
Insemble: A Shared-Parameter Ensembling Technique
for Question-Answering

Stanford CS224N Default Project

Luke Hansen
Department of Computer Science

Stanford University
lrhansen@stanford.edu

Justin Lim
Department of Computer Science

Stanford University
jlim23@stanford.edu

Abstract

In this paper, we explore a variety of techniques that perform better than a baseline
BiDAF model’s question-answering performance on SQuAD 2.0, as measured by
EM and F1 scores. We first improve upon the baseline BiDAF scores and training
speed by replacing the Bi-directional LSTM with a Gated Recurrent Unit (GRU)
and adding a character-level embedding layer. We found this model to better than a
BiDAF with self-attention and a QANet. We propose a technique called Insemble:
a variation of ensembling that consists of multiple submodels with some shared
parameters. We used three GRU with Character Embeddings models with sligthly
different hyperparamters and architectures as our submodels. Insemble performed
better than a standalone GRU with Character Embeddings (even with the same
number of parameters) and a vanilla ensembling implementation (Three GRU with
Character Embeddings that do not share parameters). It achieved test set F1 and
EM scores of 65.46 and 62.40, respectively. We also found that, for Insemble,
higher scores only scale with an increased parameter size to a certain point.

1 Key Information to include
• TA mentor: Vincent Li
• External collaborators: None
• Sharing project: None

2 Introduction

As human interaction becomes increasingly intertwined with machines, one of the largest areas of
research is Machine Comprehension and Question Answering. With the conception of state-of-the-art
NLP architectures like Transformers, models have had impressive results on a variety of text-based
tasks [1].

Increasing the size of language models reliably increases their performance, given there is enough data
[2]. For some tasks, however, there is not enough data to take advantage of the available computing
power, as models which are too large can be prone to overfitting. Ensembling (training multiple
networks and combining the output) has helped avoid this problem because more compute power can
be used without the risk of overfitting [3]. However, this technique is also resource expensive since
multiple models need to be trained.

Intra-ensemble is a technique that capitalizes on the benefits of ensemble in only one network through
having various submodels that share many parameters, making Intra-ensemble more space efficient
than a naive ensemble [4].

Given the success and efficiency of Intra-ensemble on an image recognition task, we wondered
if we could use similar principles as those used in Intra-ensemble to improve the performance of

Stanford CS224N Natural Language Processing with Deep Learning



models on a QA task. We created Insemble: a language processing architecture inspired by the
parameter sharing technique proposed by the Intra-ensemble paper (see Figure 1). We explored
various submodel candidates for Insemble, including a provided baseline BiDAF [5]; a BiDAF with
character embeddings and a GRU RNN [6] instead of an LSTM [7]; a BiDAF using self-attention for
one of its encoders instead of an RNN; and a QANet[8]. We tested these model’s question answering
performance on SQuAD 2.0 [9] and measures their EM and F1 scores.

We found the BiDAF with a GRU RNN and character embeddings performed the best out of our
implemented models, so we used it as the backbone submodel in Insemble (the far left submodel
in Figure 1). Our final model consisted of three submodels: a GRU-character-embeddings model,
a LSTM-GRU-encoder model, and a GRU-LSTM-encoder model. The output of the final model
was the average of the output of these three submodels. These three models also shared some of the
encoder layers, allowing for a combination of information and a reduction in the total number of
parameters, similar to the approach of Intra-ensemble.

Figure 1: Insemble Model: A Shared-Parameter Ensemble Network

This model performed better than a naive ensemble strategy that does not share parameters, and it
performed better than using one of the submodels as a standalone model (with the same number of
parameters as in the Insemble). This finding suggests that training end-to-end submodels that share

2



parameters is an effective way to decrease the total number of parameters in ensemble models without
hurting performance.

3 Related Work

3.1 Intra-ensemble:

Ensembling is a standard technique used in many fields of machine learning, based on the idea that
model performance can be enhanced by combining several base models and pooling together their
outputs. However, ensembling requires the training of several deep neural networks, a resource
intensive operation. Intra-ensembling is an end-to-end ensemble strategy that uses stochastic channel
recombination operations to train sub-networks concurrently as one network while increasing the
diversity of the sub-networks. A benefit is that there is only a small increase in parameter size since
the sub-networks share a majority of their parameters. Intra-ensemble was originally designed for an
image task, and experiments were done to show that it performed well on simple and complex tasks
using datasets of various image sizes.

3.2 Self-attention:

Self-attention is a module that allows the inputs to a model to interact with each other and decide
which parts of the input should recieve more attention. Self-attention is a major part of Transformers,
an extremely successful model architecture that discards recurrent and convolution layers entirely.

3.3 QANet:

QANet uses convolutions and self-attention as encoder blocks with no recurrent nature (unlike
BiDAF). It also encodes positional embeddings to make up for its lack of recurrence. QANet has
been shown to be very powerful in reading comprehensions tasks and was the state-of-the-art before
the advent of large transformer models.

4 Approach

Insemble uses a traditional QA architecture as a submodel. To choose a submodel, we experimented
with the following candidates:

4.1 Vanilla BiDAF:

The baseline BiDAF model is provided by the Stanford CS224n staff. The embedding, encoder,
attention, modeling, and output layers are implemented as described in the original paper [5] with the
exception of character embeddings, which were excluded in this implementation.

4.2 GRU and character embeddings:

On top of the vanilla BiDAF model, we re-implemented a character-level embedding layer with
batch normalization. This added layer allows the model to understand words based on their internal
representations. It greatly improves the model’s ability to handle unencountered words, whether
they are misspelled or newly invented. The character embedding vectors and indices are already
included in the starter code, so we load them in and pass them through a convolutional layer. After
several dimension permutations and running through a dropout layer, we concatenate the output to the
original word embeddings, and feed it into the highway network. The result now continues through
the subsequent original procedures. We expected this strategy to improve our overall F1, EM, and
AvNA scores.

We also replace the LSTM encoders of the original BiDAF with GRU encoders, which has fewer
parameters due to the lack of an output gate.

3



4.3 Self attention encoder (with char embeddings):

We replaced the first encoder layer of the BiDAF model with a layer that utilized self-attention. This
new encoder layer performed self-attention on the input, and then passed the result to a feedforward
network. The baseline version already includes a bi-directional attention flow that allows attention
flow from the context to the query (C2Q) and from the query to the context (Q2C). The replaced
block adds a layer of context-to-context attention and query-to-query attention.

4.4 QANet implementation (with char embeddings):

As described in the Related Works section, the QANet model does not use recurrent networks unlike
BiDAF. Instead, it uses convolutions and multi-headed self-attention in the encoder blocks. We
implemented this model in the same way as described in the original QANet paper [8]. We did not
implement this with leaky RELU, a tactic that prevents dying RELU [10].

Once the top performing submodel has been identified, variations of it were used for the Insemble
network. Ensemble networks tend to work best when each submodel has a good representation of
the data, but in a different way. If all the models are the same, there is no benefit to using more
of them. We expected a similar principle to apply for for our network. We did not use stochastic
channel recombination like the original Intra-ensemble paper (which was used to increase submodel
diversity), so we increased submodel diversity by using different RNNs and hyperparameters for each
submodel.

One minor optimization that we added was the use of Adam in place of the AdaDelta optimizer [11].
Adam uses SGD with momentum and adaptive learning rates and has been empirically proven to
more efficiently converge faster. Thus, we expected it to slightly improve training times and push our
model out of local minimums, helping us achieve higher scores.

5 Experiments

5.1 Data

The Stanford Question Answering Dataset [12] (SQuAD 2.0) will be used to train and test the models.
The dataset consists of 150k questions about context paragraphs drawn from Wikipedia and comes in
the form of context, question, answer triplets. The question, or query, is the question to be answered
based on the context. The answer is an excerpt of text of the context. All answerable questions
in the training set has one answer per question, but the dev and test sets have three answers per
question, provided by crowd workers. SQuAD 2.0 expands on the original SQuAD dataset by adding
unanswerable questions, in which case the model should abstain from answering when it determines
that the context does not support an answer.

5.2 Evaluation method

We use two metrics to evaluate our model and compare its performance to other models. The first is
the Exact Match (EM) score, which is the percent of instances the model output exactly matches the
ground truth answer. The second is the F1 score, which reflects the quality of the model as a function
of its precision and recall. The precision is measured by whether or not model output is a subset of
the tokens of the ground truth answers. The recall is what percent of the ground truth tokens that our
model outputted. To help monitor our model training, we also keep track of Answer vs No Answer
(AvNA), which measures our model’s classification accuracy when considering its answer (any span
of text) versus no answer predictions.

5.3 Experimental details 1

All candidate models were trained with a hidden size of 100 until NLL, F1, EM, and AvNA scores
plateaued. All models had a learning rate of 0.5 and a drop probability of 0.2, except the QANet
which had a learning rate of 0.1 and drop probability of 0.1.

4



Figure 2: AvNA, EM, F1, and NLL training trajectories of GRU and character embeddings (grey),
self attention encoder (pink), and QANet (red and blue–The line is two colors because it was trained
in two training periods).

Model NLL F1 EM AvNA
BiDAF 3.31 60.18 56.53 67.23
GRU 3.11 60.76 57.22 67.47
GRU + Char-Embed 2.70 64.32 61.1 71.1
Self-Attention Encoder 2.65 62.97 60.01 69.06
QANet 2.75 63.63 60.85 70.98
Table 1: Comparison of submodel performance on dev set

5.4 Results 1

Our models’ performance on the dev set can be seen in Table 1, and the training trajectories of the
candidate models can be seen in Figure 2. The model using character embeddings and GRU RNN
performed the best. This observation was unsurprising because of past work indicating that GRUs are
better in this context. This model also was slightly faster to train. However, we were surprised by
the QANet’s unexpectedly low performance. Given the limited credit count and the extensive time
needed to train the QANet (around 14 hours), we decided to focus on testing the Insemble model
instead of re-implementing the QANet. This result will be reexamined in the Analysis section.

5.5 Experimental details 2

The model which used a GRU encoder and character embeddings achieved the best dev results, so we
decided to use it as the submodel for Insemble. We had three submodels, as depicted in Figure 1. The
second and third submodels (from the left in the picture) used LSTMs for their encoder blocks to
increase the diversity of representations for each of these submodels. The models were trained with

5



different dropout rates, (0.2; 0.1; 0.2) respectively. Insemble’s training process can be seen in Figure
3.

We also trained two models to serve as controls: 1) GRU (225), a standalone model with the same
architecture as one submodel (GRU) and a similar number of parameters to the smallest Insemble,
allowing us to control for the number of parameters and 2) a vanilla ensemble network (three GRU
models with the same hyperparameters) to control for having multiple networks. These controls
allowed us to isolate the effects of sharing layer parameters, and having slight variations within the
submodels. All these models were trained with a learning rate of 0.5, and a drop probability of 0.2
(unless otherwise specified).

Figure 3: AvNA, EM, F1, and NLL training trajectories of varioius sizes of Insemble: 75 hidden size
(grey), 100 hidden size (blue+red), and 150 hidden size (orange+red).

5.6 Results 2

The scores of various Insemble sizes and the controls can be seen in Table 2. The smallest Insemble
model allowed for better representations of the data than using a single model with a comparable
number of parameters. This single model quickly started to overfit the data. Due to the overfitting,
we opted not to test comparable models for the Insemble models with more parameters. Furthermore,
Insemble also outperformed the vanilla ensemble model.

Increasing the number of model parameters increased the performance of the model, to an extent–
increasing the hidden size from 75 to 100 increased the F1 and EM scores by 1.72 and 1.75,
respectively. However increasing the hidden size from 100 to 150 hurt the models performance,
lowering the F1 and EM scores by 0.56 and 0.64, respectively.

The Insemble model with a hidden size of 100 achieved the best dev set score, so we ran it on
the test set. It achieved F1 and EM scores of 65.46 and 62.40, respectively.

6



Model NLL F1 EM AvNA
GRU (225) (control) 2.92 61.34 57.67 70.14
Vanilla Ensemble (100) (control) 2.80 64.51 61.44 69.80
Insemble (75) 2.76 64.87 61.84 70.14
Insemble (100) 2.73 66.59 63.59 71.35
Insemble (150) 2.93 66.03 62.95 71.27

Table 2: Comparison of Insemble models with different number of parameters (number in the
parentheses represents hidden size value).

6 Analysis

Using a GRU RNN in place of an LSTM immediately improved performance and decreased train-
ing times. The addition of character-level embeddings further improved the model’s handling of
unencountered words and improved the AvNA score. These results were expected, however, our
QANet had an unexpectedly low performance. We suspect there might have been a problem with the
implementation, specifically in that we used a normal RELU rather than a leaky-RELU, which has
been shown to effectively prevent dying gradients. The GRU RNN with character embeddings also
outperformed our BiDAF model with self-attention with an F1 score difference of 1.35.

Even though the BiDAF model with self-attention had a lower NLL than the GRU with character
embeddings model, it performed worse in terms of F1, EM, and AvNA. We speculate that the self-
attention caused the model to predict no-answer more often, causing the faster drop in NLL and faster
increase in AvNA, as seen in figure 2. However, this optimization of AvNA and NLL did not help
to improve the F1 and EM scores, giving the self-attention model lower scores than the GRU with
character embeddings model.

We found that our smallest Insemble (hidden size of 75) outperformed our control models, demonstrat-
ing that it improved performance without increasing the number of parameters. However, Insemble’s
effectiveness did not indefinitely scale with its number of parameters, as the model’s score de-
creased once we got to a hidden size of 150. We believe this is a result of the model’s increased
representational capacity being underutilized because there was an insufficient amount of data.

Furthermore, we split the Insemble results by question type (How, What, Why, Which, Who, Where,
When, Other) as seen in figure 4. All three models performed the best on "when" questions and the
worst on "how", "why", and "other" questions. This observation makes sense intuitively, because
"when" questions often have more straightforward answers than "how" and "why" questions. All
versions of our Insemble perform poorly on "other" questions, which seems to be a direct result of
the low number of training examples in this category. Figure 4 also shows that Inesemble 100 has a
very low EM but a high F1 score for "why" questions, supporting the idea that it is more difficult to
get the perfect answer on "why" questions.

7 Conclusion

In this project, we found that the following strategies performed better than the baseline BiDAF
model: replacing the LSTM RNN with GRU RNN; including character embeddings; using self-
attention instead of the LSTM RNN; and using QANet model instead of the BiDAF model. Overall,
Insemble had promising results–not only did it transfer well from the image task to a reading
comprehension task, it performed better than any of the models individually, even considering models
with approximately equal parameter sizes. It also outperformed a vanilla ensemble network (without
parameter sharing), despite having fewer parameters. Diversifying the submodels by using slightly
different encoder blocks was a successful method, but one avenue of further work would entail
implementing the a similar operation to the stochastic channel recombination used in the original
Intra-ensemble paper. Another avenue of future work would be to successfully train a QANet model,
which is known to be more powerful than a BiDAF model, and use that as the submodel for our
Insemble. Our experiments also showed that Insemble’s performance only scaled with parameter size
to a certain extent. A hidden size of 100 was our best performing model, but increasing the size to

7



Figure 4: EM, F1, AvNA scores for Insemble-100 separated by question type

150 hurt its performance. Ultimately, we discover that Insemble is a useful technique for reducing the
parameter size (compared to other ensemble models) while maintaining high scores.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[2] Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, H. Francis
Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom
Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne
Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri,
Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese,
Amy Wu, Erich Elsen, Siddhant M. Jayakumar, Elena Buchatskaya, David Budden, Esme
Sutherland, Karen Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki
Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev,
Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama,
Cyprien de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson,
Blake A. Hechtman, Laura Weidinger, Iason Gabriel, William S. Isaac, Edward Lockhart, Simon
Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne
Bennett, Demis Hassabis, Koray Kavukcuoglu, and Geoffrey Irving. Scaling language models:
Methods, analysis & insights from training gopher. CoRR, abs/2112.11446, 2021.

[3] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: many could be better
than all. Artificial intelligence, 137(1-2):239–263, 2002.

[4] Yuan Gao, Zixiang Cai, Yimin Chen, Wenke Chen, Kan Yang, Chen Sun, and Cong Yao.
Intra-ensemble in neural networks. CoRR, abs/1904.04466, 2019.

[5] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. CoRR, abs/1611.01603, 2016.

[6] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

8



[7] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[8] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. CoRR, abs/1804.09541, 2018.

[9] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. CoRR, abs/1606.05250, 2016.

[10] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 315–323. JMLR Workshop and Conference Proceedings, 2011.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[12] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuAD. In Association for Computational Linguistics (ACL), 2018.

9


	Key Information to include
	Introduction
	Related Work
	Intra-ensemble:
	Self-attention:
	QANet:

	Approach
	Vanilla BiDAF:
	GRU and character embeddings:
	Self attention encoder (with char embeddings):
	QANet implementation (with char embeddings):

	Experiments
	Data
	Evaluation method
	Experimental details 1
	Results 1
	Experimental details 2
	Results 2

	Analysis
	Conclusion

