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Abstract

The Stanford Question Answering Dataset (SQuAD2.0) [1] is a reading compre-
hension dataset of question-passage pairs, where the answer to the question is some
segment of the passage. In this paper, we use the Bidirectional Attention Flow
(BiDAF) model [2] for question answering. We augment the BiDAF model with
both gated attention and self-matching attention, as well as character embeddings
as outlined in R-NET [3]. We experimented with different variations of character
embeddings as well as hyperparameters for finetuning. We found the most optimal
model was with gated-self-attention, 2 CNN character embeddings with kernal
sizes 3 and 5, and with batch size of 72 and dropout of 0.1 throughout the model.
This model achieved F1: 65.869 and EM: 62.367 on the test set.
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2 Introduction

Question answering is a central task in the application of deep learning to natural language processing
models. For this task, models are fed some passage, known as the context, as well as some question,
and must output some answer to this question, which can be found in the context. Question answering
has been a prevalent area of natural language processing and deep learning research because question
answering models necessitate the ability to process and formulate some sort of understanding of a
given set of text. Outside of furthering potential knowledge in the natural language processing field,
such models have applications to providing information to humans.

One dataset that has been used to evaluate question answering techniques is the Stanford Question
Answering Dataset (SQuAD2.0) [1]. SQuAD2.0 consists of approximately 150,000 context-question-
answer triplets, with the contexts drawn from Wikipedia and the question-answer pairs drawn from
Amazon Mechanical Turk. For this dataset, the desired answer is certain span of words in the given
context, so the question answering model is only expected to output a start word and end word of the
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context. Notably, some questions in SQuAD 2.0 are "unanswerable": their answers cannot be found
within the given context and the model is expected to indicate that this is so.

This paper presents our question answering model which manages to achieve a strong performance
on SQuAD2.0 without the use of any pretrained transformers. The initial framework for our model is
a Bidirectional Attention Flow (BiDAF) network [2], as outlined by Seo et al. To improve upon this
baseline, we used both the self-matching attention and gated attention methods outlined in R-Net
[3]. Additionally, we implemented character embeddings, which were obtained via convolutional
neural networks. In testing, the best result of the model was an EM score of 62.367 and an F1 score
of 65.869 on the test set , one of the strongest performances of any model that didn’t use pretrained
transformers or QANet architecture.

3 Related Work

The framework model and primary baseline for comparison we used was the Bidirectional Attention
Flow network [2]. Initially introduced in 2016, this approach had three main contributions to machine
comprehension attention models at the time. First, previous attention methods had encapsulated
information from the context into a fixed size vector, while BiDAF does not fix this size and instead
allows for vectors at all time steps and representations to "flow" into the next layer. Next, while
most prior approaches calculated attention weights at each time step based on the vector at the
previous time step, Seo et al. chose to design the attention to be temporally independent. Finally, they
incorporated bidirectional attention from both context to query and query to context whereas previous
models were only unidirectional. These modifications were hypothesized to improve performance
via reducing information loss from early summarization as well as effective division of labor of
corresponding tasks between the attention layer and the modeling layer. On the original SQuAD
dataset, BiDAF managed to accrue single model scores of 68.0 and 77.3 and ensemble scores of 73.3
and 81.1 for the EM and F1 metrics, respectively.

Our approach incorporates the developments made in R-NET [3], a question answering neural
networks model published in the following year. The R-NET model consists of two novel innovations.
The first is the use of a gated attention recurrent network, which simply uses a gate to augment
the input to the recurrent neural network (RNN) in that layer. This allows the model to pick out
which parts of the context passage are most relevant to answering the given question. The second
contribution is the self matching attention layer, which is implemented by having a gated attention
bidirectional RNN run from the context to itself. The effect of this addition is to allow the passage
representation to draw context clues and evidence from the entire passage rather than only from a
narrow window. Together these modifications allowed R-NET to achieve single model scores of 72.3
and 80.7 and ensemble scores of 76.9 and 84.0 on the original SQuAD dataset, for the EM and F1
metrics respectively. Notably, these scores strictly outperform those achieved by BiDAF.

This paper uses character embeddings as well as R-NET’s self-matching and gated attention to im-
prove upon the starting BiDAF model. This is generally accepted to be the best possible performance
of a model that does not utilize pretrained transformers or QANet architecture. Rather than make
further improvement upon BiDAF + R-NET, we experiment and analyze the effects of the gated
RNNs, kernel size and number of convolutional neural networks (CNNs) for character embeddings,
and batch size and dropout on the effective performance of the model.

4 Approach

4.1 Baselines

We used the BiDAF model [2] with no modifications as the baseline model. We used the model
provided by the sample code. We trained and evaluated this model on the dev set on which we got
scores of F1: 60.559 EM: 57.049.

4.2 Self Attention

Our first approach to improve the BiDAF model was adding self-matching attention from the R-Net
paper. This self attention allows the passage to be more aware of the context outside of its current
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window. The attention is calculated as follows from the R-Net paper:

stj = vT tanh(WP
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We take our context ct and question-to-context embedding h˜ and pass it through two distinct linear
layers with no bias. We then apply the tanh activation and pass the result through another linear
layer which has input size of the hidden size dimension and output size of 1. This produces st which
represents the attention weights for a batch of sentences. We then take the Softmax over the sentence
lengths to obtain a probability distribution of the attention weights, ati. Finally, we take our attention
distribution and apply it to the context, in this case [vPt , ct] where vPt or h˜ is the query-to-context
matrix. Our final attention output from self attention is self_att([uP

t , ct])

4.3 Gated Attention

Our second approach to improving the BiDAF model was adding gated attention from the R-Net
paper [3] to the BiDAF attention layer. The structure of the R-Net model is different than BiDAF. In
the BiDAF model, the attention layer outputs [h;u˜;h ◦ u˜;h ◦ h˜] where h is the context and u˜
and h˜ are the context-to-query and query-to-context attention matrices respectively. In the R-Net
paper, the attention output is g ⊙ [uP

t , ct] where uP
t is the context and ct is the query-to-context

attention matrix and g is the gate. However, instead of taking the gate over [uP
t , ct], we apply it later

to the entire attention output. We take self_att([uP
t , ct]) and we concatenate the other attention

matrices from the BiDAF model, namely [a;h ◦ u˜;h ◦ h˜]. In total, we are outputting an attention
of [self_att([uP

t , ct]); a;h ◦ u˜;h ◦ h˜]. The final step we take is applying a gate over this attention
output, specifically the same gate, g as in the R-Net paper, a linear layer with no bias with a Sigmoid
activation function applied over it.

4.4 Character Embeddings

In addition to tackling attention, we implemented character embeddings as according to the BiDAF
model. These character level embeddings are obtained using Convolutional Neural Networks (CNN).
The input size of the CNN is the size of the char embedding input vector, and the output size is the
hidden size. We max pool over the maximum number of characters in a word. Then, we apply a tanh
activation function after the CNN layer and the max pooling step to provide some non-linearity. This
output is then concatenated with the word embeddings, and then the dimensions are projected back
down to the size of the word embeddings, and activated again with tanh.

Additionally, we added a more CNNs with a different kernel sizes in order to make the
character embeddings more robust. The different kernal sizes represent different sized morphemes
which we try to capture in the model.

4.5 Gated Recurrent Unit (GRU)

Like the R-Net paper, we also switched from an LSTM based model to using GRU. Making this
choice early experimenting with our model, allowed us to reduce the training time significantly from
3 hours to 2 hours.
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4.6 Finalized Model

Figure 1: Model Diagram

5 Experiments

5.1 Data

The dataset that we are using is the Stanford Question Answering Dataset (SQuAD2.0) [1], which is
a set of questions from Wikipedia articles where the answer is located within the text.

5.2 Evaluation method

The accuracy of the model on the SQuAD2.0 dev set was evaluated based on the exact match (EM)
and F1 scores. The EM score is a binary metric that awards a score of 100% if the model’s given
answer exactly matches the desired answer, and 0% otherwise. The F1 score is a less strict metric
that can be calculated as the harmonic mean of precision and recall. Precision is defined as the
binary measure of whether the given answer is a subset of the desired answer, and recall is defined as
the percentage of the desired answer’s words that are present in the given answer. The model was
evaluated on the dev and test set provided for the SQuAD2.0 dataset with these metrics.

5.3 Experimental details

All experiments were run on a Microsoft Azure VM. The hyperparameters used were the default
values, with a hidden size of 100, a learning rate of 0.5, and the number of epochs as 30 with 50000
eval steps trained over the course of ∼2-3 hours each on the VM.

5.4 Results
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Table 1: F1 and EM Results of Large Model Variations

Model Description Dev Set F1 Dev Set EM Test Set F1 Test Set EM
Baseline 60.559 57.049 60.811 57.143

+ GRU + Gated Self Attn 62.90 59.40 - -
+ 1 CNN Char Emb (Kernal 3) 65.55 62.51 - -
+ 2 CNN Char Emb (Kernals 2 & 3) 65.9 62.78 - -
+ 2 CNN Char Emb (Kernals 3 & 5) 66.05 62.95 - -

+ Increase batch size 64 -> 72 66.56 63.32 64.304 60.845
+ Decrease dropout probability to 0.1 67.15 63.80 65.869 62.367
+ Decrease dropout probability to 0 66.17 62.31 - -

+ Increase batch size 72 -> 80 65.93 62.98 - -
+ 2 CNN Char Emb (Kernals 2 & 5) 65.38 62.07 - -
+ 3 CNN Char Emb (Kernals 2 & 3 & 5) 65.20 61.72 - -

The best model was adding Gated Self Attention and 2 CNNs for character embeddings, specifically
with kernal sizes 3 and 5, batch size of 72, and dropout of 0.1. The results are much better than we
expected. We were surprised that adding 1 layer of character embeddings had a larger impact on the
model than gated self attention. We hypothesize that this is because adding character embeddings
helps the model understand morphenes in the English language which helps the model understand the
question and context better than having a larger window to answer the question from self-attention.

5.5 Detailed Experiments

Figure 2: Bar graph of model performance when varying number of CNNs for Character Embeddings

The optimal kernal sizes were kernals 3 and 5. We seem to lose performance when adding 3 CNNs
for character embeddings. This is likely because we are projecting down the entire concatenation
of character and word embeddings to the same dimensions of the word embeddings. Therefore, the
3rd character embedding matrix probably caused the word embeddings to have less representation
which led to decreased performance. We want to strike a balance between adding more kernal sizes
to represent different sub-word lengths but also make sure that we aren’t overpowering the word
embeddings.
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Figure 3: Bar graph of model performance when varying kernal sizes for 2 CNNs in Character
Embeddings

We took the best model from the previous experiment and tried different kernal sizes used in the
character embedding layer. From the results, the model with kernals 3 and 5 performed the best over
the others. Something interesting we found was that kernals 2 and 5 did worse than the model with
kernals 2 and 3. We would have thought that having kernal sizes too similar would lead to some
redudancy over the sub-words that are being embedded, but it turns out that there might be more
value to having 3 has a kernal size since it can embed a lot of common 3-letter prefixes and suffixes
that is more valuable than a kernal size of 5.

(a) Varying Batch Size (b) Varying Dropout

The batch size determines how much data is processed by the model before a parameter update. The
more data we can pass in, the better performance on the training and validation set, but when the
batch size is increased too much, we can lose performance on our validation set because we’ve
overfitted on the train data. This trend is seen here where we get some improvement for increasing
the batch size, but passed a batch size of 72, it seems we lose performance on the validation set. We
also experimented with the dropout probability of the model.

Dropout is where we set certain parts of the model to 0 in order to build more robust con-
nections between layers of the model. We found a similar trend to batch size with dropout where
there is an optimum probability of dropout of 0.1 where we can maximize our validation and test set
performance.
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6 Analysis

Upon examination of specific outputs of the model to questions, we found the following characteris-
tics.

First, we can categorize the questions into two large categories, one where the question is
phrased in a more standard and grammatically simple manner, and another where the format of the
question is more complex. For the sake of the analysis, question-word-first questions are defined as
questions in the form where "what/when/why/where/how" comes at the start of the sentence, such as
"what year did Barak Obama become President?" Subject-first questions are when the question-word
is not at the beginning of the sentence, such as "Barak Obama became president in what year?"

Between these two types of questions, we observed that our model struggled significantly
more with subject-first questions. More specifically, they were more likely to predict "N/A" despite
there being an available answer. On the other hand, our model was able to more accurately predict
the correct answer for question-word-first questions. Additionally, when there is no available answer
in the context (when the correct answer is "N/A"), the model is more likely to erroneously make a
false prediction for question-word-first questions compared to subject-first questions. We hypothesize
that because the question-word-first questions are easier to predict in general, there is more potential
for overconfidence in the predictions by the model.

Next, when comparing the outputs of the baseline model with our finalized model, we
found that our model was stronger at correctly predicting "N/A" when there is no available answer.
Our model was also able to match shorter and more concise phrases. For example, one question
answer pair was as follows:

Question: Why did the oil ministers agree to a cut in oil production?
Answer: until their economic and political objectives were met

The answers predicted by the baseline and our model were as follows:

Baseline prediction: five percent monthly increments until their economic and
political objectives were met
Model prediction: until their economic and political objectives were met

Our model was able to more accurately recognize the section of the context that matched what the
question was looking for. We hypothesize that this is due to the addition of self-attention that helps
the model interpret the context more accurately.

As a whole, we observed that both the baseline and our model generally struggled more
with questions involving "why." In many instances, the predicted output would be "N/A" despite
there being an available answer. This is likely due to the fact that "why"-questions are typically less
straightforward and leave more up to the interpretation by the model. One such example is as follows:

Question: According to Lenin why must capitalistic countries have an imperialistic
policy?
Answer: to constantly expand investment
Baseline prediction: N/A
Model prediction: N/A

For this question specifically, the fact that the question-word is not at the front could have made it
even more difficult for the model to accurately predict.

Finally, we noticed that the models also generally performed well with questions that ex-
pected numbers as the answer, which could be due to the fact that numbers are easy to understand
and interpret within the paragraph of context.

Overall, the our model showed concrete improvement over the baseline, and we have docu-
mented several areas that could be targeted for improvement.
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7 Conclusion

Ultimately, we successfully implemented a model with character embeddings, as well as the self-
matching attention and gated attention from R-NET, to achieve F1 and EM scores of 65.869 and
62.367 respectively on the test set. This outperformed the baseline BiDAF model scores of 60.811
and 57.143, for an increase of about 5 percent.

In addition to improving the model’s scores, we were able to show that modifying certain characteris-
tics of the system induced changes in the performance. Properties such as the number of CNNs used
for the character embeddings, the CNN kernel sizes, batch size, and dropout probability all affected
the accuracy of the model. In the end, of the ones we tested we found that using a batch size of 72
and 2 CNNs with kernel sizes of 3 and 5 maximized our performance.

The performance for this model is limited by nature of not utilizing QANet architecture or pretrained
transformers. Even though we believe the performance of our model is close to the ceiling for its
type, there are some possible further optimizations to be done. It is very possible that the kernel sizes,
batch sizes, and dropout rates can be finetuned further for some slight improvements in performance.
Another consideration for future work is the possible implementation of pointer networks, which
modifies the neural attention mechanism to be used as a pointer to an input element instead of weights
for the encoder outputs. Pointer networks can allow the network to learn structures where output
sequence elements correspond to positions in the input sequence.
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