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Abstract

Data scarcity has been a common issue in domain adaption for language models.[1]
For real-world QA applications, the number of labeled QA datasets are limited
by various difficulties. For instance, it is very expensive to generate QA dataset
in the medical[2] and legal[3] fields due to the required domain expertise. There-
fore, effective approaches for data augmentation are desired. There are two main
approaches for language data augmentation, i.e. back translation and token pertur-
bation. In this work, a pre-trained DistilBERT[4] model is used to perform a QA
task. It is firstly fine-tuned on three large datasets, i.e., SQUADIS]], NewsQA[6],
and Natural Questions[7]. The fine-tuned model is then adapted to three new
domains with very small training datasets of 127 samples each. By implementing
several data augmentation approaches and a length penalty technique, we managed
to achieve an EM score of 42.064 and an F1 score of 59.982 on the oo-domain test
datasets, which are improved by 32.8% and 26.6% respectively compared to the
baseline. We found that data augmentation is particularly helpful to improve F1
score, while answer length penalty contributes to the improvement of EM score.

1 Key Information to include

* Mentor: Christopher Wolff

2 Introduction

The recent development of computer hardware and machine learning algorithms have enabled the
training of very large models with billions of parameters. For instance, the state-of-the-art natural
language processing (NLP) model GPT-3 has 175 billion parameters.[8]] On the other hand, large
models demand more training data. In recent years, a model-centric to data-centric trend has attracted
growing attention in the research field of AI.[9] Domain adaptation in question answering (QA) is
one of the research topics that could benefit from enriched training datasets.[[10] A robust QA model
allows people to efficiently embed and extract knowledge, which is a critical task given the explosion
of data at the internet age.

There are two main issues associated with domain adaptation in QA. First of all, a pretrained model
is generally required to perform the domain adaptation task. However, general Al practitioners do
not have enough computing power to fine-tune very large language models such as GPT-3. On the
other hand, the training datasets in some domains are difficult to acquire. For instance, high-quality
QA datasets in the fields of medical[2] and legal[3] are expensive to collect due to the nature of
domain expertise. Therefore, light-weight models which can be domain adapted on limited datasets
are urgently needed.

In this work, we fine-tune a pre-trained DistilBERT[4] model on SQuADIS5], NewsQA[6], and Natural
Questions datasets[7]. Each dataset has 50,000 training samples and 4000-12000 validation samples.
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DistilBERT is a small, fast, cheap and light Transformer model trained by distilling BERT base. It has
40% less parameters than bert-base-uncased, runs 60% faster while preserving over 95% of BERT’s
performances as measured on the GLUE language understanding benchmark.[11]] The fine-tuned
model is then adapted to three new domains each with 127 QA training samples. The three domains
are DuoRC[12], RACE][13]], and RelationExtraction[[14]. Several data augmentation approaches are
explored and an answer length penalty is implemented to increase the performance of the adapted
QA model.

3 Related Work

Transfer learning is a machine learning technique where a pretrained model is employed to new
datasets.[15]] It has become increasingly important in modern Al. Given the variety and similarity
among different research fields, it is impractical and inefficient to train new models on every new
dataset. The transfer learning technique has been successfully used in many fields such as multi-
language text classification[16], text sentiment assessment[[17]], image classification[[18]], and human
activity classification[19].

Domain adaptation is a particular type of transfer learning. In the context of QA, domain adaptation
is often required when a pre-trained language model needs to be applied to a new field due to data
shift.[20] Domain adaption is related to an important task in machine learning, which is model
generalization beyond training data distribution. Aside from QA, domain adaptation has also been
explored in the field of computer vision[21]], transfer component analysis[22], and adversarial
discrimination[23]].

Data augmentation is widely used across all domains of machine learning and deep learning. It is
a technique to enrich the training datasets by making modifications to the existing datasets.[24] In
computer vision, data augmentation can be easily applied by rotating, shifting, cropping, shrinking
or stretching the original picture.[25] However, data augmentation in the field of NLP needs to be
handled more carefully since a slight change in the context could radically change the meaning of a
sentence.[26]]

Answer length penalty and brevity penalty (BP) are techniques to improve QA model performance
by penalizing long or short question answers.[27] The BP technique penalizes generated translations
that are too short compared to the nearest reference length, and does so in an exponentially decaying
manner. The brevity penalty makes up for the fact that the BLEU score has no recall term. The length
penalty used a similar approach to force the QA model to generate shorter answers.[28]]

4 Approach

4.1 Back translation

Back translation is a language augmentation technique where the source language is first translated
to a target language, then translated back to the original language. An important parameter when
implementing back translation in QA tasks is the "success rate", which is defined by checking whether
the generated context contains the original answer in the QA pair. For example, a successful back
translation looks like below, where the answer heart attack is preserved in the translated sentence:

Original Text Ray Eberle died of a heart attack in Douglasville, Georgia
on August 25, 1979, aged 60.

Vietnamese Ray Eberle qua di t mt cn dau tim Douglasville, Georgia vao
ngay 25 thang 8 ndm 1979, tui 60.

Back translation Ray Eberle died from a heart attack in Douglasville, Geor-
gia on August 25, 1979, at the age of 60.

On the other hand, a "failed" translation losses the answer words during the translation.



Original Text Ray Eberle died of a heart attack in Douglasville, Georgia
on August 25, 1979, aged 60.

Spanish Ray Eberle muri6 de un ataque al corazén en Douglasville,
Georgia, el 25 de agosto de 1979, a los 60 afios.

Back translation Ray Eberle passed away from a heart failure at the age of
60 in Douglasville, Georgia, on August 25, 1979.

After each of the successfully back translation, the new context and answer start index are updated
and appended to the original training dataset. In this work, we implemented two types of back
translations, vanilla and looped.

4.1.1 Vanilla back translation

In the vanilla back translation method, the back translation is applied only once to each context
in the out-of-domain QA training datasets. We used the M2M 100 [29] seq-to-seq model for back
translation. Specifically, the pre-trained model ‘facebook/m2m100_1.2B’ from Hugging Face [30]
is used for out-of-domain text translation. The ‘facebook/m2m100_1.2B’ is selected over the
‘facebook/m2m100_418M’ because the 1.2B model gives a more accurate target language translation.
A total of 99 languages are used for the back translation. The full list of languages are shown in
the appendix. It is worth noting that the M2M100[29] model claims to translate 100 languages but
we found out that only 99 languages are supported. Specifically, there is a duplicate for the Occitan
language where two entries "post 1500" and "oc" are provided.

4.1.2 Looped back translation

To generate more training data using back translation, we further implemented a looped version where
the "successful" cases are translated back and forth between the source and target languages until
certain criterion is reached. The looped back translation will stop if any of the following conditions is
met: 1) The translated context is identical with previous ones; 2) The answer words are lost; 3) The
loop reached 10 times. Here is a back translation example with two loops:

Original Text Ray Eberle died of a heart attack in Douglasville, Georgia
on August 25, 1979, aged 60.

Vietnamese Ray Eberle qua di t mt cn dau tim Douglasville, Georgia vao
ngay 25 thang 8 ndm 1979, tui 60.

1st translation Ray Eberle died from a heart attack in Douglasville, Geor-
gia on August 25, 1979, at the age of 60.

Vietnamese Ray Eberle qua di vi mt cn dau tim Douglasville, Georgia
vao ngay 25 thang 8 ndm 1979, hng th 60 tui.

2nd translation Ray Eberle passed away of a heart attack in Douglasville,
Georgia on August 25, 1979, aged 60.

We found that the looped back translation could further enrich the augmented language contexts
compared to vanilla back translation.

4.2 Token perturbation

Token perturbation is another effective approach for language augmentation. Given a training context,
it will randomly choose and perform simple transformations of texts such as swap, insertion, delete,
and replacement. In this work, the NlpAug[31] model is implemented to perform token perturbations
on the oodomain training datasets. Unlike back translation, token perturbation could eliminate the
missing QA answer problem by implementing a "stop word", which will not be transformed during
the token perturbation process. This guarantees a 100% "success rate".



4.2.1 Context substitution

The context substitution leverages contextual word embeddings to find top n similar word for
augmentation. The substitution rate is set at 0.3 which means 30% of the whole sentence will be
substituted according to the contextual embeddings calculation.

Original text Ray Eberle died of a heart attack in Douglasville, Georgia
on August 25, 1979, aged 60.

Context substitution Ray Eberle died of a heart attack in Montgomery, Georgia
date august 10th, 1954, December 93

4.2.2 Context insertion

Instead of substitution, the insertion method will inject new words to random positions according to
contextual word embeddings calculation. The same augmentation rate of 0.3 is used which means
30% more words will be added to the original sentence.

Original text Ray Eberle died of a heart attack in Douglasville, Georgia
on August 25, 1979, aged 60.

Context insertion Ray Eberle died of a heart attack in northern Douglasville,
Georgia east on August 17 25, was 1979, by aged hardly 60.

4.2.3 Synonym replacement

Unlike the context substitution which used the contextual word embeddings to find new words, the

synonym replacement technique leverages semantic meaning to substitute words. The augmentation
rate is also set as 30%.

Original text Ray Eberle died of a heart attack in Douglasville, Georgia
on August 25, 1979, aged 60.

Synonym replacement Ray Eberle died of a heart attack in Douglasville, GA on
Aug xxv, 1979, aged threescore.

4.3 Length Penalty
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Figure 1: Average answer length for oo-domain training datasets.

While exploring the oo-domain training and validation datasets, we found out that the answers in
all categories are very brief, ranging from 1-2 words per answer. The calculated mean answer
lengths are shown in Fig. 1. Therefore, instead of implementing a brevity penalty, a length penalty
is used to force the model to generate shorter answers during fine-tuning.[28]] An additional loss
term is added to penalize long answers, which is expressed as L = sum(diagonal (pstart * Pend *



mask_matriz(Kiengtn))). The Pstars and penq are the predicted logits for start position and end
position. For a given position i, all answer tokens after position [i + k] are considered invalid, where
k is a hyperparameter for the length penalty threshold. mask:_matrix(k:length) is a pre-computed
matrix with shape sequence_length * sequence_length where, for each column i, mask_matriz(i :
i + Kiength + 1,4) = 0 and other values are 1. The length penalty is then added to the original loss
Lg 4. Based on the results in Fig. 1, k is set as 3 in this work.

5 Experiments

5.1 Data

The datasets used in this work are summarized in Table 1. The in-domain datasets are first used to
train on the DistiIBERT model. The oo-domain training datasets are used for data augmentation. The
augmented datasets are then used for domain adaptation.

Table 1. In-domain and oo-domain datasets
Dataset Question Source Passage Source Train dev Test

in-domain datasets

SQuADIS5] Crowdsourced Wikipedia 50000 10,507 -
NewsQA[6] Crowdsourced News articles 50000 4,212 -
Natural Questions|[[7] Search logs Wikipedia 50000 12,836 -
oo-domain datasets
DuoRCJ12] Crowdsourced Movie reviews 127 126 1248
RACE]13] Teachers Examinations 127 128 419
RelationExtraction[/14] Synthetic Wikipedia 127 128 2693

5.2 [Evaluation method

Performance is measured via two metrics: Exact Match (EM) score and F1 score. The EM score is a
binary measure (i.e. true/false) of whether the system output matches the ground truth answer exactly.
F1 is a less strict metric — it is the harmonic mean of precision and recall. When evaluating on the
validation or test sets, the maximum F1 and EM scores across the three human-provided answers
are taken for that question. Finally, the EM and F1 scores are averaged across the entire evaluation
datasets to get the final reported scores.

5.3 [Experimental details

For the in-domain DistilBert model fine-tuning, we tested trainings from 1 epoch to 5 epochs and it
was discovered that the model performance does not improve beyond 3 epochs. A batch size of 16 is
used in all models. The AdamW optimizer|[32] is used to minimize the loss. The learning rate is set
as 3e-5. The random seed for each model is set the same at 42. Since the maximum context size that
can be encoded by BERT is 512, each (question, paragraph) is converted into multiple chunks of size
384 with a stride of 128. The in-domain training with 3 epochs took about 1 hour on one NVIDIA
A100 GPU. The domain adaptation only took a few minutes on the same hardware.

For vanilla back translation, 99 different languages are used and each language is used only once per
QA context. For looped back translation, the same 99 languages are used and multiple passes are
used for each language until a stop criterion is met. For context substitution, context insertion and
synonym replacement, each QA context is augmented 10 times with a 30% augmentation rate.

5.4 Results

The five highest and five lowest back translation "success" rates are shown in Fig. 2. The rate is
calculate by dividing the number of translations containing the QA answer words by the total number



of back translations. Note that all back translations can be considered successful from a syntactic
perspective. The "success" rate used in this work is based on the QA answer words preservation.
The five highest "success" rate languages are English, Tagalog, Cebuano, Spanish, Sundanese. The
five lowest "success" rate languages are Burmese, Wolof, Ganda, Fulah and Nepali. Technically the
English language should not be considered as part of the back translation since the target and source
languages should be different. Therefore, the high "success" rate of English is not surprising. It is
worth noting that 3/5 of the highest "success" rate languages are from Asian. While 3/5 of the lowest
"success" rate languages are from African.
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Figure 2: Five highest and five lowest success rates for back translation.

Table 2. Model performance results (EM/F1)

Model in-domain val 0o-domain val oo-domain test
Baseline 52.97/69.11 31.68/47.38
Baseline + 0o-domain 53.01/69.04 32.23/48.64
Vanilla back translation 54.35/70.71 36.65/51.27
Looped back translation 54.17/70.08 37.17/52.22 42.064/59.982
Context substitution 54.25/70.88 31.94/48.52
Context insertion 53.65/69.45 34.82/50.04
Synonym replacement 54.66/70.88 33.51/49.73
Length penalty + Looped BT ~ 54.58/69.43 37.43/51.71

Final model performances are summarized in Table 2. The highest oo-domain F1 validation score
is provided by the looped back translation method at 52.22. The highest oo-domain EM validation
score is achieved by combining length penalty and looped back translation (BT). The final test score
are 42.064 and 59.982 for EM and F1 respectively from the "Looped back translation" augmentation
approach. The "Length penalty + Looped BT" model does not provide better test score.

To summarize, It can be observed that both token perturbation and back translation can improve the
model performance on oo-domain adaptation. However, the back translation approaches provide
better domain adaptation results compared to the three token perturbation approaches. Overall, we
think data augmentation is an effective approach to enhance domain adaptation performance with
scarce training datasets. Moreover, answer length penalty is very effective in improving the EM
score of the final model. Both the EM and F1 scores are improved compared to the baseline model.



However, the addition of length penalty does not yield higher oo-domain test results compared to
looped back translation itself. The effect of answer length penalty is shown below:

Answers without length penalty Answers with length penalty
briefcase of shredded blank paper shredded blank paper
Bean and her best friend, Ivy Ivy and Bean

mitochondrial is a protein that in humans is en- chromosome 14 open reading frame 159
coded by the Cl140rf159 gene (chromosome 14
open reading frame 159

It can be observed that the answer length penalty approach can effectively shorten the predicted
answers.

6 Analysis

6.1 Back Translation

Overall, both vanilla and looped back translations provide better model performances compared to
the token perturbation approaches. The back translation approaches provide more comprehensive
text transformations. It has combined effects of context substitution, insertion, deletion and etc.
Therefore, the overall performance is better. Below are some examples of wrong predictions with
back translation augmentation. In the first example, "television" are predicted as "27-inch table
computer”, which could have caused by a side-effect of back translation of using different expressions
of certain words. The second example shows a much longer answer than the correct answer, which
suggests the importance of length penalty. The last example is missing punctuation, which we believe
is not specifically associated with the back translation augmentation approach.

Predicted answers Correct answers
27-inch table computer Televisions
Bean and her best friend, Ivy Bean

his mother his mother.

6.2 Token Perturbation

Token perturbations are effective approaches for increasing the number of contexts in the training
datasets. However, the augmented context are less accurate compared to those generated by back
translations. An example is shown below. Even though the token perturbation method successfully
generated a new context based on the original context, the name, location and time have all been
transformed and only the QA answer is preserved. We believe these factors contribute to its inferior
performance compared to back translation.

Original Ray Eberle died of a heart attack in Douglasville, Georgia
on August 25, 1979, aged 60.

Back translation Ray Eberl died of a heart attack in Douglasville, Georgia on
25 August 1979 at the age of 60.

Token perturbation  Fred Eberle died of a heart attack in Albany, Georgia since
March 25, 1987, aged 60.

Some of the typical errors are shown in the table below. First of all, token perturbation also gives
long and incorrect answers which could be due to the context substitution and insertion during data
augmentation. Some of the answers are entirely different which could be caused by the synonym
replacement.



Predicted answers Correct answers

a 27-inch table computer Televisions

Ivy and Bean Make the RulesBy Annie Barrows Bean
Bean’s older sister Jessie

Charles Savage Homer. his mother.

6.3 Length Penalty

The length penalty approach is very effective in improving the EM scores by forcing the model to
generate shorter answers. Thus improving the probability of an exact match. On the other hand, a
shorter answer increases the probability of missing the correct answer words which gives a lower
F1 score compared to the data augmentation approach. Some of the incorrect predictions are shown
below. Compared to above approaches, the generated answers are indeed much shorter.

Predicted answers Correct answers
table computer Televisions

Ivy and Bean Bean

his mother his mother.

7 Conclusion

In this work, we implemented several data augmentation approaches and an answer length penalty
technique to improve the domain adaptation performance with scarce training datasets. The explored
data augmentation approaches include vanilla back translation, looped back translation, context
substitution, context insertion, and synonym replacement. We found that back translation is a more
effective approach for language augmentation compared to token perturbation. The looped back
translation approach gives the best oo-domain test performance with EM and F1 scores of 42.064 and
59.982, respectively, which are 26.6% and 32.8% improvement compared to the baseline model. Both
data augmentation and answer length penalty can help improve the domain adaptation performance.
The augmentation approaches are particularly helpful in improving F1 scores while length penalty
is more helpful with improving EM scores. In the future, it would be interesting to explore the
combined effects of token perturbation with back translation for data augmentation. Also, it is worth
investigating the reasons why Asian languages have better "success" rates than African languages
when performing back translation on English.
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A Appendix (optional)

List of languages used in the back translation method:

Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba), Belarusian
(be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian (ca), Cebuano (ceb),
Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English (en), Spanish (es), Estonian
(et), Persian (fa), Fulah (ff), Finnish (fi), French (fr), Western Frisian (fy), Irish (ga), Gaelic; Scottish
Gaelic (gd), Galician (gl), Gujarati (gu), Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian;
Haitian Creole (ht), Hungarian (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic
(is), Italian (it), Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km),
Kannada (kn), Korean (ko), Luxembourgish; Letzeburgesch (Ib), Ganda (lg), Lingala (In), Lao (lo),
Lithuanian (It), Latvian (Iv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn),
Marathi (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern
Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto; Pashto (ps),
Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd), Sinhala; Sinhalese
(si), Slovak (sk), Slovenian (sl), Somali (so), Albanian (sq), Serbian (sr), Swati (ss), Sundanese (su),
Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog (tl), Tswana (tn), Turkish (tr), Ukrainian
(uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo),
Chinese (zh), Zulu (zu)
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