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Abstract

Question Answering is a well-known and frequently studied topic in Natural
Language Processing. An ideal question answering model does not concentrate
on internal particularities of the training data which might not be relevant for
the general task of reading comprehension, and instead generalizes well to
unseen datasets. A suitable concept that helps increasing domain invariance
of a model is adversarial training. In this report, we consider three different
approaches for adversarial training and compare them empirically. We conduct
an extensive study, where we fine-tune each of the approaches, in order to
investigate which methodology is most effective in promoting domain adaption
of a model on the question answering task. Our results indicate that adversarial
training incorporating a discriminator to challenge the question answering
model is most promising.
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2 Introduction

Question Answering (QA) is an established application in the field of NLP and a lot of progress
has already been made, e.g., [1, 2, 3, 4]. A QA model tries to solve a reading comprehension task
by identifying the correct text span of a passage that provides the answer to a given question.
This helps extracting relevant information from a text to answer a users question and could be,
for example, incorporated into a chatbot to answer a customers question in a very user-friendly
way. One could further combine it with a knowledge retriever that provides the QA model with a
relevant text from a database to answer a specific question.

A main improvement on this task was possible by using huge pretrained transformer based
language models and fine-tuning them on QA, as suggested, e.g., for BERT, an bidirectional
encoder model, in [3]. Today, almost all state-of-the-art QA systems are based on pretrained
transformer models. Modern QA systems are fast and perform accurate on datasets like SQuAD
[1] when tested and trained on examples from the same data distribution.
However, these QA systems tend to overfit to seen in-domain datasets and do neither adapt to
less seen out-of-domain data, nor generalize well to completely new datasets [5]. It seems that
these models do not learn the overall task in a general way but adapt to inherent brittle structures
of the data that are expressive for the specific training set only. When deploying such a model
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in production or testing it on a new dataset, the impressive performance collapses reducing its
benefit in real world systems.

To promote common use of such models, robust QA systems which generalize well across different
domains without further explicit fine-tuning are required. There is a lot of research studying
techniques to improve out-of-domain performance, as, e.g., summarized in a survey by Wang et
al. [6]. We focus on the concept of adversarial training. The general idea of adding an adversary to
the training of a model was proposed in [7] to improve generative models. The model not only
trains on solving the (QA) task, but also tries to compete against an adversary. There are mainly
two different types of adversaries that can be incorporated into a training pipeline.
The first adverse model is a discriminator that tries to predict an inputs affiliation to a certain
dataset/domain. While the discriminator tries to improve on its classification task, the QA model
tries to fool the discriminator while still reducing the QA loss. The intuition is that this approach
forces the QA model to generate domain invariant features. If the features are invariant of the
specific domain of the data, the model should perform equally well on any domain. This approach
is known from training generative adversarial networks (GANs), where the focus lies on producing
realistic output to fool a discriminator that tries to distinguish between fake and real images.
The second opponent adds noise to the input embeddings in order to make it harder for the
model to reduce the QA loss and prohibit overfitting on brittle feature. The model needs to adapt
to the noise and creates representations that are invariant with respect to small perturbations
of the input, where the embeddings are perturbed by adding a vector δ from the ϵ-L∞-ball, i.e.
∥δ∥∞ < ϵ. This is the classical approach in computer vision tasks to train robust models, which are
robust against imperceptible changes to an input image [8, 9]. This concept is very intuitive for
images. In NLP applications, the interpretation of perturbed embeddings is less obvious, but as
well considered in research, see e.g. [10].

In this project, we analyse those two possible adversaries within a comparison study. We consider
two popular approaches to implement first method for adversarial training, and introduce them
together with a third approach belonging to the second class of adversaries in section 4. Section 5
contains all details about our comprehensive empirical study and our results, which are further
discussed in section 6 and summarized in section 7. We also provide further information on the
data and additional experimental results in the appendix.

3 Related Work

In recent years, several apparent limitations of current NLP models have been discussed. For
example, Jia et. al. [11] introduced adversarial generated examples, which reduce the average F1
score of successful reading comprehension models trained on the SQuAD [1] dataset from 75%
to 36%. Furthermore, Ribeiro et. al. [12] developed a task-agnostic methodology for testing NLP
models called CheckList, which also showed the weaknesses in both commercial and state-of-the-
art models. Recent research is working on improvements against such failures by, e.g., enhancing
domain adaption and domain generalization [6]. There are many ways to improve accuracy of a
QA model compared to state-of-the-art approaches, which exclusively consider in-domain data.

Methods that approach out-of-domain (ood) accuracy range from mixture-of-experts methods
over data augmentations to meta-learning. Jiang et al. [13] model multiple source domains as
a mixture-of-experts and learn a point-to-set metric α to weight the experts for different target
examples. Longpre et al. [14] explore data augmentation and sampling techniques for domain-
agnostic QA and Li et al. [15] introduced a domain generalization method by dividing the source
domain-space into meta-train domains and meta-test domains to simulate train/test domain
shift during training by synthesizing virtual testing domains within each mini-batch.

Ganin et al. [16] introduced the idea of domain adaptation through adversarial classification for
general backpropagation neural networks. Their approach promotes so called "deep" features that
are expressive for the main learning task and also invariant w.r.t. the shift between the domains.
As a proof-of-concept, they show promising results on the MNIST digit classification benchmark
with domain shifts. Sato et al. [17] then transferred this method to the field of natural language
understanding, using adversarial training and a gradient reversal layer (GRL) on a bidirectional
LSTM. The model improved their baseline on the task of dependency parsing by up to 6 points
on UAS and LAS scores, and we implement this concept as one of our approaches. Lee et al. [18]
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made use of the adversarial approach by appending a domain classification discriminator to a
pretrained BERT model while fine-tuning on the QA problem. Their results show an improvement
of up to 2 points on the F1 score, and it forms the foundation of the second implementation we
consider in this project. Liu et al. [10] introduced the ALUM (Adversarial training for large neural
LangUage Models) algorithm, which regularizes the training objective by applying perturbations
in the embedding space that maximizes the adversarial loss. This is the third approach we include
into our empirical study.

An enhancement to the described task of adapting or generalizing beyond in-domain datasets is
open-domain QA (OpenQA) [19], which aims to answer a question in the form of natural language
based on large-scale unstructured documents. This setting is out of the scope of this report, but
we expect a lot of upcoming research to contribute to it.

4 Approach

In this project, we use ideas from GANs [7] and adversarial examples in computer vision [8] to
foster domain invariance of QA models. In particular, we incorporate these concepts as described
by previous approaches mentioned in section 3, and evaluate their efficiency on improving the
QA models out-of-domain (ood) accuracy. We consider 6 datasets, where three are considered as
in-domain with a large training corpus and three are considered ood data, since only 127 training
examples are available during training for each of them.

The general approach is to use the provided baseline DistilBertForQuestionAnswering 1 and add
modifications, such as a domain classifier or a noise vector. The model then still tries to solve the
QA task described above, but at the same time competes against an adversarial model that tries to
make predictions more difficult. The first adversarial model that we consider is a discriminator
trying to correctly predict the domain of the input from the features generated by the DistilBert
model. The second model will be a noise vector optimized to make predictions for the QA model
harder and is explained at the end of this section.
We start by implementing two variants of a discriminator-based adversarial training approach.
In both variants, the training samples are enhanced with a domain label representing the source
of the data. The discriminator uses the output vector of the DistilBert model corresponding to
[CLS], i.e. the first token in every input sequence, see Figure 1. We implement the discriminator
as a MLP with a leaky ReLU activation between each layer and a dropout between the last three
layers. More details on the architectures we tested can be found in section 5.3.

Figure 1: Architecture of ADVA as presented in [18]. It shows a domain discriminator connected to
the BERTs hidden output state corresponding to the CLS token.

The approach in [17] employed adversarial training by connecting a domain classifier to the LSTMs
output vector via a gradient reversal layer (GRL) and optimize the classifier with a cross entropy
loss. The GRL acts as the identity function in the forward step, but multiplies −λ to the gradient
when computing the gradient. In this way, the part of the model before the GRL, the discriminator,
tries to minimize the cross entropy loss, and the part after the GRL, the LSTMs or DistilBERT,

1https://huggingface.co/docs/transformers/model_doc/distilbert
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tries to maximize it. Finally, the whole model is optimized by minimizing the sum of the cross
entropy loss and the task specific loss. We employ this approach by inserting a GRL between
DistilBert and the domain classifier. In the remainder of this report, we will refer to this approach
as GRLA(batch size,epochs,λ)D, where λ is the tuning parameter inside the GRL and D represents the
selected discriminator architecture as described in chapter 5.3.

The second approach was presented in [18] and also extends an existing QA model with a discrimi-
nator but here the QA model and the domain classifier are trained separately. The [CLS] output vec-
tor of DistilBERT is considered as a fixed input when optimizing the discriminator. The loss of the
discriminator, lD , is the cross entropy loss over the different domains. The loss of the QA model is,
lG = lQ A+λlD ′ , a weighted sum of the QA loss lQ A and the Kullback-Leibler divergence between the
logits of the classifiers x and the uniform distribution, i.e. lD ′ (x) =∑

i
1
K (log( 1

K )− log(softmax(xi ))).
During training of the QA model, the weights of the discriminator are fixed and the loss is
averaged across the batch. In the remainder of this report, we will refer to this approach as
ADVA(batch size,epochs,λ)D with λ being the weight balancing the impact of the discriminator on the
loss lG and D again being the selected discriminator architecture as described in chapter 5.3.

Finally, we come back to the second class of adversarial models, where the adversary is a noise
vector added to the embeddings of the input sequence. In particular, we consider the ALUM
algorithm suggested in [10]. The algorithm is based on the following so called virtual adversarial
training loss,

l ALU M = lQ A( f (e,θ), y)+α lQ A( f (e +δmax,θ), f (e,θ)),

where δmax = argmax{δ:∥δ∥∞<ϵ} lQ A( f (e +δ,θ), f (e,θ)).

In this equation f is our QA model with its parameters θ and the embeddings e as an input. The QA
loss lQ A measures the difference between the output of the QA model and the true start and end
positions of the answer denoted as y . The intuition of the loss function is that we want to improve
performance on the QA task, first summand, and minimize the effect of ϵ-perturbations on the
model, second summand. The parameter α is responsible for balancing those two objectives. As
suggested in [10], we perform one gradient decent step to estimate δmax. A difference between our
ALUM approach and the original article is that we integrate the adversarial training only during
fine-tuning and use a standard pretrained model, whereas the initial method was used already
during pretraining. We denote our experiments with this method by ALUM(α,ϵ,domain), where
domain refers to the data used during training, only in-domain (ind) or also ood data.

5 Experiments

5.1 Data

Our experiments are based on six labeled QA datasets. We consider the three dataset SQuAD[1],
NewsQA[20], Natural Questions[21] as in-domain data, since they provide in total 150,000 training
examples. The ood datasets are DuoRC[22], RACE[23] and Relation Extraction[24], where for each
ood dataset only 127 training samples are available. The detailed distribution over all 6 datasets
can be taken from table 4 in the appendix.

Each training sample consists of a context, a question and an answer and we added a domain-label
indicating the specific source dataset for each example. The input to the DistilBERT model is
constructed by concatenating a [CLS] token, the question, a [SEP] token, the context and another
[SEP] token. Since BERT has a maximum context length of 512 restricting the possible input
length, long paragraphs will be split and provided to the model in chunks each combined with the
corresponding question.

In order to enrich the ood dataset, we used data augmentations to provide more opportunities to
learn on ood data but modify them to reduce the overfitting effect. The technique we considered
is back translation. The idea is to translate a sentence into another language and back to English
using a neural translation pipeline provided by huggingface. In particular, we used the pretrained
networks ’Helsinki-NLP/opus-mt-en-de’ for German and ’Helsinki-NLP/opus-mt-de-en’ for trans-
lation back to English. We translated the questions and the context sentences not containing
the answer in order for the given answer to remain valid. A few examples can be found in the
appendix. Due to the required compute for translation, we only modified the ood datasets and we
indicate in our experiments when the data augmentations were used.
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5.2 Evaluation method

We evaluate our model by calculating the Exact Match (EM) score and the F1 score. The EM score
of an answer given (Question, Context) is either 1, if an exact match in the ground truth answer
exist, or 0 if not. The F1 score provides a combination between precision and recall. We take
the maximum over all three human-provided answers and the final scores are averaged over the
dataset.

To evaluate the accuracy of the implemented domain adaptation methods, we compare its perfor-
mance on the ood validation set to the baselines performance, which is the standard DistilBert-
ForQuestionAnswering from huggingface trained only on in-domain data. In our experiments, the
baseline achieved 48.84 for the F1 and 33.51 for the EM score on the ood dev set.

5.3 Experimental details

For all approaches we start with a learning rate lr = 3e−5, as proposed in the baseline implementa-
tion. We also tried using individual learning rates for both the discriminator and the generator, as
introduced in the two time-scale update rule (TTUR) for training GANs by Heusel et al. [25], and
we optimized using the AdamW algorithm with β1 = .5 and β2 = .999.

As described in chapter 4, we use a discriminator to classify the domain-label based on the
QA models features corresponding to the [CLS] tokens output vector. In our experiments, we
considered different numbers of classes, and started with c = 6 classes for all in-domain and ood
datasets. In further experiments, the number of classes was reduced to 4 for the 3 in-domain
datasets and one additional class for all ood datasets or even to 2 classes for a unified in-domain
and a unified ood class. The discriminators architecture has to adapt to the number of classes c,
which has to be equal to the size of the output layer. The size of of the first layers varies within our
experiments. We started with a basic 3-layer MLP without batchnorm D(3basic,c) and enhanced
it to a small 3-Layer MLP D(3small,c) with batchnorm which delivered presentable results. The
performance for a larger 3-Layer MLP D(3large,c) even improved, but a further increase to a 4-Layer
MLP D(4,c) does not seem to help. The constant c in the reference for the architectures refers to
the number of classes that should be distinguished. The model is enhanced by batchnorm layers
and LeakyReLU is used as a non-linear function with a negative slope of .2. For the dropout layers
inside the discriminator, we use p = .2. A detailed description of the various architectures we used
during our study can be seen in the appendix under table 5. For some of the experiments, the
discriminator was already pretrained over 3 epochs.

Inspired by Lim et al. [26], we introduce noise into the features FN by adding it on the transformers
output before feeding it into the qa-layer and the discriminator. This noise follows a Gaussian
distribution with mean 0 and standard deviation either 1e −5 or std

100 with std being the standard
deviation over all feature values of a batch. If the noise is only used for the answer determination,
we will denote it as FNQ A . For the in chapter 4 described ALUM method, we again used Gaussian
noise with mean 0 and standard deviation 1e −5, which is added to the embeddings of the input
sequence.

For sampling of each batch, we started with the default uniform sampling without replacement
as provided within the baseline. In some experiments, we replaced this by a weighted sampling
method WSq with replacement and q being the probability that a sample is drawn from one of the
ood datasets.

The models were mostly trained for 3 epochs, but we also experimented with a smaller and a larger
number of epochs, depending on the observed performance at the end of training. We started
with a batch size of 16, but promising models were also trained with a batch size of 32.

5.4 Results

5.4.1 ADVA (Adversarial Training Approach)

Since ADVA showed promising results at an early stage of the project, we used many different
techniques and applied fine-tuning where applicable, in order to improve the models accuracy
on ood data. While the results of the ADVA approach for λ = 1 already improved the baseline
performance, we experienced an additional increase in F1 score by reducing the parameter to
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λ= 1e −2, which was also proposed by Lee et al. [18]. We did not observe any relevant changes
when batch size and number of epochs were altered. Reducing the number of classes between
which the discriminator should distinguish did not improve the overall performance on ood data.
Introducing Gaussian noise to the features shows a promising improvement, if the noise is not too
large. A standard deviation of std

100 seems to be too large to reliably improve the F1 score, but using
a static standard deviation of 1e −5 consistently shows good results. Unfortunately, weighted
sampling only had a small positive impact on the models accuracy on ood data. Instead of learning
domain invariant features, the model tends to overfit to the small number of seen ood samples
leading to an F1 score on the ood train data of over 80% while improving the baseline performance
on the ood validation data by at most 2%. Using two different learning rates resulted in no increase
of accuracy.

In our best ADVA experiment w.r.t F1 score, we used the standard setting of λ = 0.01 and a 3-
Layer MLP for the discriminator to distinguish between 6 classes, ADVA(16,3,0.01)D(3large,6). Figure 4
shows the performance of the best model in pink in comparison to the baseline in orange and the
performance of a model with λ= 1 in blue. Table 7 in the appendix lists all experiments performed
for the ADVA method.

Figure 2: On the left, the training QA-loss is shown, and the right plot shows the discriminators
accuracy in predicting the inputs dataset. The orange curve corresponds to the baseline model.
The two visualized ADVA experiments differ in λ= 1 in blue and λ= 0.01 in pink.

5.4.2 GRLA (Gradient Reversal Layer Approach)

The most crucial tuning parameter in GRLA is the λ inside the gradient reversal layer that decides
how strongly the QA model should work against the discriminator. In [17], λ= 0.5 was proposed.
Our experiments indicate that λ= 0.1 is already too large, since the discriminators accuracy in
predicting the domain drops to 50% (guessing) after a few 1000 updates, see blue curve in figure 3.
Choosing λ= 0.01 instead leads to a slower continued decrease of the discriminators accuracy.
This indicates that 0.01 is a good level, where the model is able to adapt to the discriminator but
it is not too easy. The red curve corresponds to a run using a higher dropout rate on the layer
producing the QA-logits to prevent over-fitting. The red curve uses a dropout rate of 0.3, where the
other runs use 0.1. The red and pink curves correspond to the best performing runs with GRLA
and only slightly differ by favoring different ood datasets. These two experiments are denoted
as GRLA(16,3,0.01)D(3large,6) + Data Augmentation (pink) and GRLA(16,3,0.01)D(3large,6),p=0.3 + Data
Augmentation (red), see table 6 in the appendix for F1 and EM scores or section 5.4.4, where the
pink run is reported as the best GRLA result.

Figure 3: On the left the training loss of the QA task, in the middle the discriminators accuracy in
predicting the correct dataset, and on the right the EM score on the ood validation set is display.
The GRL experiments differ in λ= 0.1 in blue and λ= 0.01 in pink and red.

5.4.3 ALUM (Adversarial training for large neural LangUage Models)

The most influential tuning parameters of the ALUM method are the noise level ϵ and α to weight
the importance of the robust adversarial error against the QA loss. The optimal parameter choice
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seems to depend on the scale of the QA loss. When running an experiment with α = 10 and
ϵ= 1e −5 as suggested in [10], the robust error remains constant at around 0.43 over the 3 training
epochs and the model barely learns with a loss value of about 4, where standard error and α
times the robust error settle, see grey curve in figure 4. When reducing α to 1, the model quickly
improves on the QA loss. It is possible that with a larger α the model requires much more training
epochs to properly learn the general task. The orange and green curve in figure 4 differ in the
use of ood training data, which barely effects the loss functions but improves the performance
on the ood validation set. The best performing run used α = 1, ϵ = 1e −5 and ood data during
training, which corresponds to the green line and is denoted as ALUM(1,1e−5,ood) in the appendix.
The results in terms of F1 and EM score can be found in section 5.4.4 for the best run and in table
8 for all experiments.

Figure 4: On the left the training loss of the QA task for ALUM with α = 10 in grey and α = 1 in
orange and green. The second graphic shows the robust error, i.e. the QA loss between the model
with and without noise added to the embeddings.

5.4.4 Comparison

Both approaches ADVA und GRLA manage to improve the provided baseline performance on
the ood dev dataset. ADVA’s best F1 score is slightly better than GRLA’s best F1 score, although
both results are in a similar range and improve the baseline by around 5.8%. Even if ADVA has a
slightly higher F1 score, GRLA has a slightly higher quota of exact matches, as given by the EM
Score. However, both approaches improve the baseline EM score by around 9%.
On the test set, we achieved the best scores with an ADVA run using a pretrained QA model and
discriminator and just using adversarial training for one epoch. It seems that the pretrained QA
model was a lucky strike, since later experiments with these hyper-parameters failed [27].

Unfortunately, no improvement in baseline performance in terms of F1 or EM score was evident
in our experiments by applying the ALUM approach. Table 1 lists the best results of the three
approaches. A comprehensive list of all results can be found in tables 6,7,8 in the appendix.

Method in-domain dev dataset out-of-domain dev dataset
EM F1 EM F1 Improvement in F1

baseline 54.43 70.47 33.51 48.84 0.0%
GRLA 54.38 70.47 36.65 51.64 5.73%
ADVA 52.81 68.97 36.39 51.71 5.88%
ALUM 50.79 66.59 32.98 47.83 -2.07%

Table 1: Best EM and F1 scores for the three approaches on the in-domain and ood validation
dataset. A comprehensive list of all our experiments can be found in the appendix in tables 6,7,8

Method EM F1
GRLA(16,3,0.01)D(3large,6) + Data Augmentation 40.206 58.582
ADVA(16,3,0.01)D(3large,6) 40.092 58.471
ADVA(16,1,0.1)D(3basic,6) + both pretrained 41.078 59.136

Table 2: EM and F1 scores on the out-of-domain test set obtained from the test leaderboard.

7



6 Analysis

It is very surprising to see that both discriminator based adversarial training approaches, GRLA
and ADVA, perform almost identically on the test set. Although the two methods rely on slightly
different criteria for the model to improve against the discriminator, reducing cross entropy
versus reducing Kullback-Leibler divergence with respect to the uniform distribution, the final
performance we were able to obtain is comparable and does not clearly favor one approach.
However, it is very interesting that GRLA unlike ADVA does not reduce performance on the in-
domain validation set compared to the baseline. A next step could be analysing this finding
thoroughly. This observation might indicate more room for improvement using GRLA, because
the previous advancement on the ood dev set did not happen at the expense of in-domain
performance.

One question that comes up when training on only 127 examples for each ood dataset is that the
model might already focuses too strongly on the ood train set. Indeed, this might be the case for
GRLA and ADVA, where performance is much higher on the ood training set, see table 3 for the
corresponding EM and F1 scores. ALUM, even though using ood training data as well, performs
only slightly better on the train set compared to the validation set. Our settings of the ALUM
algorithm potentially kept the model from learning the QA task deeply.

Besides our model choices on ALUM, a major difference to the original approach [10] is that we
could not include ALUM into the pretraining of the DistilBERT model as well. It might require
much more training epochs (during pretraining) for the transformer to properly adapt to the
noise on the embeddings. Another idea that we had is that ALUM might still improve adversarial
robustness of the model, even though it could not increase the ood adaptation. To check this
hypothesis, we evaluate our best performing models and the baseline on the adversarial SQuAD
dataset[28] provided via the huggingface Dataset package, where we used the ’AddSent’ split.
However, the results in table 3 do not back our hypothesis, since the performance on adversarial
SQuAD seems to change proportionally to the performance on the original SQuAD dataset.

Method ood validation set ood train set (dev) SQuAD adversarial SQuAD
EM F1 EM F1 EM F1 EM F1

baseline 33.51 48.84 33.51 48.84 62.89 76.91 47.44 59.02
GRLA 36.65 51.64 60.10 74.43 61.82 76.53 46.91 58.91
ADVA 36.39 51.71 56.43 71.73 60.45 75.18 46.26 58.98
ALUM 32.98 47.83 34.91 47.21 59.02 73.52 44.24 56.81

Table 3: EM and F1 scores for the three approaches on the ood-domain validation and train
set. The 4 columns on the right contain performance values on the SQuAD and the adversarial
SQuAD[28] (AddSent) validation set.

7 Conclusion

In summary, in this project we extended a DistilBERT model by adding an adversarial component
with the goal to learn the domain-invariant features for the QA task. There are many ways to
introduce such a component and we were able to successfully implement 3 different approaches.
Two of these approaches improved the ood accuracy in terms of the F1 score on the ood validation
set by about 5%, which shows the general benefit of adversarial training.

Due to the limitations in time and resources, we focused on applying those techniques, that we
expected to be most promising, and hence only have a limited number of experiments in which
we examined the influence of a single change more closely. In future work, experiments could be
conducted that analyse changes of single tuning parameters individually, to examine the impact
of each one more thoroughly. When thinking about the next steps, we can imagine to combine
adversarial training with additional domain adaptation techniques like a mixture-of-experts or
meta learning to improve the QA model. Another open point is why and how GRLA is able to
improve on the ood data without a drop in in-domain F1 score, as mentioned in section 6. It could
be of general interest to answer this question.
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A Appendix

This appendix provides additional information on the data and the experiments conducted in this
article. For example, in Table 4, further details on the distribution and origin of the used datasets
can be found.
We also want to use this additional space to show some examples from our back-translation data
augmentation technique. The procedure does not work perfectly on all examples, sometime
incorporating mistakes or making to few changes to a sentence. However, the overall impression
is satisfying.

original: The lift door closed only after I entered.
back-translated: The elevator door only closed after I entered.

original: Not being fast enough, I was passed by two young people who managed to get into the
lift before me.
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back-translated: Not fast enough, I got in the elevator in front of me by two young people who
made it.

original: What river does Strelna River connect to?
back-translated: Which river connects the Strelna River?

Dataset Question Source Passage Source Train Dev Test
in-domain datasets

SQuAD [1] Crowdsourced Wikipedia 50,000 10,507 -
NewsQA [20] Crowdsourced News articles 50,000 4,212 -
Natural Questions [21] Search logs Wikipedia 50,000 12,836 -

out-of-domain datasets
DuoRC [22] Crowdsourced Movie reviews 127 126 1248
RACE [23] Teachers Examinations 127 128 419
Relation Extraction [24] Synthetic Wikipedia 127 128 2693

Table 4: Statistics over in- and out-of-domain Datasets. Both, Question and Passage Source refer
to the data collection method for context and answer. The numbers for Train, Dev and Test
correspond to the number of data provided within the datasets for each phase. [29]

Discriminator Architecture

D(3basic,c)

FC512-LeakyReLU0.2-
FC128-LeakyReLU0.2-Dropout0.2-
FC64-LeakyReLU0.2-Dropout0.2-
FCc

D(3small,c)

FC512-BN-LeakyReLU0.2-
FC128-BN-LeakyReLU0.2-Dropout0.2-
FC64-BN-LeakyReLU0.2-Dropout0.2-
FCc

D(3large,c)

FC1024-BN-LeakyReLU0.2-
FC256-BN-LeakyReLU0.2-Dropout0.2-
FC64-BN-LeakyReLU0.2-Dropout0.2-
FCc

D(4,c)

FC2048-BN-LeakyReLU0.2-
FC512-BN-LeakyReLU0.2-Dropout0.2-
FC256-BN-LeakyReLU0.2-Dropout0.2-
FC64-BN-LeakyReLU0.2-Dropout0.2-
FCc

Table 5: Detailed description of the architecture of the trained discriminators for domain classifica-
tion. FCn refers to a fully connected linear layer with n nodes and BN abbreviates the batchnorm
layer. c is the total number of classes that should be distinguished.

Method out-of-domain dev dataset
F1 EM Improvement in F1

baseline 48.84 33.51 0.0%
GRLA(16,3,0.01)D(3large,6) + Data Augmentation 51.64 36.65 5.73%
GRLA(16,3,0.01)D(3large,6),p=0.3 + Data Augmentation 50.15 36.39 2.68%
GRLA(16,3,0.01)D(3large,6) 49.27 34.82 0.88%
GRLA(16,3,0.1)D(3large,6) + Data Augmentation 48.67 34.29 -0.35%
GRLA(16,3,1)D(3basic,6) 48.07 33.77 -1.57%

Table 6: EM and F1 scores for the evaluations on the ood validation dataset of the GRLA experi-
ments
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Method out-of-domain dev dataset
F1 EM Improvement in F1

baseline 48.84 33.51 0.0%
ADVA(16,3,0.01)D(3large,6) 51.71 36.39 5.88%
ADVA(16,3,0.01)D(4,6) 51.08 35.60 4.59%
ADVA(32,3,0.01)D(3large,6) + FN(0,1e−5) 51.03 35.34 4.48%
ADVA(16,1,0.1)D(3basic,6) + both pretrained 50.35 37.17 3.09%
ADVA(32,3,0.01)D(3large,6) 50.30 35.60 2.99%
ADVA(16,3,0.01)D(3small,6) 50.11 36.39 2.60%
ADVA(16,3,1)D(3basic,6) 50.02 35.08 2.41%
ADVA(32,4,0.01)D(3small,6) + WS0.5 49.89 34.82 2.15%
ADVA(16,3,0.01)D(3large,6) + FNQA

(0,std/100) 49.81 34.55 1.99%
ADVA(16,3,1) + pretrained D(3basic,6) 49.39 34.03 1.12%
ADVA(32,2,0.01)D(3large,6) + FN(0,1e−5) 49.37 35.86 1.09%
ADVA(32,6,0.01)D(3small,6) + WS0.5 49.34 34.82 1.02%
ADVA(16,3,0.01)D(3large,4) + WS0.5 49.22 35.60 0.77%
ADVA(32,4,0.01)D(3large,6) 49.20 35.34 0.74%
ADVA(16,3,0.01)D(3small,4) + FN(0,std/100) 49.02 32.20 0.37%
ADVA(16,3,0.01)D(3small,6) 48.92 33.51 0.16%

ADVA(16,3,0.01)D(3large,6) + FNQA
(0,1e−5) 48.78 33.77 -0.12%

ADVA(16,3,0.01)D(3small,4) + WS0.5 48.74 34.03 -0.2%
ADVA(32,3,0.01)D(3small,6) + WS0.5 48.45 34.55 -0.8%
ADVA(16,3,0.01)D(3small,2) + WS0.5 48.14 34.03 -1.43%
ADVA(16,3,0.01)D(3small,4) 47.73 30.89 -2.27%
ADVA(16,3,0.01)D(3small,6) + FN(0,std/100) 47.40 30.89 -2.95%
ADVA(16,3,0.01)D(3small,4) + WS0.5 + FN(0,std/100) 46.68 33.25 -4.42%
ADVA(16,3,0.01)D(3small,6) + TTUR(3e−5,2e−5) 46.50 30.10 -4.79%
ADVA(16,3,0.01)D(3small,6) + TTUR(3e−4,1e−4) 42.16 26.18 -13.68%

Table 7: EM and F1 scores for the evaluations on the ood validation dataset of the ADVA experi-
ments

Method out-of-domain dev dataset
F1 EM Improvement in F1

baseline 48.84 33.51 0.0%
ALUM(1,1e−5,ood) 47.83 32.98 -2.07%
ALUM(2,1e−6,ind) 45.34 29.06 -7.17%
ALUM(1,1e−5,ind) 45.08 29.06 -7.70%
ALUM(10,1e−5,ind) 44.09 29.32 -9.76%

Table 8: EM and F1 scores for the evaluations on the ood validation dataset of the ALUM experi-
ments
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