Exploring Attention Mechanisms on SQuAD 2.0

Stanford CS224N Default Project
Track: IID SQuAD

Clara Zou Yichen Liu Sibei Zhang
Department of Statistics Department of Statistics Department of Education
Stanford University Stanford University Stanford University
yzou66@stanford.edu yliu2l@stanford.edu sibei@stanford.edu
Abstract

In this project, we attempt to address the question-answering task on Stanford
Question Answering Dataset 2.0 (SQuAD 2.0). The goal is to build a question-
answering system based on SQuAD 2.0 dataset that could correctly answer a given
question based on a given context. We use BiDAF model as the baseline model,
aiming to improve its performance, explore different attention techniques, and
compare their performances. Our best single model that utilizes a different gate
within the self-attention layer and fine-tuned hyperparameters achieves an EM of
60.118 and an F1 of 63.866 on test set.

1 Key Information to include
* Mentor: Fenglu Hong
* External Collaborators (if you have any): No

 Sharing project: No

2 Introduction

2.1 Motivation

For decades, Reading comprehension (RC), or the capability to process document texts and answer
questions about them is a difficult task for machines, as human language understanding and real-
world knowledge are needed [1]. However, the rapid growth of neural network in the past decade has
brought dominant breakthroughs in text translation, speech recognition, credit card fraud detection
etc. as well as many other fields that are inaccessible previously. The accelerated development of
deep learning enables us to tackle with challenges in machine translation through making full use of
neural network architecture and techniques. In this report, we are taking the SquAD 2.0 challenge,
aiming to build a neural network that is capable of answering questions based on contexts from
Wikipedia articles.

2.2 Key ideas and results

Since the invention of Transformers[Z], attention mechanisms became well-implemented in many
subsequent models. For our project, instead of implementing the many complicated and well-
established models using self-attention, we want to investigate different attention mechanisms in-
cluding coattention and self-attention by adding them to the provided BiDAF baseline model. With
the final goal to improve the performace of the model compared with that of the baseline model, we
attempt to do so in the following ways: adding coattention mechanism, implementing self-attention
mechanism inspired by Microsoft’s R-NET paper, exploring layer normalization and scaled dot
product, and further fine tuning the hyperparameters. After training 9 BiDAF-based models with
different designs of layers and hyperparameters, we improve the dev EM to 61.822 and the dev F1
to 65.157, and subsequently push the test EM to 60.118 and the test F1 to 63.866.

Stanford CS224N Natural Language Processing with Deep Learning

3 Related Work

Given a BiDAF baseline model, We explore character-level embeddings, self-attention layer and
coattention layer along with layer-normed scaled dot product self-attention to see if any of them
improve the EM and F1 scores. Among all the methods we implement, we mainly use the following
four papers as references:
1. Bi-directional Attention Flow For Machine Comprehension[B], which provides the base-
line model and the instruction to add character-level embeddings.

2. R-NET: Machine reading comprehension with self-matching networks[8], which is the
main source of self-attention mechanism.

3. Dynamic coattention networks for question answering [5], which provides inspiration
for adding coattention layer.

4. Layer Normalization [B], which, along with the lectures, adds insights on how and when
to implement layer normalization and scaled dot product attention

Our work is motivated to be built upon the utilization of methods mentioned in these papers because
some models, for example R-NET, achieved state of the art at some time in the past, particularly on
the SQuAD 1.0 dataset and we are interested in seeing how models using similar mechanisms will
perform on the new SQuAD 2.0 dataset.

4 Approach

Our explorations are all implemented based on the BiDAF baseline model[3] with four major at-
tempted trials that we add: character-level embeddings, coattention, self-attention with different
variations and hyperparameter tuning. Among these, character-level embedding, self-attention, and
hyperparameter tuning achieved better results.

4.1 Character-Level Embeddings

We add character-level embeddings in the embeddings layer configured in the original BiDAF paper.
Given {cy, ...,cr}, and {qy, ..., qs, } words in the context and the question, respectively, we obtain
the character-level embeddings from GloVe, pass through a 1-dimensional CNN with max pooling
applied on the last dimension, and concatenate with word embeddings:

Cchar; Qchar = CNN({Ch ceey CT}, {qh ooy qJ})
Cc= [Cworda Cchar}v q= [qword7 qchar]

4.2 Coattention

We implement a simple version of coattention layer which does not include the sentinel vectors that
are mentioned in the DCN paper[8]. The co-attention layer attends to both question and context and
computes two levels of attention. The layer receives context and question hidden states.

T T I

Bidirectional LSTM Layer

| !

f

Context-to-Question Attention Question-to-Context Attention

! T

Bidirectional GRU Layer

L[] d] o fdh b [—

Word Embedding

Layer

Context Question

1) First, we pass question hidden states through a linear layer with Tanh activation function:

q'; = tanh(Wq, +b) € R Vje{l,.. M}

2)We then compute the affinity matrix L, which contains pairwise affinity score:
T
Lij =C; q' j S R

3) We use softmax to normalize the matrix row-wise. The Context-to-Question coefficients are then
multiplied with question hidden states to obtain attention contexts:

e

M
o' = softmax(L;.) e RM, a; = Za;q’j cR!
j=1

4) Similarly, the matrix is normalized column-wise to obtain coefficients. We multiply it with
context hidden states to compute Question-to-Context attention output:

N
37 = softmax(L. ;) e RN, by =) Bic; R’
=1

5) The second level attention is then computed by taking sum of Question-to-Context attention
weighted by Context-to-Question coefficients:

M
si=» ajb; eR" Vie{l,.,N}
j=1

6) Finally, we concatenate second level attention and Contest-to-Question outputs and pass it into
an single layer bidirectional LSTM:

{ul, ...uN} = blLSTM({[Sl, al], [SN7 aN]})
4.3 Self-Attention

Self-matching attention layer is implemented to deal with limitation in knowledge of context, which
will impede us from inferring the answer. The self-attention layer attention makes each word attend
to all words in the context passage to get better knowledge of the context. We use a bidirectional
RNN (GRU) to build self-attention layer for computation efficiency. Two types of self-attention are
explored, additive attention[d] and layer-normed scaled dot product attention[B]:

output layer ‘ masked softmax ‘ masked softmax |
1 i 1 1 i

‘ Bidirectional GRU Layer ‘
i i t i i

context-query attention
Query-context attention

1 f f t t

‘ Bidirectional GRU Layer ‘

i | |
characterembedding | ‘ ‘ ‘ ‘ ‘

word embedding‘ ‘ ‘ ‘ ‘ ‘ I—I

context question

context-context self attention

4.3.1 Additive attention

» First, we calculate the attention-pooling vector of the entire context ¢;:

n
t T P, P P P t exp(s;) t, P
st =o' tanh(W, v, + W, v,) a; = ¢ = g a;v;
J v g v Yt) 7 Z;L:lexp(8§)v g 174

* Two types of transformation mechanism are applied:

— Gated attention:
g = sigmoid(Wy[uf,i]), [ui,ci]” = g0 © [uf 4]
— Sigmoid & linear transformation:
[uf, ci]* = sigmoid(W,[u?, c;])
* Then, we calculate the self-attention layer:
h{ = BiRNN(hi_,[v} ,ci]?)
4.3.2 Layer-normed scaled dot product attention

¢ Normalize the hidden state:
1 l
r_¢C K
ol +€

* Obtain query, key, and value and calculate scaled dot production attention:

Q=W,X, K=W,X, V=W,X, d=hidden size

T
c = softmax(QK)V
Vdy,

* We compute gated scaled dot product attention:
g¢ = sigmoid(Wy[uf, ci]), [uf’,ce]” = g © [uf, 1]
* Then, we calculate the self-attention layer:
hf = BiRNN(hf_l, [va)

S Experiments

5.1 Data

The experiment dataset used in this project is the Stanford Question Answering Dataset (SQuAD
2.0), which contains (context, question, answer) triples. Contexts are excerpts from Wikipedia and
the answer is a span of text from the context. There are 129,941 examples in training set, 6078
samples in dev set (roughly half of the official dev set) and 5915 examples in test set (remaining
examples in official dev set). The training set has one answer per question, while dev and test set
have three human-provided answers per question.

5.2 Evaluation method

We use two metrics to evaluate our model: Exact Match (EM) score and F1 score. EM score is
a binary measure of whether the model produces answer that exactly matches the ground truth
answer. A less strict metric F1 is also considered to take both precision and recall into account.
When evaluating our dev set or test set, we compare the answer given by our model and three
human-provided answers and take the maximum of F1 and EM score.

5.3 Experimental details
5.3.1 Baseline

We first train the baseline BIDAF model with 30 epochs, with the default setting of batch size = 64,
dropout probability = 0.2, learning rate = 0.5 and hidden size = 100. The baseline model requires
about 7 minutes per epoch on Azure NC6 VM.

5.3.2 Character-Level Embeddings

Then we train the BiDAF model with character-level embedding layer with 30 epochs, with hidden
size = 200 after concatenation, and everything else kept the same as the baseline. The time it takes
to train each epoch for BiDAF model with character-level embedding layer is about double that of
the baseline.

5.3.3 Coattention Layer

We train the BiDAF model with both character embeddings and the co-attention layer, with batch
size = 64, dropout probability = 0.2, learning rate = 0.5 and hidden size = 200. It takes about 12
minutes per epoch on Azure NC6 VM.

5.3.4 Self-Attention Layer

1) We train the BiDAF model with both character embeddings and self-attention layer (without gate),
with batch size = 16, dropout probability = 0.2, learning rate = 0.5 and hidden size = 200. It takes
about 14 minutes per epoch on Azure NC6 VM. To be able to fit the model in memory, we reduced
the batch size from 64 to 16, and the training time is not affected too much by this change. It takes
about 17 minutes per epoch on Azure NC6 VM.

2) We experiment with passing the self-attention layer with an additional gate[d], with the same
setting as the previous trial. It takes about 17 minutes per epoch on Azure NC6 VM. The EM score
on dev set increases by about 1.

3) Instead of passing self-attention layer into the gate, we experiment with using sigmoid & linear
transformation on self-attention score before concatenation, which is equivalent to a gate without the
hardamard product. We use the same configurations with the previous trial for better comparison. It
takes about 17 minutes per epoch on Azure NC6 VM. The EM score on dev set increases by about
2 compared to raw self-attention layer.

4) In case that the input from the layers beneath has a large and uninformative variation, we adopt
the layer-normed scaled dot product attention mechanism in place of the original self-attention layer,
hoping to stabilize the hidden state dynamics, provided that it is indeed chaotic. We experiment
with layer-normed scaled dot product attention, still with same configuration as previous trial. The
training process was pre-terminated due to unpromising training curves.

5.3.5 Hyperparameter Tuning

After our explorations character-level embeddings and multiple attention mechanism, we perform
hyperparameter tuning on our best-performing model: BiDAF baseline model with character-level
embeddings and self-attention layer with sigmoid & linear transformation (batch size = 16, dropout
probability = 0.2)

1) Learning rate: {0.5,0.25,0.1}. (Fix hidden size = 200)
2) Hidden size: {200, 300}. (Fix learning rate = 0.5)

5.4 Results

5.4.1 Performance on dev set

EM F1
BiDAF baseline (Ir = 0.5) 57.335 | 60.803
BiDAF + Char embeddings (Ir = 0.5) 58.847 | 62.396
BiDAF + Char embeddings + Co-attention (Ir = 0.5) 52.193 | 52.193
BiDAF + Char embeddings + Self-attention (Ir = 0.5) 57.402 | 60.512
BiDAF + Char embeddings + gated Self-attention (Ir = 0.5) 58.427 | 61.472

BiDAF + Char embeddings + Self-attention with transformation (Ir = 0.5) | 59.435 | 62.756
BiDAF + Char embeddings + Self-attention with transformation (Ir = 0.25) | 61.822 | 65.157
BiDAF + Char embeddings + Self-attention with transformation (Ir=0.1) | 61.838 | 64.993

BiDAF + Char embeddings + Self-attention with transformation
(Ir = 0.5, hidden size=150) 58.931 | 62.107

5.4.2 Performance on test set

We adopted BiDAF model with character-level embeddings and self-matching attention layer (with
sigmoid & linear transformation) and learning rate = 0.25, hidden size = 200, batch size = 16 as our
final model. The final model achieved performance of EM = 60.118, F1 = 63.866 on test set.

5.4.3 Quantitative Analysis

Figure 1: Gate v.s. Sigmoid & linear transformation
Pink: Sigmoid & linear transformation
Blue: Original gate

dev/awNA dev/EM
tag:Gon/ANA tag:deu/EM

]
%]
i
B

(]

x|
W
0e

Figure 2: Learning Rate
Pink with better performance: learning rate = 0.1
Pink with weaker performance: learning rate = 0.5
Blue: learning rate = 0.25

dev/ANA dev/EM
5. ceurhA a0 dov/EM

= o

s]

de,

a5 oL
RV) M a2 aw o
=@ TEQ

w1

ag. o

Figure 3
Pink: Gated self-attention
Red: Scaled dot product attention

1) Self-attention boosts the performance of the model by integrating knowledge from context into
hidden states. To our surprise, we found that using sigmoid & linear transformation on attention
layer would achieve better EM and F1 scores than the original gate mentioned in RNET paper[4].
Upon further checking the corresponding values, we discovered that hidden state values using the
original gate would shrink more compared with those using sigmoid & linear transformation, which
might be a pattern specific to this project.

2) Meanwhile, the fact that lower learning rate performs better than the original learning rate at 0.5
suggests that this dataset favors slower update. The original learning rate makes gradient updates
excessively large, leading to divergent updates patterns that miss the minimum point.

3) The layer-normed scaled dot product attention implementation that we terminated during training
due to its worse training curve than other models indicates that this mechanism is not suitable for
this task. Some potential reasons include: the order of operations within the layer normalization

may not be optimal; the hidden state dynamics in this task are stable already and the adoption of this
mechanism turns to be a perturbation rather than reinforcement.

6 Analysis

For a more detailed qualitative analysis, we describe some remarkable parallels between the baseline
model and the final best model and discuss the typical successes and failures in each model.

6.1 Dependencies and Internal Structure within the Context

Question:

What complexity class is characterized by a computational tasks and efficient
algorithms?

Context:

The complexity class P is often seen as a mathematical abstraction modeling
those computational tasks that admit an efficient algorithm. This hypothesis
is called the Cobham—-Edmonds thesis. The complexity class NP, on the other
hand, contains many problems that people would like to solve efficiently, but
for which no efficient algorithm is known, such as the Boolean satisfiability
problem, the Hamiltonian path problem and the vertex cover problem. Since
deterministic Turing machines are special non-deterministic Turing machines,
it is easily observed that each problem in P is also member of the class NP.

Answer: P

Baseline Prediction: N/A

Best Model Prediction: | complexity class P

nn

In the above example, we witness that the baseline model fails to identify the answer "p" even if the
first sentence of the context provides sufficient information to derive the correct answer. We believe
that the presence of the word "efficiently" later in the paragraph describing the goal of people to
solve the complexity class NP confuses the model. The last sentence stating that "each problem in
P is also member of the class NP" may also contribute to this impact of confusion. The final best
model, on the other hand, successfully predicts the correct answer due to the addition of the self-
attention mechanism that enables the model to be aware of internal structures and relations between
each word in the context as we believe.

6.2 N/A Prediction

Question: Where did China border Kublai’s territory?

Instability troubled the early years of Kublai Khan’s reign. Ogedei’s
grandson Kaidu refused to submit to Kublai and threatened the western
frontier of Kublai’s domain. The hostile but weakened Song dynasty
remained an obstacle in the south. Kublai secured the northeast border in
1259 by installing the hostage prince Wonjong as the ruler of Korea,
Context: making it a Mongol tributary state. Kublai was also threatened by domestic
unrest. Li Tan, the son-in-law of a powerful official, instigated a revolt
against Mongol rule in 1262. After successfully suppressing the revolt,
Kublai curbed the influence of the Han Chinese advisers in his court. He

revolts and defections to the Song.

feared that his dependence on Chinese officials left him vulnerable to future

Answer: N/A

Baseline Prediction: northeast

Best Model Prediction: | N/A

Again, in this above example, the correct answer is N/A since the context does not provide enough
information to answer the question even though the context is related to the question. We observe
that the baseline model is confused and gives an answer distracted by the sentence "Kublai secured
the northeast border in 1259," which is another example that the model gets lost by the internal
structure of the context. The final best model fixes this issue and predicts "N/A" correctly with the
assistance from the added self-attention layer to better understand the within-context information.
This example is noteworthy since the existence of unanswerable questions is the main difference
between SQUAD 2.0 that our model is trained and tested on and SQuAD 2.0 that the original baseline

model and R-NET model were based on. Therefore, we discover that self-attention is a practical
recipe that adapts to this new feature.

6.3 Other Languages

Question:

Who did the Han Japanese want to help the Mongols fight?

Context:

Many Han Chinese and Khitan defected to the Mongols to fight against the
Jin. Two Han Chinese leaders, Shi Tianze, Liu Heima (%22 55, Liu Ni),

nd the Khitan Xiao Zhala (35 4L#§l]) defected and commanded the 3 Tumens
in the Mongol army. Liu Heima and Shi Tianze served Ogodei Khan. Liu
Heima and Shi Tianxiang led armies against Western Xia for the Mongols.
There were 4 Han Tumens and 3 Khitan Tumens, with each Tumen consisting
of 10,000 troops. The three Khitan Generals Shimobeidier (f5 57721 5),

Tabuyir (# £ 5¢.) and Xiaozhacizhizizhongxi GALH|Z T HE)
commanded the three Khitan Tumens and the four Han Generals Zhang

under Ogddei Khan.

Rou, Yan Shi,Shi Tianze, and Liu Heima commanded the four Han tumens

Answer: N/A

Baseline Prediction: Jin

Best Model Prediction: | Jin

We see that in the example above, both the baseline model and the final best model fails to predict
the correct answer. We believe that this is due to the fact that most paragraphs used in training are
originated from pure English contexts. The context in this example, however, has Chinese names
both in pinyin and in traditional Chinese, the latter of which probably provides little information
since it is outside the vocabulary. Therefore, one potential direction to improve the model is enhanc-
ing its capability of predicting the correct answer based on contexts relating to other languages and
cultures.

7 Conclusion

After training 9 BiDAF-based models with different designs of layers and hyperparameters, we
push the dev EM to 61.822 and the dev F1 to 65.157, and subsequently push the test EM to 60.118
and the test F1 to 63.866. In conclusion, the best of our attempted architectural changes with fine-
tuned hyperparameters results in better performance than the baseline. The final best model behaves
much better handling unanswerable questions and understanding the internal structure of context
paragraphs.

Still, this research entails certain implications for future explorations, including more rigorous sur-
veys on why the sigmoid & linear transformation behaves better than the original gate and the ra-
tionale behind the unsatisfactory performance of coattention and layer-normed scaled product self
attention. Since the final model performs not very well on contexts relating to other languagues and
cultures, it would also be worth examining with more details to improve the model on this task in
potential future works.

References

[1] Konstantin Lopyrev Pranav Rajpurkar, Jian Zhang and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv, 2016.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[3] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bi-directional at-
tention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[4] Natural Language Computing Group Microsoft Research Asia. R-net: Machine reading com-
prehension with self-matching networks. May 2017.

[5] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604, 2016.

[6] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

	Key Information to include
	Introduction
	Motivation
	Key ideas and results

	Related Work
	Approach
	Character-Level Embeddings
	Coattention
	Self-Attention
	Additive attention
	Layer-normed scaled dot product attention

	Experiments
	Data
	Evaluation method
	Experimental details
	Baseline
	Character-Level Embeddings
	Coattention Layer
	Self-Attention Layer
	Hyperparameter Tuning

	Results
	Performance on dev set
	Performance on test set
	Quantitative Analysis

	Analysis
	Dependencies and Internal Structure within the Context
	N/A Prediction
	Other Languages

	Conclusion

