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Abstract

In this project, we built reading comprehension (a.k.a question answering) systems
for the Stanford Question Answering Dataset (SQuAD) 2.0 focusing on two models
(BiDAF[1] and QANet[2]) and their variations for the best performance. We have
three major contributions. Firstly, we improved the baseline BiDAF model by
introducing learnable character embeddings and a co-attention fusion function.
Secondly, we implemented QANet from scratch and searched for the best model
size. Finally, we explored QANet variations and showed that using an input
embedding refine layer and a condition output layer can further improve original
QANet performance. More precisely, input embedding refine layer better refines
the word and character embeddings and condition output layer allows the answer’s
ending position prediction to be based on the starting position. Our best QANet
single model achieved 64.82 / 67.81 EM and F1 score on non-PCE leaderboard
testing sets.

1 Key Information

• TA mentor: Grace Lam

2 Introduction

Reading comprehension is a task for AI systems to understand a passage of text well enough to
answer questions about it, where the text is presented in natural language. More specifically, given
a context paragraph and a question, the system needs to either output a continuous span from the
context that answers the question or predict that the question is not answerable.

This is a challenging task that traditional machine learning approaches tend to struggle with for the
following reasons: First of all, reading comprehension requires accurate modeling of each word’s
semantics in the context and question. Without a decent understanding of words meaning, it is almost
impossible to answer any questions. Secondly, it requires the system to keep track of long term
information, as it may be necessary to combine information from different parts of the context to
figure out the answer. Finally, not all questions are answerable. The system not only has to develop a
deep understanding of the context, but needs to determine if the context and the questions are related
as well.

Stanford Question Answering Dataset (SQuAD 2.0) is one of the most common ways to determine
the performance of an AI system in reading comprehension. The dataset contains many (context,
question, answer) triples where each context is an excerpt from Wikipedia. The question is the
question to be answered based on the context. And the answer is a span from the context. Currently,
the most successful models on SQuAD 2.0 leaderboard have been based on large pre-trained language
models like ALBERT[3] with the ensemble approach.

However, in this work, we are restricted from using pre-trained models because the purpose of this
work is to improve model architecture design for SQuAD 2.0. We explored the performance of two
deep learning model architectures and their variations: Bidirectional Attention Flow (BiDAF) and
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QANet. We applied modifications to BiDAF and implemented QANet from scratch. Moreover, we
found that better refining input embeddings and conditioning end prediction on start prediction can
significantly boost QANet performance.

3 Related Work

Attention mechanism is the key idea to tackle the SQuAD challenge for both BiDAF and QANet.
BiDAF first introduced the bi-directional attention idea. It means attention should flow both ways
– from the context to the question and from the question to the context. This two-way attention
representation allows the model to better understand given context while paying attention to the
question at the same time. However, except the bi-directional attention layer, BiDAF still uses RNN
based approach (LSTM[4]) to refine the representation within context and questions as well as to
transform the bi-directional attention representation into answer prediction.

As transformer takes off, the pure attention based approach is gradually replacing recurrence in the
NLP area. QANet is a feed-forward model that consists of only convolutions and self-attention for
reading comprehension. It adopts the core bi-directional attention idea from BiDAF while replacing
all recurrence components with multi-head self-attentions and depthwise convolutions[11]. The
motivation behind the model design is that convolution captures the local structure of the text, while
self-attention learns the global interaction between each pair of words. In the original QANet paper,
the authors point out two weaknesses of the traditional RNN approach. Firstly, the sequential nature of
RNN prevents parallel computation because tokens must be fed into RNN in order. Slow training and
inference of RNN based QA model prevents the systems from being trained on large dataset or being
deployed in real-time applications. Secondly, RNNs have difficulty modeling long dependencies.
Even though GRU and LSTM solved the problem to some extent, it is still not clear if such methods
can handle complicated tasks such as reading comprehension. As a result, the QANet model surpassed
all existing approaches to SQuAD challenges at that time.

4 Approach

BiDAF baseline. The baseline model we used was the BiDAF model with 300-D pre-trained
GloVE[5] embeddings provided in the final project handout. After training, it achieved 57.65 EM
60.90 F1 on dev set.

BiDAF with character embeddings. We improved the embedding layer of the baseline model
by introducing character level embedding. Beside the 300-D GloVE vector, each word will have an
additional 200-D learnable character-level embedding concatenated to the word vector. The 200-D
character-level embedding is obtained by passing the character embedding matrix through a 1D
convolution layer and a max pooling layer. It takes maximum value of each row of this matrix to
get a fixed-size vector representation of each word. We also changed the optimizer from Adadelta to
Adam[6] for training. This improved model achieved 59.95 EM 63.25 F1 on dev set.

BiDAF with character embeddings and fusion function. Suggested by the original paper, we also
introduced a fusion function after the co-attention layer to better fuse different attention components.
Fused attention is computed as: Afuse = ReLU(W [c, a, c⊙ a, c⊙ b] + b). Fusion function further
improves model performance to 62.28 EM 65.39 F1 on dev set.

QANet. We implemented the QANet model from scratch. There are several important model
details not cover in the original QANet paper so we are trying to implement those details based
on our own understanding. We reused the context query attention layer and Highway encoder[7]
provided in the starter code. We also used a standard positional encoding function from official
pytorch documentation [12]. Everything else was implemented ourselves using pytorch standard
library. Figure 1 has the overall model structure and the following are our implementation details:

1. Input Embedding Layer. We reused the same embedding layer from BiDAF as described above.
The output of a given word x from this layer is a 500-D word embedding and character embedding
concatenation [xw;xc].
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2. Embedding Encoder Layer. The core building block of QANet is encoder block. It consists of a
sinusoidal positional encoding layer, followed by X convolution layers, a self multi-head attention
layer using 8 heads, and a feed-forward layer as shown in the right part of Figure 1. Except the
positional encoding, all the layers within the encode block has residual connections. The self attention
layer and the feed-forward layer are standard transformer[8] building blocks. The convolution
layer is kind of special. We adopted the idea from the original paper and used depthwise separable
convolutions for memory efficiency. This layer uses one encode block with 4 convolution layers. One
thing to notice is that the input dimension to this layer is 500. Before passing through the encoder
block, We added a projection layer to map the 500 dimensional input to 128 (default hidden size)
dimensions.

Figure 1: QANet architecture

3. Context-Query Attention Layer. This layer is the heart of the QANet model. We used the
bidirectional attention flow idea from BiDaF paper. The context-to-query attention layer works
as follows: It first computes a similarity matrix S ∈ Rn×m for each pair of words in context and
question using similarity function: f(q, c) = W0[q, c, q ⊙ c]

To compute context to question attention, this layer normalizes each row of S by applying the softmax
function, getting a matrix S. And the context-to-query attention is computed as A = S ·QT ∈ Rn×d.

To compute question to context attention, this layer computes the column normalized matrix S of S

by softmax function, and the query-to-context attention is B = S · S
T
· CT . Finally, the output of

this layer is a concatenation of 4 parts [c, a, c⊙ a, c⊙ b].

4. Model Encoder Layers. There are three model encoder layers stacked together and weights are
shared among the 3 repetitions. Each layer is very similar to the embedding encoder layer except
that it uses 7 encoder blocks, with each containing 2 convolutions. The input to this layer is 4× 128
because the previous layer has four parts concatenated together. Once again, before passing through
the encoder block, We added a projection layer to project the input to 128 dimensions.

5. Output layer. This layer predicts the start and end position of the answer as:
Pstart = softmax(W1[M0;M1]), Pend = softmax(W2[M0;M2]), where W1 and W2 are two
trainable linear transformations that maps the embedding to a single value and M0, M1, M2 are
respectively the outputs of the three model encoders.

Finally, the loss function is a standard average negative log-likelihood over all the training examples:

L = (−1/N)
N∑
i=1

[log(p1
y1
i
) + log(p2

y2
i
)] where y1i and y2i are respectively the ground truth starting

and ending position of example i. Regular QANet achieved 63.25 EM 66.63 F1 on dev set.

QANet Variations. Besides the original QANet architecture, we explored several model variants
for better performance. The detailed results of these variations are in the Experiments section.
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1. Input embedding layer with convolution and linear projections. In the original paper, it is not
clear how the 300-D word embedding and 200-D character embedding are concatenated and projected
to the 128-D hidden size. The BiDAF starter code directly projects the concatenated embedding
through a linear layer. Worrying about losing information with a single linear projection, we added
two additional 1D convolutions while adopting the linear projection from the starter code (Figure 2).

Figure 2: Improved Input Embedding Layer

The first convolution refines the 200-D character embedding into 128-D hidden size and the second
convolution further refines the 256-D concatenated embedding into the final 128-D representation.
We are inspired by the BiDAF fusion function when designing this layer. It allows word embedding
and character embedding to first refine themselves and then it fuses the embeddings together. This
original variation gives us a performance boost (+0.8 EM, +0.5 F1).

2. Output layer with conditioning end prediction on start prediction. In the QANet paper, the
start and end positions (Pstart, Pend) are predicted independently. The Pend prediction only depends
on the hidden states M0 and M2 from the first and third encoder layers. However, intuitively, it’s
helpful to know where the answer starts when predicting the end of the answer. We designed the new
output layer with this conditioning (Figure 3).

Figure 3: Improved Output Layer

The Pstart is computed the same as before, the calculations for Pend are as follows:

A = [M0;M1] B = [M0;M2]

Aweight = W0A B2 = ReLU(W1B)

Aweighted = A ◦Aweight

A2 = ReLU(W2Aweighted)

A′
2 = PositionEncoding(A2)

A3 = ReLU(W3A
′
2)

pend = softmax(W4[A3;B2])

M0,M1,M2 ∈ Rh×l are the hidden states from the stacked model encoder layers and
W0,W4 ∈ R1×2h,W1,W2 ∈ Rh×2h and W3 ∈ Rh×h are learnable parameters. We first compute
the starting position’s weight distribution Aweight as usual. Then, we compute an element-wise
product between A and Aweight using broadcasting to get Aweighted. Words in Aweighted with
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higher probability of being the answer start will be more activated than others. Next, the Aweighted is
sent through a fully connected layer and a position encoding[8] function for position information
hardening. Finally, the output is passed through another fully connected layer and used as additional
information when predicting the end position. This improved output layer gave us a remarkable
performance boost (+1.5EM, +1.5 F1).

3. Model encoder layer with non-shared weights. Based on the paper, weights are shared between
each of the 3 repetitions of the model encoder. We explored the idea of not sharing weights and letting
each encoder layer learn on its own. We observed that the output from the second encoder layer is
used for pstart prediction and the output from the third encoder layer is used for pend prediction.
Intuitively, the second and third encoder layers should have different weights for predicting pstart
and pend separately. Unfortunately, not sharing weights hurts the performance (-2.7 EM, -2.8F1,
early stop) by a lot. We believe sharing weights help performance because it allows the encoder
layers to encode information more consistently, the real start/end position prediction happens in the
linear sublayer within the output layer.

4. Modified feed forward layers. The original paper didn’t explain how the feed forward layers are
configured. Given QANet adopts transformer architecture heavily, our initial assumption was that it
uses the same parameters as the transformer: FF (x) = relu(xW1 + b1)W2 + b2.
Specifically, W1 ∈ R4h×h and W2 ∈ Rh×4h. The dimension of input and output is h = 128, and
the inner-layer has dimension dff = 4 × h = 512. However, we discovered that using the same
dimension for input, output and inner-layer gives us better performance (+1.0 EM, +1.0 F1). Our
hypothesis is that given FF layer is repeated many times within QANet, using the 4h inner dimension
will scale up the model a lot. Unlike the original paper, we didn’t apply data augmentation and the
training set is relatively small, using big FF layer may cause the model to under fit. Consequently, we
used W1,W2 ∈ Rh×h for all FF layers in all our experiments.

5. Stochastic Dropout. The paper mentioned using stochastic dropout[9] to shut off sublayers with
an encoder block for better regularization but didn’t explain in detail. We implemented stochastic
dropout based on our understanding. Within an encoder block there are N convolution sublayers
followed by the self-attention and the feed forward sublayers. In total, there are L = 2 + N sublayers in
a given block. Then, within each individual block each sublayer "survives" according to the following
probability equation: pl = 1− l

L (1− pL)
where pL = 0.9 is the survival probability of the final layer. We didn’t measure the actual performance
gain but it is clear that the model’s over-fitting tendency during training is mitigated by applying
Stochastic Dropout. As a result, we applied Stochastic Dropout for all the experiments.

6. Scale up / down QANet. We experimented four scaled versioned of the QANet to observe how
model size affects performance. The first version, QANet small, contains 3 encoder blocks rather
than 7 with single head attention. The second version, QANet medium, contains 5 encoder blocks
instead of 7 with 4 attention heads . The third version, QANet large, increases the number of encoder
blocks to 9 with 8 attention heads. Finally, QANet large (2) uses the same configuration but with
one additional encoder block in the embedding encoder layer and 160 as hidden size instead of 128.
Please see next section for their performances.

7. Ensemble model. Due to the time constraint as well as the unexpectedly long training time for
QANet, we only briefly touched on ensemble model. We assemble 3 models: BiDAF with character
embedding and fusion function, regular QANet and QANet with improved embedding and output
layers. The ensemble method is majority voting for start and end positions separately where all
models are weighted equally. This ensemble model gives a slight performance boost (+0.6 EM, +0.6
F1).

5 Experiments

5.1 Data

We only used the SQuAD 2.0 dataset provided by the default project setup.py script. It has three
splits: train, dev and test. The train set consists of roughly 130K examples in the official SQUAD 2.0
training set. The dev set and test set are roughly equally sized with about 5.5K examples each.
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Model Name Dev F1 Dev
EM

Dev
AvNA

Test F1 Test
EM

BiDAF
BiDAF (Baseline) 60.90 57.65 68.14 - -
BiDAF + Char Embedding 63.25 59.97 70.87 - -
BiDAF + Char Embedding + Fusion 65.39 62.28 71.52 - -

Scaled QANet
QANet small (3 blocks, single head) 64.80 61.35 71.11 - -
QANet medium (5 blocks, 4 heads) 65.39 61.5 72.09 - -
QANet (7 blocks, 8 heads) 66.63 63.25 72.89 65.11 61.52
QANet large (9 blocks, 8 heads) 66.15 62.87 71.18 - -
QANet large (2) (160 hidden size) 65.16 61.86 - - -

Improved QANet
QANet + Condition Output Layer 68.10 64.73 73.70 - -
QANet + Input Emb Refine Layer + Condi-
tion Output Layer

68.61 65.54 73.90 67.81 64.82

Ensemble Model
Bidaf + QANet + QANet Improved 69.26 66.21 74.26 - -

Table 1: Performance of experimented models

5.2 Evaluation method

Different models’ performances are primarily evaluated based on the Exact Match (EM) score, F1
score as well as Answer versus No Answer (AvNA) score.

5.3 Experimental details

BiDAF We trained the baseline BiDAF model with no modification using default parameters as
described in the original BiDAF paper.
We trained modified BiDAF models with 200-D character embedding using Adam optimizer with
β1 = 0.8, β2 = 0.999 and ϵ = 10−7. We used hidden state size of 128, batch size of 32, EMA decay
of 0.999, dropout rate of 0.2, and learning rate of 0.001.
We trained the modified BiDAF with character embedding and fusion function using the same
configuration.

QANet For QANet and its variations, We use Adam optimizer with β1 = 0.8, β2 = 0.999 and
ϵ = 10−7. Learning rate is inverse-exponential in first 1000 steps and constant at 0.001 afterwards.
We used batch size of 32 or 16, EMA decay of 0.9999, dropout rate of 0.1, character embedding
dropout rate of 0.05 and L2 weight decay 3× 10−7. Except the QANet large (2) (hidden size 160),
all other models use hidden size of 128. The batch size for training BiDAF is 32 but we have to cut
the batch size to 16 for some QANet variations to fit into GPU memory.
As described in the Approach sections, all the experiment QANet models adopted Stochastic Dropout
with pL = 0.9 and are using W1,W2 ∈ Rh×h for all feed forward layers.

5.4 Results

Table 1 summarizes all our model experiment results on the non-PCE leaderboard.

BiDAF Introducing learnable 200-D character embedding greatly improved the BiDAF performance.
We believe character level embedding allows the model to better capture the the meaning of words
and subwords. Consequently, this leads to better prediction of the answer. Adding fusion further
improves the performance. Rather than simply concatenating bi-direction attentions, the model can
better fuse the attentions after the attention layer, which can be useful when predicting answers. The
improvement to BiDAF aligns with our expectation.

Scaled QANet QANet in general exceeds the best BiDAF suggesting it is a more powerful model
design. Surprisingly, non-of the scaled QANet out performs the regular QANet indicating that the
original model size is at least at local optimal. This observation is a bit counterintuitive because
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according to scaling law[10], scaling up the model should help with performance. Our hypothesis is
that the bottleneck is not the model size but the training data size or the model architecture. Blindly
scaling up QANet without more training data or more helpful features (e.g. better embedding, output
conditioning) will only make the model underfitting.

Improved QANet Among all our single models, QANet with input embedding refine layer and
condition output layer performs the best (F1:67.81 EM:64.82 on test set). This observation is
sensible because refining the input embedding can better represent each word and can provide more
information for answer prediction. Also, condition the end prediction based on the start helps the
performance a lot. Knowing the answer start word and position will lead to a more reasonable end
word prediction.

Training time We observed a much longer training time for regular QANet (15+ hours on Azure
NC6) compared with BiDAF (3 hours on Azure NC6), which contradicts the QANet paper conclusion
that QANet training speed is 3x to 13x faster. We believe hardware is the limitation. QANet is a much
larger model than BiDAF and Azure NC6 instance can barely fit all parameters in GPU memory
leaving almost no space for loading large training batches. As a consequence, we cannot benefit from
the parallel computing when training QANet.

6 Analysis

We examined the performance of the best single model to understand the strengths and limitations
of the improved QANet. In dev set, there are 5951 questions in total and they are classified by
the leading question words. If a question is not using any leading question words, it is classified
as other category. Number breakdown: what = 2759, when = 440, where = 231, who = 601,
which = 146, how = 525, why = 824, whose = 24 and other = 1131.

Figure 4: Question categories breakdown

Performance by question categories We first examined the model performance by different question
categories. We observed relatively consistent performance across all categories (61.9-79.1 EM,
66.2-79.17 F1). The top 3 model performing categories are "Whose", "When" and "Who". The
model achieves the highest score (79.17 EM, 79.17 F1) on "Whose" category, most likely due to this
category has the smallest fractions (0.4% of all questions) and "Whose" is a strong indicator for a
name. The model also performs well on "When" (EM: 74.55, F1: 75.26) and "Who" (EM: 69.87,
F1: 71.36), which is sensible since these two questions words suggest that the answer should be a
time or a person’s name. The 3 least performing categories are "Where", "How" and "Why". "How"
(EM: 63.24, F1: 68.04) and "Why" (EM: 63.10, F1: 68.90) are naturally more difficult to answer
because these categories require reasoning and more complex learning. Unexpectedly, "Where"
(EM: 61.09 F1: 66.23) is the worst performing category. Conceptually, "where" questions should be
relatively easy to answer.

Attention analysis for "Where" To explain why the model has low performance on "Where"
questions and to better understand attention mechanisms, we performed additional attention analysis
on 20 wrongly predicted examples. After analysis, We realized that majority(16 out of 20) wrongly
predicated examples are due to the model is trying to answer an unanswerable question. Taking a
deeper look, the context of "Where" questions usually contains more than one locations and other
important information. But the model tends to pay too much attentions solely on locations while
ignoring other important information or paying attention to wrong places. For example:
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context: Tamara de Lempicka was a famous artist born in Warsaw. She was born Maria Górska
in Warsaw to wealthy parents and in 1916 married a Polish lawyer Tadeusz Łempicki. Better than
anyone else she represented the Art Deco style in painting and art. Nathan Alterman, the Israeli poet,
was born in Warsaw, as was Moshe Vilenski, the Israeli composer, lyricist, and pianist, who studied
music at the Warsaw Conservatory. Warsaw was the beloved city of Isaac Bashevis Singer, which he
described in many of his novels: Warsaw has just now been destroyed. No one will ever see the
Warsaw I knew. Let me just write about it. Let this Warsaw not disappear forever, he commented.

question: Where was the famous artist Tamara de Maria born?

answer: []
prediction: Warsaw

Table 2: Example uuid: aa91c5d46b54f54beb667febc

Figure 5: Co-attention for example uuid: aa91c5d46b54f54beb667febc

In the above example, it is important to realize that Tamara de Maria is never mentioned in the
context so the question is not answerable. However, the attention map shows that our model is paying
attention to various location names as well as the wrong person (Nathan Alterman). Our theory is
that maybe the word embedding for person’s name is not strong enough for the model to realize the
person in the context and question are very different. Also, since "Where" is a strong signal for a
location, the model is overly confident to predict the location mentioned multiple times in the context
to be the answer.

After analyzing, we summarized that the model struggles mainly under two scenarios. Firstly, when
the question is asking a place associated with a person or a group (e.g. the question asks person
A’s birth place but the context only mentions person B’s birth place), the model sometimes cannot
distinguish different subjects resulting in answering an unanswerable questions.
Secondly, on one hand, when the same location appears multiple times in the context, the model
tends to predict that location as the answer. On the other hand, when there are multiple locations in
the context, the model sometimes don’t know which location to pay more attention to (Appendix for
examples).
We believe that two potential ways to improve our model are either adding more "hard" training
examples that the model struggles with to force the model learning or using pre-trained contextual
embeddings that can better capture complex words relationships.

7 Conclusion

In conclusion, we improved baseline BiDAF with character embedding and fusion function. We
presented an original implementation of QANet that achieves better results on the SQUAD 2.0
than BiDAF. We concluded that increasing or decreasing the model size does not help with the
model’s performance. Additionally, we improved the QANet model by adding refining to the input
embedding layer and adding conditioning to the output layer. Finally, we conducted analysis on
attention mechanism and understood why the model has relatively low performance under certain
scenarios. Due to time constraint, we didn’t explore ensemble model a lot. In the future, we would
like to see how ensemble model can better improve performance.
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9 Appendix

More wrongly predicted examples:

context: Their local rivals, Polonia Warsaw, have significantly fewer supporters, yet they managed to
win Ekstraklasa Championship in 2000. They also won the country’s championship in 1946, and won
the cup twice as well. Polonia’s home venue is located at Konwiktorska Street, a ten-minute walk
north from the Old Town. Polonia was relegated from the country’s top flight in 2013 because of
their disastrous financial situation. They are now playing in the 4th league (5th tier in Poland) -the
bottom professional league in the National – Polish Football Association (PZPN) structure.
question: Where is Ekstraklasa’s home venue located?

answer: []
prediction: Konwiktorska Street

Table 3: Example uuid: aa91c5d46b54f54beb667febc
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Figure 6: Example uuid: f7819f3c16cbb7ff50abe1c1d. Too many locations in context

context: Both before and after the 1708 passage of the Foreign Protestants Naturalization Act,
an estimated 50,000 Protestant Walloons and Huguenots fled to England, with many moving on
to Ireland and elsewhere. In relative terms, this was one of the largest waves of immigration ever
of a single ethnic community to Britain. Andrew Lortie (born André Lortie), a leading Huguenot
theologian and writer who led the exiled community in London, became known for articulating their
criticism of the Pope and the doctrine of transubstantiation during Mass.
question: Where was Andrew Lortie originally from?

answer: []
prediction: London

Table 4: Example uuid: 407e7e1eeeda0f3acd8cbc3dd

context: The origin of the legendary figure is not fully known. The best-known legend, by Artur
Oppman, is that long ago two of Triton’s daughters set out on a journey through the depths of the
oceans and seas. One of them decided to stay on the coast of Denmark and can be seen sitting at the
entrance to the port of Copenhagen. The second mermaid reached the mouth of the Vistula River and
plunged into its waters. She stopped to rest on a sandy beach by the village of Warszowa, where
fishermen came to admire her beauty and listen to her beautiful voice. A greedy merchant also heard
her songs; he followed the fishermen and captured the mermaid.
question: Where did one of Oppman’s daughters decide she wanted to hang out and stay?

answer: []
prediction: on the coast of Denmark

Table 5: Example uuid: 68cf05f67fd29c6f129fe2fb9
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