
Re-attention vs. Bi-attention: Investigating two
Alignment Architectures for Neural Question

Answering
Stanford CS224N Default IID Project

Ghaith Arar
Stanford University

ghaith01@stanford.edu

Abstract

In this project, I investigated how re-attention and bi-attention mechanisms focus
on relevant information in Neural Machine Comprehension Question Answering
models. I implemented a Mnemonic Reader which uses re-attention alignment
architecture and compared multiple aspects with a BiDAF baseline network that
uses bi-attention alignment. I incrementally added features to context and question
embeddings to investigate their effects on the performance of the model.

1 Key Information
• Mentor: Lucia Zheng
• External Collaborators: N/A
• Sharing project: N/A

2 Introduction

Machine Comprehension Question Answering systems aim to answer questions given a context
passage. Various attention mechanisms have been proposed and used successfully in such systems.
Some of the state-of-the-art models use attention mechanism exclusively, while the common pattern
in many other models is to use attention in combination with some type of recurrent neural network
(RNN). However, Attention remains the backbone of almost all question answering architectures.
In the context of Reading Comprehension, attention seeks to attend the question into the context
paragraph to find the answer if exists.

The goal of this project is to investigate how Re-attention in Mnemonic Reader architecture differ
from Bi-attention in Bi-Directional Attention Flow (BiDAF) network and how each seek to find
relevant knowledge, and to gain a deeper understanding of their implementation and effectiveness.

I implemented Mnemonic Reader [1] and compared its performance against the provided baseline. I
implemented a character-level embedding and added it to the BiDAF baseline. The BiDAF baseline
model was trained and the results were used for comparison. I performed multiple experiments on
the Mnemonic Reader model to explore how different aspects affect the performance of the model. A
normalized term frequency (TF) and a binary exact context-question match were added incrementally
to evaluate how they change the behaviour of the model.

3 Related Work

Seo et al. [2] proposed Bi-Directional Attention Flow (BiDAF) network, a hierarchical multi-stage
architecture for modeling the representations of the context paragraph at different levels of granularity.
It uses bi-directional attention flow to obtain a query-aware context representation.

Stanford CS224N Natural Language Processing with Deep Learning



Xiong et al.[3] proposed a co-attention which is two-way attention between the context and the
question. However, unlike Bidirectional Attention Flow, co-attention involves a second-level
attention computation – i.e., attending over representations that are themselves attention outputs.
Both approaches are single-round alignment architecture.

Huang et al.[4] and Xiong et al.[3] proposed multi-round alignment architectures that com-
pute attentions repeatedly but in these approaches, the one attention is not aware of which parts of the
context and question have been focused on in earlier attentions.

Hu et al. [1] proposed a re-attention mechanism that temporally memorizes past attentions and uses
them to refine current attentions in a multi-round alignment architecture. The idea is that words
tend to share similar semantics when their attentions about same texts are highly overlapped. This
leads to attention become either concentrated if previous attentions attend to same words of input, or
distracted to attend to other words when previous attentions are not overlapped.

Chen et al.[5] showed that adding additional features to the input embeddings turned out to be
extremely helpful. One of the features is exact match which is a simple binary feature indicates
whether context words can be matched to one question word in question. Token features like
(normalized) term frequency (TF) showed to improve question answering performance.

4 Approach

4.1 The Bi-Directional Attention Flow (BiDAF) Baseline.

I used the BiDAF model provided by CS-224N staff as the baseline for this project. The model uses
300-d GloVE word embeddings. I implemented an RNN-based GRU charactor embedding layer.
The model was trained on the provided modified SQuAD 2.0 dataset and the result was used for
comparison.

Original BiDAF Character Embedding Layer. The (BiDAF) architecture utilizes a Convolutional
Neural Networks (CNN) to obtain character embedding. Charactor embedding vectors are treated
as 1D input to the CNN. The outputs of the CNN are max-pooled over the entire width to obtain a
fixed-size vector for each word. I decided to try a different approach for character embedding layer.

RNN-based Character Embedding Layer. Inspired by R-Net[6], I implemented the character
embedding layer of Gated Self-Matching Networks[6] which consists of 1-layer recurrent neural
network (RNN). Embeddings are obtained by by taking the final hidden states of a bi-directional
(RNN). I implemented the layer using Gated recurrent units (GRU)[7] with dim = 100 for the hidden
state since it is theoretically less computationally intensive than Long short-term memory (LSTM).

Single-round Bi-attention Mechanism. Bi-directional attention was proposed in BiDAF archi-
tecture paper[2]. Bi-attention allow the attention vectors at each time step to move through to the
subsequent layer. This approach maintains more information and to some extend prevent early
summarizing. However, this type of single-round attention is agnostic to attention in previous steps.

4.2 Mnemonic Reader

Multi-round Attention Architectures. Multi-round Alignment Architectures consist of multiple
similar attention layers stacked on top of each other. Let V t ={vti}

n
i=1 and a passage U t = {ut

j}mj=1

denote the hidden representations of question and context in t-th layer, and Ht ={ht
j}mj=1 is the

corresponding question-aware context representation. Then the two similarity matrices can be
computed as

Ei
t
j = f(vti , u

t
j) , Bi

t
j = 1i̸=jf(h

t
i, h

t
j)

However, this type of attention is not aware of previous attention in such architecture. The limitation
of this type comes from the fact that attentive information can only flow to the subsequent layer
through the hidden representation.

2



Re-attention Mechanism. Re-attention was proposed in Reinforced Mnemonic Reader paper [1].
This type of attention aims to remember previous attention and utilize them to fine-tune current
attention. The motivation is that two words should be correlated if their attentions about same texts
are highly overlapped, and be less related vice versa. The computation of re-attention is defined as
follows. Let Et−1 and Bt−1 denote the past similarity matrices that are temporally memorized. The
refined similarity matrix Et(t > 1) is computed as

Êt
ij = Softmax(Et−1

i: ).Softmax(Bt−1
j: )

Et
ij = f(vti , u

t
j) + γÊt

ij

Where γ is a trainable parameter. And Softmax(Et−1
i: ) is the past context attention distribution for

the i−th question word and Softmax(Bt−1
j: ) is the self attention distribution for the j−th context

word. When there is no overlap between two distributions, the dot product will be 0. On the other
hand, if the two distributions are identical and focus on one single word, it will have a maximum
value of 1. Hence, the similarity of two words can be explicitly measured using their past attentions.
Since the dot product is relatively small than the original similarity, the γ is initialized with a tunable
hyper-parameter and keet trainable. The refined similarity matrix can then be normalized for attending
the question. Similarly, we can compute the refined matrix Bt to get the unnormalized self reattention
as

B̂t
ij = Softmax(Bt−1

i: ).Softmax(Bt−1
j: )

Bt
ij = 1i̸=j(f(h

t
i, h

t
j) + γB̂t

ij)

End-to-end Mnemonic Reader Architecture. The Mnemonic Reader Architecture consists of
three components as shown in Figure 1.

Figure 1: Overview of Mnemonic Reader Architecture. Different colors in E and B represent different degrees of similarity

1. An encoder: The encoder firstly converts each word to an input vector. The architecture
uses the 100 − dim GloVe embedding and 1024 − dim ELMo[8] embedding. However,
since CS224N project rules don’t permit using any pre-trained weights other than GLoVe, I
used 300− dim GloVe[9] for word-level embedding.
The character-level embedding is obtained by encoding the character sequence with a
bi-directional long short-term memory network (BiLSTM), where two last hidden states are
concatenated to form the embedding. I kept both word-level and character-level embedding
fixed during training.
Additionally, I incrementally implemented a binary feature of exact match between words
in context and question. Unlike the binary feature suggested by Chen et al.[5], my

3



implementation has only 1 dim that indicates a context word is in the question when it’s
1 and 0 otherwise. A similar binary exact match was added to the question as well. I
hypothesized that this binary feature will assist attention mechanism during training.
I implemented a normalized term frequency feature which was trained on the entire training
data set before the main model was trained. Although [5] showed the effectiveness of
deploying Part of Speech (POS) and Names Entity Recognition (NER) for both question and
context, I did not implement these components since they would require using pre-trained
weights.

Both XQ = {xqi }
n
i and XC =

{
xcj
}m

j
are obtained through modeling each word with it’s

contextual information through a weight-sharing BiLSTM.

vi = BiLSTM(xq
i ) , uj = BiLSTM(xc

j)

denoted as two matrices V = [v1, ..., vn] ∈ R2d×n and U = [u1, ..., um] ∈ R2d×m

2. An iterative aligner with the re-attention mechanism: The iterative aligner consists of a
stack of three aligning blocks. Each block consists of three modules as shown in Figure 1.

• An interactive alignment.
• A self alignment to attend the context against itself.
• An evidence collection to model the context representation with a BiLSTM.

The iterative aligner module aims to attend the question into the context. First, the similarity
matrix E ∈ Rn×m is computed where the multiplicative product with non-linearity is
applied as attention function. f(u, v) = relu(Wuu)

⊤relu(Wvv). The question attention
for the j-th context word is then: Softmax(E:j) which is used to compute an attended
question vector v̂j = V.Softmax(E:j). And to efficiently fuse the attentive information
into the context, an heuristic fusion function, denoted as o = fusion(x; y), is proposed as

x̂ = relu(Wr[x; y;x◦y;x− y])
g = σ(Wg[x; y;x ◦ y;x− y])

o = g ◦ x̂+ (1− g) ◦ x
The architecture stacks multiple aligning blocks with the re-attention mechanism to improve
the ability of capturing complex interactions among inputs.

R1, Z1, E1, B1 = align1(U, V )
R2, Z2, E2, B2 = align2(R1, V, E1, B1)

R3, Z3, E3, B3 = align3(R2, V, E2, B2, Z1, Z2)

where alignt denote the t-th block. In the t-th block (t > 1) and the hidden representation of
question is fixed.

3. An answer pointer: The question representation V is summarized into a fixed-size
summary vector s. Then the start probability P1(i) is computed by heuristically attending
the context representation R3 with the question summary.

P1(i) =∝ exp(W⊤
1 tanh(W1[r

3
i ; s; r

3
i ◦ s; r3i − s]))

Next, a new question summary ŝ is updated by fusing context information of the start
position.

P2(j|i) =∝ exp(W⊤
2 tanh(W2[r

3
j ; ŝ; r

3
j ◦ ŝ; r3j − ŝ]))

Full implementation details in the original paper [1].

5 Experiments

5.1 Data

I used the custom version of the Stanford Question Answering Dataset SQuAD 2.0 provided by
CS224N staff, which contains both answerable and unanswerable questions, to train and test the

4



models. The training set has nearly 130K examples in the official SQUAD 2.0 training set. The
development set and test set are roughly equally sized halves of the official SQUAD 2.0 development
set, with about 6K examples each, since the official test set is hidden from the public.

5.2 Evaluation method

I evaluated on the F1 and EM (Exact Match) scores. The AVNA (Answer vs No Answer) was also
included to better understand the model’s classification accuracy considering only the answer (any
span predicted) vs no-answer predictions.

5.3 Experimental details

Learning Rate (lr). I experimented with fixed lr ∈ {0.5, 0.6, 1}. I also utilized a multi-step
scheduler to decay the learning rate of all parameter groups by γ = 0.9 every two epochs.

Optimization I used Adadelta algorithm for the BiDAF model. For Mnemonic Reader model I
experimented with Adadelta and Adam optimizers.

Hidden Size Throughout the experiment, I varied the hidden size of the architecture. Mostly the
model perform best with hidden size between 64 and 128. I didn’t observe any noticeable performance
gain with increasing the hidden size beyond 150.

Batch Size Different batch sizes between 30 and 70 were tested within the GPU memory restraint.
In general, I observed better performance with batch size equal or less than 45.

Training Device I performed all experiments locally on Nvidia GPU with Ampere architecture and
6 GB of GPU RAM.

5.4 Results

EM and F1 The table below shows the results of best performing experiments on both the BiDAF
baseline with GRU-based character embeddings and my implementation of Mnemonic Reader.

Model Variant Dev EM Dev F1 AvNA Test EM Test F1
BiDAF B=64, dp=0.2, hs=100 59.84 62.85 69.61 – –
BiDAF B=64, dp=0.25, hs=120 59.25 62.78 68.95 – –

Mnemonic Reader B=45, dp=0.2, hs=100 59.88 62.96 68.44 – –
Mnemonic Reader B=45, dp=0.2, hs=100, TF, EX 60.36 63.16 68.93 59.37 62.77

My implementation of Mnemonic Reader gained roughly one point on both EM and F1 scores
compared with the BiDAF baseline with GRU-based character embedding.

6 Analysis

Performance The Mnemonic Reader paper[1] reported EM score of 78.9 and F1 score of 86.3 on
Dev set of SQuAD dataset. My implementation of Mnemonic Reader was trained and evaluated
against a modified SQuAD 2.0 dataset. This modified dataset differs than SQuAD dataset in that it
contains unanswerable questions.

The Mnemonic Reader paper uses 100-dim GloVe embedding and 1024-ELMo pretrained embedding
in addition to POS and NER embedding. My implementation uses only 300-dim GloVe word
embedding since ELMo, POS, and NER embeding require utilizing pre-trained weights in my model
which is not permitted by project rules. The paper doesn’t list the performance of Mnemonic Reader
model on SQuAD 2.0. However, an open source implementation using TensorFlow[10] reported EM
score of 64.89 and F1 score of 67.81 using ELMo and CoVe embedding.

5



Figure 2: Training results of best performing models

Test Case I present a test case from the dev set where Mnemonic Reader model performed better
than BiDAF baseline model.

Question: Name a larger car that Toyota came up with as buyers lamented the small sized
compacts?

Context: Some buyers lamented the small size of the first Japanese compacts. Both
Toyota and Nissan (then known as) introduced larger cars such as the Toyota Corona
Mark II, the Mazda 616 and 810 , which added passenger space and a amenities
such as air conditioning, power steering, AM - FM radios , and even power windows
and central locking without increasing the price of the vehicle. A decade after
the 1973 oil crisis, Honda, Toyota and Nissan, affected by the 1981 voluntary export
restraints, opened US assembly plants and established their luxury divisions
(Acura, and Infiniti, respectively) to distinguish themselves from their mass - market brands.

Answer:
Corona Mark II

Mnemonic Reader Answer:
Toyota Corona Mark II

BiDAF Answer:
Toyota Corona Mark II, the Toyota Cressida, the Mazda 616 and Datsun 810

6



Attention Concentration I present the attention concentration for the test case.

Figure 3: BiDAF Bi-Attention Score Matrix for the test case. X-axis indicate context words, and Y-axis axe indicate question words.

Figure 4: Mnemonic Reader 3-level Re-Attention Score Matrix for the test case. X-axis indicate context words, and Y-axis indicate question
words.

The visual inspection of the attention matrices shows that BiDAF matrix is more concentrated on a
few areas. The Mnemonic Reader attention matrix in the first layer seemed distracted but it seems to
calibrate attention at each level. In the last layer, attention is significantly more concentrated at the
intersection between "car" token in the question and "Corona Mark II" tokens in the context.

7 Conclusion

In this project I present an implementation of Mnemonic Reader that achieves better results on the
SQUAD 2.0 dataset than the BiDAF baseline model. My experiments showed that increasing the
hidden size beyond a certain level didn’t improve the model performance. Also, my incremental
addition of features e.g. normalized term frequency and exact match improved the model by 0.5 point
on average. My experiment showed that re-attention was able to correct it’s distraction in previous
level and reach the correct information.

7



References
[1] Minghao Hu, Yuxing Peng, Zhen Huang, Xipeng Qiu, Furu Wei, and Ming Zhou. Reinforced

mnemonic reader for machine reading comprehension. arXiv preprint arXiv:1705.02798, 2017.

[2] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[3] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604, 2016.

[4] Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, and Weizhu Chen. Fusionnet: Fusing via fully-
aware attention with application to machine comprehension. arXiv preprint arXiv:1711.07341,
2017.

[5] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer
open-domain questions. arXiv preprint arXiv:1704.00051, 2017.

[6] Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. Gated self-matching
networks for reading comprehension and question answering. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
189–198, 2017.

[7] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[8] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson Liu, Matthew
Peters, Michael Schmitz, and Luke Zettlemoyer. Allennlp: A deep semantic natural language
processing platform. arXiv preprint arXiv:1803.07640, 2018.

[9] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[10] ewrfcas. Reinforced mnemonic reader in tensorflow. GitHub,
https://github.com/ewrfcas/Reinforced-Mnemonic-Reader, 2018.

8


	Key Information
	Introduction
	Related Work
	Approach
	The Bi-Directional Attention Flow (BiDAF) Baseline.
	Mnemonic Reader

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

