yuchen Zhu. Equant (enhanced question answer
network). CoRR, abs/1907.00708, 2019.

8

[5] Ashish Vaswani Peter Shaw, Jakob Uszkoreit. Self-attention with relative position representa-
tions, 2018.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[7] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. CoRR,
abs/1901.02860, 2019.

[8] Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction
via reading comprehension, 2017.

[9] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension, 2016.

[10] Yoon Kim. Convolutional neural networks for sentence classification, 2014.

[11] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. CoRR, abs/1611.01604, 2016.

[12] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, October 2014. Association for
Computational Linguistics.

[13] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. CoRR,
abs/1505.00387, 2015.

[14] Matthew D. Zeiler. Adadelta: An adaptive learning rate method, 2012.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2015.

[16] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020.

[17] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
stochastic depth. CoRR, abs/1603.09382, 2016.

A Appendix

A.1 QANet encoder block and other training details

There are several remaining details in the implementation of the encoder block: wrapping each
sublayer is a residual skip connection which accommodates deep learning by allowing the model to
resort to the identity function when beneficial to learning. We also normalize inputs for each sublayer
using layer normalizations. A final detail is that, during training, we employ a technique called layer
dropout [17] which randomly drops sublayers by forcing residual skips at a rate proportional to layer
depth, with deeper layers dropping out at higher probabilities.

For backpropagation, we compute the loss by summing the negative log likelihood of p1 and p2
with their respective ground truth start and end positions. For making a prediction, we discretize the
predictions by selecting the start and end indices that maximize the joint probabilities of the start and
end predictions. A prediction of (0, 0) is considered a no-answer prediction, because we preprocess
examples by appending an out-of-vocabulary token to the very beginning of each context.

9

A.2 AvNA module details

Here, we provide more details about the AvNA module. Firstly, we will outline specifically the
architecture of the AvNA module. The AvNA module (Figure 3) takes as input the output of the first
of our 3 model encoder layers. This is then fed through 2 independently initialized encoder blocks,
each configured with 2 convolutional sublayers and a kernel size of 5, 3 feed-forward layers which
reduce the hidden dimension to 1 with rectified linear units as activation functions, and a mean-pool
along the sequence-length dimension to obtain a single float for each batch. Each float represents
the ‘answerability’ score of the example, and are outputted by the model alongside the start and end
position predictions.

Figure 3: The AvNA module.
Source: [4]

Next, we discuss our original contributions to the loss function.
Aubet et al. recommend the following loss function:

l(θ) =
1

N

N∑
i=1

[
L(i)
0 (p

(i)
0) + δ(i)

(
L(i)
1 (p

(i)
1) + L(i)

2 (p
(i)
2)

)]
, (4)

where δ is the gold answerability, L(i)
0 (p

(i)
0) is the answerability

cross-entropy loss, L(i)
1 (p

(i)
1) is the start prediction cross-entropy

loss, and L(i)
2 (p

(i)
2) is the end prediction cross-entropy loss. The

issue with this loss function, we found, was that, when examples
are unanswerable, loss (Equation 4) for start and end predictions are
zeroed out, and only the AvNA module is trained, leaving the original
output layer and the final two model encoder layers untouched.
Thus, our original contribution on the loss function simply involves
removing the δ, as such:

l(θ) =
1

N

N∑
i=1

[
L(i)
0 (p

(i)
0) + L(i)

1 (p
(i)
1) + L(i)

2 (p
(i)
2)

]
, (5)

allowing the original QANet’s start and end prediction pipeline as well as the additional AvNA
module to be trained for all examples. This new loss function (Equation 5) also gives the model the
ability to continue to attend to the prepended OOV token which indicates a no-answer prediction, as
before, alongside the new AvNA module.

A.3 Examples of relative positional encodings’ gains in performance

We see the importance of encoding contextual information in examples like the following:

Question: What city later became Beijing?
Context: Kublai readied the move of the Mongol capital from Karakorum in Mongolia to Khanbaliq
in 1264, constructing a new city near the former Jurchen capital Zhongdu, now modern Beijing, in
1266. In 1271, Kublai formally claimed the Mandate of Heaven and declared that 1272 was the first
year of the Great Yuan in the style of a traditional Chinese dynasty...
Answer: Zhongdu

The vanilla QANet model incorrectly predicts the answer to be "Kublai", whereas the modified model
with relative positional encoding is able to accurately predict the answer "Zhongdu". In analyzing
this difference, we hypothesize that the vanilla QANet predicts "Kublai" as the answer because its
lack of refined positional awareness causes it to merely identify Kublai as the main subject of the
context paragraph. On the other hand, the addition of relative positional encodings allows for the
model to learn more granular relationships between words in the context and correctly identify "now
modern Beijing" as the key context in answering the question of which city later became Beijing.

As shown by our analysis, the vanilla QANet performs generally worse on "How" questions, because
it learns global associations rather than using relative positional context to answer queries. For

10

instance, in the example:
Question: How effective was the military use of the "Afghan Arabs"?
Context: In 1979, the Soviet Union deployed its 40th Army into Afghanistan, attempting to suppress
an Islamic rebellion against an allied Marxist regime in the Afghan Civil War. The conflict, pitting
indigenous impoverished Muslims (mujahideen) against an anti-religious superpower, galvanized
thousands of Muslims around the world to send aid and sometimes to go themselves to fight for
their faith. Leading this pan-Islamic effort was Palestinian sheikh Abdullah Yusuf Azzam. While
the military effectiveness of these "Afghan Arabs" was marginal, an estimated 16,000 to 35,000
Muslim volunteers came from around the world came to fight in Afghanistan.
Answer: marginal

The vanilla QANet model predicts “16,000 to 35,000”, whereas the model with relative positional
encodings is able to correctly extract the correct answer, “marginal”. We hypothesize the Vanilla
QANet model learned to associate “How + adjective” questions with measurable (i.e. numerical)
responses, whereas the addition of relative positional encodings enables it to identify the phrase
“effectiveness of these ‘Afghan Arabs’ was marginal” as relevant.

11

	Key Information
	Introduction
	Related Work
	Approach
	BiDAF
	BiDAF extensions
	QANet
	QANet extensions

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Relative positional encodings
	AvNA module
	Learnable positional encodings

	Conclusion
	Appendix
	QANet encoder block and other training details
	AvNA module details
	Examples of relative positional encodings' gains in performance

