
SQuAD-ing Up as a Winning Team: Character
Embeddings and Dynamic Coattention Networks

Stanford CS224N Default Project - IID SQuAD Track | Mentor: Ethan Chi

Kevin Guo
Department of Computer Science

Stanford University
kyguo@stanford.edu

Brandon Kang
Department of Computer Science

Stanford University
bmkang@stanford.edu

Abstract

Recent developments in the Question Answering space, a large interest in NLP,
have been facilitated by both the advancement of deep learning models as well as
more robust datasets, such as the Stanford Question Answering Dataset (SQuAD)
[1]. In this paper, we seek to improve upon the provided baseline Bi-directional
Attention Flow (BiDAF) model that only includes word-level embeddings. We first
add character-level embeddings in addition to the provided word-level embeddings
and implement the coattention mechanism described by Xiong et al. to replace the
attention layer in BIDAF [2] [3]. We found that adding character-level embeddings
as an input exceeds baseline performance. However, the combination of the
Dynamic Coattention implementation and character embeddings only improved
on the F1 scoring while scoring lower on the EM score when using the default
hyperparameters. After model testing and a hyperparameter search, the Coattention-
Layer BIDAF model with both char-level embeddings and word-level embeddings
had the best performance with an EM score of 59.138 and an F1 score of 62.704
on the test set when using a learning rate of 0.6 and a dropout probability of 0.15.

1 Introduction

Question Answering is a task in the Natural Language Processing community that has received a lot
of attention due to its broad range of implications for issues ranging from web search to data analytics.
The task involves a model answering a question about a given paragraph and explores a machine’s
ability to accurately understand a context-query pair. Question Answering has further increase in
popularity due in part to the robustness and reasoning-based nature of the SQuAD dataset [1].

In this paper, we implement multiple features within the Bi-directional Attention Flow (BiDAF)
model. We first build upon the given baseline BiDAF model that contains only word-level embeddings
by incorporating the character-level embeddings as described in Seo et al [2]. We hypothesize that
this improves the performance of the baseline since the character-level embedding mechanism allows
for the handling of out-of-vocabulary words - words that are not present in the GloVe vocabulary.
We additionally implement Dynamic Coattention and create a model combining character-level
embeddings with the Dynamic Coattention Network described in Xiong et al [3]. We do this by
substituting coattention into the baseline’s Attention Layer which further adds robustness to the
model.

We measure the success of our implementations using EM and F1 scores and further experiment
upon our models with hyperparameter tuning experiments. We find our model performs best with the
Coattention + Character-Level Embeddings configuration with a learning rate of 0.6 and a dropout
probability of 0.15 and associated EM and F1 scores of 59.138 and 62.704 on the test set, respectively.

Stanford CS224N Natural Language Processing with Deep Learning



2 Related Work

2.1 BiDAF

Our work and baseline draw upon the Bi-Directional Attention Flow (BiDAF) network introduced by
Seo et al [2]. The model employs character-level, word-level, and contextual embeddings alongside
a multi-stage architecture for modeling the representations of context paragraphs. The model uses
the bi-directional attention flow mechanism which improves upon information loss and memory
metrics. This is done through attention being computed for every time stop and allowing the attended
vector to flow through to the modeling layer, reducing information loss from early summarization.
The memory-less structure also gives the mechanism an advantage as attention at each time step is
not dependent on that of the previous time step. The baseline employed in our work is a simplified
version with only the word-level embeddings provided and we build upon the code provided for the
construction of this baseline.

2.2 Dynamic Coattention Networks

Dynamic Coattention Networks are end-to-end neural network architectures that have also been a
relevant development in the Question Answering space and was first proposed by Xiong et al [3].
The novelty of this model is derived from its usage of co-dependent representations of the question
and the document captured by a coattentive encoder. The model also includes a dynamic pointing
decoder that alternates between the start and end of the answer span. The proposed model leads to
improved EM and F1 scores which is based upon the model’s ability to recover from local maxima
that may correspond to incorrect answers. We draw upon this work to implement a Coattention Layer
that we substitute in place of the baseline’s basic Attention Layer.

3 Approach

We were provided a default baseline BiDAF model that was implemented with word-level embeddings.
For our approach, we first built upon this baseline by making adjustments in the embedding layer
to account for character-level embeddings. We then went on to focus on the attention layer and
implemented a co-attention layer that could be substituted in place of the provided Attention Layer.
Finally, our approach included tuning hyperparameters such as learning rate and dropout probabilities
to improve our model’s performance.

3.1 Character-Level Embeddings

Our model extends upon the baseline provided with our implementation of character-level embeddings
as described in Seo et al [2]. In our implementation, we pass preprocessed context and query words
through a convolutional neural network (CNN) to produce character-level embeddings. We then
take the CNN output and apply a max pooling step to obtain the maximum vector values. We then
concatenate the max pooling output to our word-level embeddings and then passed the concatenated
output through a Highway Network.

3.2 Coattention Layer

We extend upon the character-level embedding implementation described above by implementing a
coattention layer as described by Xiong et al [3]. The coattention mechanism proposed attends to
the question and document at the same time and the coattention encoder proposed learns question-
document co-dependent representations. For the coattention encoder, we calculate the affinity
matrices, L which are the affinity scores between pairs of of document and question words. L is
calculated from appending sentinel vectors to the tanh function of the question hidden states. Then,
we use masked softmax on L and use the weighted sum of each question’s hidden state to obtain
the Context-to-Question attention output to calculate what the paper calls matrices AQ and AD,
row-wise and column-wise, respectively. We then calculate the summaries of the document in light
of each word of the question and of the question in light of each word of the document. Lastly, we
concatenate the second level attention output, the weighted sum or the summaries, with the attention
summaries and feed the sum through a bidirectional LSTM layer.

2



3.3 Hyperparameter Search

With regards to hyperparameter finetuning, we chose to focus on the learning rate and dropout
probability. The default values for the learning rate was set to 0.5 while the default value for the
dropout probability was set to 0.2. We performed a hyperparameter search on the BiDAF model that
employs both coattention and character-level embeddings as well on the model with just character-
level embeddings.

4 Experiments

4.1 Data

The dataset we are using in this project is the Stanford Question Answering dataset (SQuAD) 2.0
dataset that has been extended from the original SQuAD dataset to include unanswerable questions.
SQuAD 2.0 builds upon the original dataset with an additional 50,000 unanswerable questions. The
dataset is split into 3 parts: the training set with 129,941 examples taken from the official SQuAD 2.0
training set, the dev set with 6078 randomly selected examples (roughly half of the official dev set),
and the test set with 5915 examples (remaining examples from the official dev set, plus hand-labeled
examples).

4.2 Evaluation method

We calculated the F1 scores and Exact Match (EM) scores and juxtaposed each pair of scores across
all models, including the baseline, to determine the best performance. We also consider AvNA and
NLL to evaluate our model’s training. From the comparisons, we determine which features have
major contributions to or effects on performance.

4.3 Experimental details

Training was performed on Microsoft Azure NCv3-series VMs with NVIDIA Tesla V100 GPUs. We
trained 4 different models and performed a hyperparameter search for the coattention and character-
level embedding BiDAF. Each model took around 3-4 hours to train with 30 epochs, a default learning
rate of 0.5, and a default dropout rate of 0.2. Additionally, we utilized TensorBoard to provide our
visualizations for NLL, EM, F1, and AvNA.

4.4 Results

Figure 1 (shown below) provides a table that shows the variations in performance that we saw on the
dev set as we finetuned hyperparameters on both our Character-level Embedding only model as well
as our Coattention + Character-level Embedding.

The following figure shows our leaderboard results for our Coattention + Character-level Embeddings
model with a learning rate of 0.6 and dropout probability of 0.15. The results show how the model
performed relative to the baseline’s performance on the dev set while also showing the performance
of our model on the test set.

Below that is a figure that shows the performance of our tuned coattention + character-level embed-
dings model on Tensorboard.

We summarize some of our main points below.

3



Figure 1: Hyperparameter Tuning vs Performance (EM and F1 scores) on Dev Set

Figure 2: Model Performance (EM and F1 scores)

Figure 3: Best Model (Coattention + Char-level Embeddings + Hyperparameter Search) Performance
(EM and F1 scores)

4



• As expected, we found that adding Character-Level Embeddings improved the overall
performance of the baseline model. We believe this improved the performance of the
model as the robustness of the model was enhanced by allowing for conditioning on the
internal structure of words which also helped with handling words not present in the GloVe
vocabulary.

• Adding a Coattention Layer proved to be less effective overall than we expected. Though the
Coattention + Character-Level Embeddings performed well on the dev set, the performance
on the test set is less impressive. This difference may be explained by overfitting to our dev
set. Additionally, in many cases in the dev set, we found that adding the Coattention Layer
reduced performance relative to only including the character-level embeddings. We suspect
this to be a product of the fact that substituing the Coattention layer does not really add any
more trainable parameters. Furthermore, we hypothesize that adding a Coattention layer in
addition to the Character-level Embeddings may have placed too large of an importance to
the character-level which may have distracted the model from focusing on words important
to answering the question.

• With respect to our hyperparameter finetuning, though the initial parameters proved to be
fairly effective, we find that increasing learning rate and dropping the dropout probability
generally increases the model’s performance. We believe that increasing the learning rate
ended up helping the performance of the model as the default learning rate may have been
too low, causing training to finish before an optimum was arrived at. With respect to the
dropout probability, we suspect that lowering the dropout probability generally improved
our model’s performance as initially, there may not have been enough information from
which the model could learn from.

5 Analysis

We chose to analyze the results from out best model (BiDAF with character-embeddings and
coattention after hyperparameter tuning) and pulled examples from the final steps of the development
set.

A common error that we saw was that the model pulled more data than necessary from the context;
however, we note that this is not necessarily incorrect since the extra information was also relevant to
the ground truth answer.

Another common error that we saw was that the model was able to pull answers from the context,
when the answer was labeled N/A. Although the prediction did not match the answer, many examples
of this error can be attributed to human labeling error within the dataset. In the following example, the
definition for a dollar to float is included within the context, but the answer is labeled N/A. The model
was still able to pull the definition out of the context but was unfortunately counted as incorrect.

5



6 Conclusion

In this project, our work was based upon augmenting the embedding layer of the provided baseline
model with character-level embeddings and also included implementing a Coattention Layer that
we used as a substitute for the provided basic Attention Layer. We were able to produce conclusive
results that improved over the baseline with our Coattention + Character-Level Embeddings model
while using a learning rate of 0.6 and a dropout probability of 0.15. This model led to an EM score of
60.43 and a F1 score of 63.91 on the dev set, higher performance compared to the baseline model’s
EM score of 57.385 and F1 score of 60.737. On our test set, the same model also performed the best
with an EM score of 59.189 and an F1 score 62.787. We also found it notable that simply including
character-level embeddings to the baseline model improved the model’s performance with EM/F1
scores of 58.864 and 62.179 respectively, demonstrating the significance of having the robustness to
capture OOV words.

Though we wished to implement additional and explore additional attention mechanisms as well as
additional hyperparameter tuning, we were limited by both the time constraints that come with the
extensive testing required to tune hyperparameters as well the time constraints that inherently come
with the long training times of these models. Going forward, we would be interested in exploring
the impact of attention mechanisms like self-attention on performance and would also be interested
in implementing either additional preprocessing or a feed-forward model to identify and separate
different question types and have separate models train on each question type. We believe this could
potentially solve the errors made by the current implementation as the separate models can specialize
and train on a singular question type and reduce the number of predicted dimensions within the
output.

References
[1] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable

questions for SQuAD. In Association for Computational Linguistics (ACL), 2018.

[2] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension, 2016.

[3] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. In arXiv, 2018.

6


	Introduction
	Related Work
	BiDAF
	Dynamic Coattention Networks

	Approach
	Character-Level Embeddings
	Coattention Layer
	Hyperparameter Search

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

