
Alpha and Omega? Gauging the influence of
Answer-Pointer Frameworks in Question Answering

Models
Stanford CS224N Default Project

Track: SQuAD

Nicholas Paul Brazeau Sanchez
Department of Computer Science

Stanford University
npbsanc@stanford.edu

Eden Grown-Haeberli
Department of Computer Science

Stanford University
edengh@stanford.edu

Abstract

Answer-Pointer RNNs have factored into successful machine comprehension mod-
els, especially those designed for the SQUaD challenge. However, whether or not
these RNNs may be applied, generally, to boost model performance is unclear.
In our project, we perform an ablation study to isolate the precise performance
benefits of these Answer-Pointer RNN components in different models. We ob-
serve the improvements of an Answer-Pointer RNN on a baseline BiDAF model, a
BiDAF model with character embeddings, and a BiDAF model with a self-attention
encoding layer, after the R-net model (1). We introduce a novel output layer that
combines succesful elements of the BiDAF and R-net models (2). The Answer-
Pointer output contributed to improved performance in some models, but worse
performance in others. We conclude that an Answer-Pointer RNN must be applied
with careful regularization, and propose that they may be less effective in models
that leverage gratuitous self attention.

1 Key Information to include

• Mentor: Fenglu Hong

• External Collaborators: None

• Sharing project: No

2 Introduction

Many successful SQUaD models produce outputs to question-context text pairs directly from con-
tiguous tokens of the context. These models often select the first and last tokens of the context
independently from attention scores calculated across context tokens, as in the case of the BiDAF
model (2), but frequently, this end token is conditioned on the start token. Researchers Jiang and
Wang pioneered the Answer-Pointer network to predict the end token based on the start token (3). The
Answer-Pointer accepts attention across the context tokens (treated as "pointers" to possible answers,
hence the name) as input to an Answer-Pointer RNN. This RNN’s output is then used as input over a
context attention calculation used to predict the end token. The idea behind the Answer-Pointer, that
the beginning of an answer bears importantly on the end of an answer, is not only intuitive, but has
found many emulators. The R-Net (1) and the DCN (4) models both implemented answer pointer
derivatives after Jiang and Wang, improving upon the basic answer pointer. Yet while answer-pointers
have been generally applied to SQUaD output, this may not mean that they should be generally
applied. The fact that the SQUaD dataset is constrained to only 150 thousand examples (5) means
that SQUaD nets may risk overfitting by implementing too deep or sophisticated of a model. Because

Stanford CS224N Natural Language Processing with Deep Learning



of this, some models may see improved performance from favoring simpler output layers in lieu of
an answer-pointer based output, perhaps even models like the R-Net and the DCN!

As such, understanding the types of models that could most benefit from an Answer-Pointer becomes
essential. Knowing how the Answer-Pointer architecture interacts with other SQUaD improvements
will lead to time saved for future modelers, disambiguating whether or not their model’s architecture
will benefit from Answer-Pointer output, and contribute to a greater theoretical understanding of how,
precisely, Answer-Pointer networks improve machine comprehension. To improve and iterate on
Answer-Pointer output, we need to understand its strengths and weaknesses.

In this paper, we isolate the precise benefits of Answer-Pointer outputs within the contexts of different
SQUaD models. We perform ablation testing on several models, adapting all of their output layers to
make use of an Answer-Pointer RNN, and then qualitatively and quantitatively observe the changes
that these RNNs induce in the models. We ablate against four models in this paper: A baseline
BiDAF, a BiDAF with character embeddings, a BiDAF with character embeddings and self attention,
and a BiDAF with character embeddings and coattention. We also attempt, as other papers have, to
improve upon Jiang and Wang’s answer pointer output, implementing a "chocolate" output layer that
directly factors raw context to query and query to context attention in the output layer.

3 Related Work

There are already many SQUaD papers that implement an Answer-Pointer RNN, or a derivative,
in their models. The Match-LSTM(3), DCN (4), and R-Net(1) all leverage output layers using an
Answer-Pointer RNN. All of these Answer-Pointer RNNs are based on the Pointer Network developed
by Google Brain (6).

As discussed, the Match-LSTM output layer uses the attention prediction for the start token as input to
an RNN, with output used to predict end token distributions. DCN uses a dynamic pointing decoder,
which not only conditions the end token’s position on the start token’s position, but predicts several
start-end token pairs iteratively to guard against selecting spans in local maxima. The R-Net paper
additionally conditions the position of the first start token on attention from the question encodings,
as a way to feed additional information about the question into the answer pointer. We implement the
R-net’s approach in our rendition of answer pointer output.

All of these papers, however, lack ablation testing on their models against non Answer-Pointer based
output networks. We thus lack data on whether or not these models’ architectures were directly
improved by the inclusion of Answer-Pointer output, which is a knowledge gap that our paper
attempts to fill.

4 Approach

Our approach was to modify layers of a baseline BiDAF model piecemeal, producing improved
models, and then to apply Answer-Pointer output to all models. This way, we obtained several models
to perform quantitative and qualitative ablation testing against.

4.1 Character Embeddings

Character embeddings are a popular means to improve SQUaD models. Although character embed-
dings are not present in the given, baseline BiDAF model, the published BiDAF model makes use
of them. The BiDAF paper finds them to improve the model’s handling of out of vocabulary tokens
which lack representation within word2vec embeddings, such as words from foreign languages, by
training on world morphology (2). Thus, even when our word embeddings don’t accurately capture
the relationship between two words due to a lack of frequency in English, the model is able to use
their morphology to make educated guesses about their relationships. We adopted the BiDAF paper’s
approach to learning character embeddings. We take a 2D tensor of raw character embeddings for the
question cQr and passage cPr , and obtained fixed character vectors of hidden size H for each word
in the passage and context, cQ and cP . To obtain cQ and cP , We token characters in cQr and cPr ,
respectively, through a 1D convolutional layer with a kernel width of 5, and then maxpool them. We
did not use a nonlinearity in our convolutional layer, since it was only one layer, and in fact found that
convolutional non-linearities hampered the model’s overall performance. We obtain our final token

2



encodings for the question uQ and passage uP , from their word embeddings wQ, wP and character
embeddings cQ, cP :

vQ = highway([wQ, cQ])

uQ
t = BiLSTM(uQ

t−1, v
Q
t )

vC = highway([wC , cC ])

uC
t = BiLSTM(uC

t−1, v
C
t )

Where highway refers to a highway network of depth 2, as described in the SQUaD handout (7). The
convolutional component of this layer was implemented with original code.

4.2 Vanilla and Chocolate Answer-Pointers

The most crucial module to implement was our Answer-Pointer output. We imitated the general
approach found in the R-Net paper(1), using question-token attention as the zeroth state of our answer
pointer RNN.

We begin with question encodings uQ, along with a one-dimensional primer parameter VP acting as
a query to extract relevant information from the question. Our zeroth hidden state h0 is calculated
with additive attention as follows:

h0 = vT (tanh(WQu
Q +WP vP )

From here, we obtain attention weights a1 and a2, as start and end token attention calculations,
respectively, with the following formula:

an = vT (tanh(WmodH
C +Wpointhn−1)

Where HC represents the context embeddings to be fed into the output layer; in the default
BiDAF, HC are encoded and attention aware. Wmod and Wpoint put output into some attention
dimensionality A, and vT takes these A lengthed vectors and projects them to 1 dimension. Obtaining
h1 from an is also simple:

n0 =

N∑
i=1

a1iH
C
i

h1 = RNN(h0, [n0])

for all N tokens within the context. We used a basic RNN: since we were running it for only one
timestep, the memory storage capabilities of an LSTM were unnecessary. We can think of an
answer pointer as a form of self attention, since the end token factors attention over the start token
distributions. We call this output layer our vanilla Answer Pointer, since it corresponds to the R-Net.
Yet where the vanilla model uses the same projection matrices to compute the start and end tokens,
the BiDAF output layer gives them unique projection layers, puts the modeling tokens through an
RNN before calculating the end tokens, and moreover, factors the useful information of raw context
to query and query to context attention to its final output. To emulate the BiDAF output layer, we
introduce the Chocolate Answer-Pointer RNN, which combines the nuance of the BiDAF output
layer and the conditioning of the R-Net output layer. It is entirely identical to the vanilla output layer,
except for how we compute a1 and a2:

a1 = vT (tanh(Watt1A+Wmod1H
C +Wpointh0)

a2 = vT (tanh(Watt2A+Wmod2H
C ′ +Wpointh1)

Where A is the output of our attention layer in the model, and HC ′ is the modeling layer passed
through an output BiLSTM, as in the BiDAF model. Notice that while the modeling and attention
data have different projection layers, to capture the nuances in how to predict the start token as
opposed to the end token, the answer pointer uses the same projector Wpoint; this is to guarantee that
the Answer-Pointer RNN learns how to transmute attention from the start pointer distribution into
data that can be used to predict the end pointer distribution.

The code we developed for this layer was implemented from scratch, however, we did briefly refer to
an open source implementation of the R-Net to make certain that we were correctly inputting h0 into
the answer pointer RNN (8).

3



4.3 Self Attention

The R-Net paper introduces a self attention layer before its output (1). The idea is to afford the
context encodings additional knowledge about context tokens that may be crucial to answering an
input question through attention over the context. To implement this, we take modeling layer context
MC , and obtain self-attended model encodings N as follows:

N = (Softmax(MCMC⊤
/
√
E)MC)

where E is our hidden size. note that N is obtained through dot-product, instead of additive, attention,
in contrast to the R-Net paper, and is done in our code with the multihead attention module from
pytorch, initialized with a single head. We passed in our MC as the query, key, and vector parameters
to this module to perform self attention, at the recommendation towards somebody else of Reddit
user Slashcom((9)).

We then concatenate MC with N to obtain tensor [MC , N ], and run this vector through an attention
gate designed to scale-down irrelevant portions of the passage during encoding, another piece of the
R-Net’s self attention layer:

g = Sigmoid(Wgate[M
C , N ])

[MC , N ]′ = g · [MC , N ]

Ht = RNN(Ht−1, [M
C , N ]′t)

. We then pass self-attention encoded context tokens H to our output layer. Besides the use of the
multihead attention module, we developed this code from scratch.

4.4 Coattention

The DCN introduces coattention to the SQUaD model. Similarly to the BiDAF model, it attempts to
capture interaction between the Question and the Context through Context To Question (C2Q) and
Question to Context (Q2C) attention (2). Unlike BiDAF, however, Coattention derives its context to
question attention from further attention over the context (4). First we compute an affinity matrix, as
in the C2Q and Q2C attention layer in the BiDAF, such that for Context hidden states C and Question
hidden states Q:

L = C⊤Q

From this affinity matrix, we can take the softmax row-wise to extract question attention weights AQ,
and column-wise to extract attention question weights AC .

AC = softmax(L, axis = 1)

AQ = softmax(L, axis = 0)

Using these attention weights, we next attend to the context paragraph and the question such that

CD = [Q;CAQ]AC

Then CD is concatenated to the context paragraph embeddings and passed into the output layer.
Notice that coattention adds another layer of attention to our attention layer: the Context attends to
the Question, and then this Question-attended context is attended by the Context attention. We do not,
however, add learnable sentinel parameters to our Q and C before processing them, as the Coattention
paper does, meaning that our layer loses some ability to attend to the null values that these sentinel
vectors represent; the base model already contains OOV tokens in the context, representing a Null
answer, so having our model attend to these produces a similar dynamic.
We implemented coattention from scratch.

4



4.5 Models

For this paper, we produced Eight Primary Models: A baseline BiDAF, A, derived from the CS224n
IID SQUaD starter project (7), a BiDAF model with character embeddings, B, a BiDAF model with
character embeddings and self attention C, and a Coattention model with character embeddings, D.
These models used a standard, projection based output layer as exists in the default BiDAF model.
We created four additional models, A′, B′, C ′ and D′ which used a chocolate Answer Pointer Output.
For a given model X ′, X acted as its baseline, since our goal was to isolate the effects of answer
pointer output. We also produced Models A′′ and C ′′, which had a Vanilla Answer-Pointer output, to
compare the performance of the Vanilla Answer-Pointer with the chocolate Answer-Pointer. We used
A′ as the baseline for A′′, and C ′ as the baseline for C ′′. Moroever, we compared improvements
in B′, C ′ and D′ to the improvements in A′. Finally, we produced model E, which was a baseline
BiDAF with added self-attention, to demonstrate that the addition of self attention improved upon
the baseline BiDAF model; A was this model’s baseline. Unless specified otherwise, each of these
models used the default final project code given by the CS224N teaching staff.

5 Experiments

5.1 Data

We used the SQUaD 2.0 dataset to train our model((5)). It is composed of question and context pairs,
and a machine comprehension algorithm is used to refer to the context to produce an answer to the
input question. Unlike SQUaD 1.0, many of the inputted questions lack answers that can be parsed
from context, meaning that a model must learn to abstain from answering, yielding output N/A, as
much as how to answer. Instead of using the SQUaD provided test set, however, our Dev and Test
sets were largely comprised of the default SQUaD dev set, randomly and evenly split.

5.2 Evaluation method

Quantitatively, we were primarily interested in the maximum EM scores a given model achieved on
the Dev set throughout its training. EM, or exact match, represents whether or not a model provided
answer exactly matches one of the SQUaD provided ground truth answers ((5)). We also observed
the F1 score of models, which represents the rough correspondance of a model produced answer
with a ground truth answer. We observed the F1 scores of our models when their EM scores were
maximized. We also monitored the models’ NLL on the dev set, as a model with lower dev NLL
typically had better EM and F1 scores.

Qualitatively, we were primarily interested in finding questions where one model output a correct
answer, but another model output an incorrect answer. Observing these discrepancies gives insight as
to what qualitative power and weakness one model’s improvement gives over another.

5.3 Experimental details

All models had constant learning rate of 0.5, using the Adadelta optimizer, with exponential decay
rates of 0.999, as in the base BiDAF paper. We applied dropout of 0.2 after every RNN and before
passing the embeddings into our model. In other words, in our final iteration, we departed very little
from the default hyperparameters in the base BiDAF model.

This isn’t to say that we didn’t experiment with hyperparameters, however. We tried cutting the
learning rate in half every million epochs, since we noticed that dev metrics improvements slowed
down at increments of million epochs. on more sophisticated models (B, C, and D), we also noticed a
dramatic decrease in dev accuracy past 1 million iterations in comparison to the baseline, suggesting
that our models were overfitting. Thus, we reduced their hidden sizes to 80. Neither of these
modifications yielded improvement over default hyperparameters. We theorize that since our models
still tended to improve towards 2 or 3 million iterations in training, cutting down their learning rate
retarded the learning during this period, causing our model to become stuck in local minima.

All models were run for at least 25 epochs, and ideally 30. In models C, C’ and E, we reduced the
depth of the modeling layer by 1 to improve performance; using a 2-layer model led to decreased
performance on the dev set, likely due to overfitting.

5



5.4 Results

Figures:

Model EM F1
Model A 57.13 60.67
Model A’ 58.34 61.82
∆A +1.21 +1.15
Model B 61.44 64.72
Model B’ 61.07 64.31
∆B -0.34 -0.41
Model C 59.77 63.59
Model C’ 62.06 65.33
∆C +2.29 +1.74
Model D 59.94 63.4
Model D’ 59.23 63.06
∆D -0.71 -.34

Model EM F1
Model A’ 58.34 60.67
Model A” 55.82 59.07
∆ -2.52 -1.67
Model C’ 62.06 65.33
Model C” 61.62 64.84
∆ -0.44 -0.49

Model EM F1
Model A 57.13 60.67
Model E 59.18 62.24
∆ +2.05 +1.57

Figure 1: dev set EM, F1, and NLL, in order
A: Blue, A’: Orange, B: Red, B’: Grey

Figure 2: dev set EM, F1, and NLL, in order
Blue: C, Green: C’, Pink: D, Orange: D’

SQUaD Test leaderboard results: EM: 61.927, F1: 65.560

Since it got the best performance on our Dev set, we submitted model C ′ to the IID SQUaD test
leaderboard.

After performing ablation testing on all of the models, we have identified that the model which
performed the best was the C’ model with chocolate Answer-Pointer output, character embeddings
and self attention. While models B, C and D did improve appreciably over A, we did not find any
guarantee that an Answer-Pointer improved these models generally. To conclude this, we compared
the baseline A′ achieves over A, of about +1 in EM and F1 scores, to the improvement other prime
models provide over their baselines. Model C ′ outdid this improvement by a factor of around +1. This
is consistent with our suspicions, going into the project, that Answer-Pointers are not an improvement
that can universally improve models. We are thus satisfied with our approach: we found standard
models that improved over A, and were able to observe the effects that an Answer-Pointer had models
A through D.

6



6 Analysis

After a quantitative examination of the results, we claim that character embeddings and the chocolate
Answer-Pointer improvements made the biggest difference to the model. Although the chocolate
answer pointer made a big improvement over the BiDAF baseline, the vanilla Answer-Pointer output
actually made the model perform worse; hence, we tried to implement models with a chocolate
Answer-Pointer, as opposed to a vanilla Answer-Pointer, as much as possible during testing. By
comparing the prime model’s performance to the original model’s performance, we can use the
results of our ablation testing to examine how the Answer-Pointer layer interacts with the other model
improvements.

In order to assess how, qualitatively, the answer pointer improves a model, we looked at how a prime
model responded differently to a base model in examples across the dev set. The prime models were
better at encapsulating articles, like “the” or “and” than baseline models. This is a natural extension
of a larger pattern, namely that the Answer-Pointer models tend to select more verbose answers than
their BiDAF output counterparts, and were also more biased against giving N/A as an answer than
their base models. Take the following dev example, and responses from model C and C ′:

• Question: What type of group is The Islamic State?
• Context: "The islamic State"...is a Wahhabi/Salafi jihadist extremist militant group...
• Answer: Wahhabi/Salafi jihadist extremist militant
• C Prediction: extremist militant
• C’ Prediction: Wahhabi/Salafi jihadist extremist militant

We see here that the prime model was not only more verbose in its answer, but because of this, it
produced a correct answer, whereas the default model produced a shorter, but incorrect version of the
answer. However, this verbosity could be a curse, as well, and the outputs in Answer-Pointer models
tended to be very sensitive to irregular punctuation schemas:

• Question: What is the Chinese name for the Yuan Dynasty?
• Context: The Yuan dynasty (... pinyin: Yuán Cháo), officially the Great Yuan...
• Answer: Yuán Cháo
• C Prediction: Great Yuan
• C’ Prediction: Yuán Cháo), officially the Great Yuan

We see here that C ′ was able to extract the correct answer from the question, where C was not. It
included, however, a lot of extraneous text, including punctuation, which we conclude to be due to
the presence of a colon, parenthesis, and comma around Yuán Cháo.

We propose an elegant explanation for this behavior. Our model accepts attention based categorical
distributions over start and end tokens as its output, taking the argmax of these to be the start and end
tokens. Because the end token is conditioned on the start token in Answer-Pointer output, our model
can learn that a very concentrated attention at the start token suggests that the passage likely has an
answer. The Answer-Pointer is able to make use of this attention knowledge to predict less likely
tokens from the context, likely causing end token attention distributions to become more concentrated
as well. Yet this means that the OOV token, which is used to help predict N/A, will have less attention
weight, by comparison, in the end token layer, which means that our model is less likely to predict
N/A in general.

Character-level embeddings alone significant improved the BiDAF baseline. This was expected, since
the BiDAF model leverages character embeddings. Since these embedding learn morphology rather
than semantics, we expected adding this layer to improve the performance of the model, and it did.
However, the failure of the B’ model to improve on B was worthing noting. B Prime’s metrics were
slightly worse than B’s. The answer pointer layer utilizes a probability distribution based on the
attention scores to select an start and end tokens such that the end token is conditionally more likely
when combined with the start token. This improvement should be orthogonal to the morphology level
benefit provided by character embeddings, yet it detracted from B’. We conclude that information
from the morphological information from character-level embeddings must also be inferred indirectly
by the answer pointer output.

7



With respect to model C’, self-attention, character-level embeddings and a chocolate Answer-Pointer
output layer working together produce the biggest improvement to the model besides raw character
embeddings. C’ also has the highest positive gradient in metrics over C of any of the model pairs,
providing evidence that under this architecture, the Answer-Pointer provides the most benefit. The
Answer-Pointer layer and the self-attention modeling layer both rely on self-attention over context
tokens. This dependency allows the self-attention layer and the Answer-Pointer layer to learn distinct
facets of the context from the same information, resulting in layer synergy. It is worth noting, however,
that models B and C’ performed quite similarly in terms of metrics, achieving EM and F1 scores
within 1 of each other, and that B’ was only slightly worse than B. Thus, C Prime’s improvement
over C may be anomalous. After examination of the question/answer pairs which differed from the
true answers, it is clear that the Answer-Pointer model does a good job of understanding text when
the question text is directly in the context paragraph or the wording is close to the input question.
However, if the question incorporates a word or abbreviation that the model has not seen, even the
models which incorporate character embeddings have a difficult time recovering.

Although model D showed an increase in performance over the baseline, adding the Answer-Pointer
layer slightly decreased the model’s performance. However, qualitative examination of the model
showed that the D’ model was actually able to identify answers that the other models - including the
Answer-Pointer output models - struggled with. For example, the question in Figure 2. was answered
by all of the models as some version of "the object’s weight", but D’ was able to extract the correct
interpretation of the question.

• Question: What equals the spring reaction force on an object suspended on a spring reaction
scale?

• Answer: Gravity
• C’ Prediction: equals the object’s weight
• D’ Prediction: gravity acting

This implies that combining an answer pointer based output and a coattention provides the model
greater power in parsing indirect answers from the context.

7 Conclusion

We performed an ablation study on Answer-Pointer output with other common SQUaD improvements.
After a comprehensive set of test on a myriad of models largely built from scratch, which implemented
a character-level embedding layer, self-attention, and co-attention, we conclude that while our
chocolate Answer-Pointer factored into our model with the highest merics, it provided inconsistent
benefit, especially to more sophisticated models: in models B’ and D’, the inclusion of a chocolate
answer pointer slightly hampered their performance over the baseline.

We uncovered how Answer-Pointer output layers qualitatively change SQUaD models as well,
hypothesizing that these output layers are able to use start token distributions with concentrated
attention to predict end token distributions with concentrated attention, leading to answer predictions
that are longer and less inclined to predict N/A. Thus, we propose that aggressively regularizing the
answer pointer RNN, perhaps applying dropout on the start token inputs, is crucial in combating this
weakness.

Although we have identified which models do not interact well with the Answer-Pointer layer, we
have no direct evidence to support why these specific models were not helped by this layer. We are
inclined to conject that more sophisticated models, such as B, C, and D already capture self-attention
information that the answer pointer could provide in predicting the output, leading to its effects being
dampened in B’, C’, and D’. Yet the large improvement of C’ over C prevents us from making this
conclusion. If we’d had more time, we’d have liked to see if C consistently underperforms C’ with
different modeling seeds.

Ablation testing has shown that although Answer-Pointer layers are not suited to all types of models,
the BiDAF model with character-level embeddings and self-attention benefits from the addition of
this probability based layer. Using this combination of improvements allows the model to learn the
question answering task much more accurately.

8



References
[1] N. L. C. Group, “R-net: Machine reading comprehension with self-matching networks,” May

2017. [Online]. Available: https://www.microsoft.com/en-us/research/publication/mcr/

[2] M. J. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional attention flow
for machine comprehension,” CoRR, vol. abs/1611.01603, 2016. [Online]. Available:
http://arxiv.org/abs/1611.01603

[3] S. Wang and J. Jiang, “Machine comprehension using match-lstm and answer pointer,” CoRR,
vol. abs/1608.07905, 2016. [Online]. Available: http://arxiv.org/abs/1608.07905

[4] C. Xiong, V. Zhong, and R. Socher, “Dynamic coattention networks for question answering,”
2018.

[5] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100, 000+ questions for
machine comprehension of text,” CoRR, vol. abs/1606.05250, 2016. [Online]. Available:
http://arxiv.org/abs/1606.05250

[6] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in NIPS, 2015, pp. 2692–2700.
[Online]. Available: https://arxiv.org/pdf/1506.03134.pdf

[7] C. staff. Cs 224n default final project: Building a qa system (iid squad track). [Online]. Available:
http://web.stanford.edu/class/cs224n/project/default-final-project-handout-squad-track.pdf

[8] A. Petrushko. R-net-pytorch/outputlayer.py at a6ed4a02b0cf68bade9e9a43a93ec290a3b6fabd
· tailerr/r-net-pytorch. [Online]. Available: https://github.com/tailerr/R-NET-pytorch/blob/
a6ed4a02b0cf68bade9e9a43a93ec290a3b6fabd/source/nn/modules/output_layer.py

[9] Slashcom, “R/pytorch - pytorch multi-head attention module.” [Online]. Available:
https://reddit.com/r/pytorch/comments/c2u6g5/pytorch_multihead_attention_module

9

https://www.microsoft.com/en-us/research/publication/mcr/
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1608.07905
http://arxiv.org/abs/1606.05250
https://arxiv.org/pdf/1506.03134.pdf
http://web.stanford.edu/class/cs224n/project/default-final-project-handout-squad-track.pdf
https://github.com/tailerr/R-NET-pytorch/blob/a6ed4a02b0cf68bade9e9a43a93ec290a3b6fabd/source/nn/modules/output_layer.py
https://github.com/tailerr/R-NET-pytorch/blob/a6ed4a02b0cf68bade9e9a43a93ec290a3b6fabd/source/nn/modules/output_layer.py
https://reddit.com/r/pytorch/comments/c2u6g5/pytorch_multihead_attention_module

	Key Information to include
	Introduction
	Related Work
	Approach
	Character Embeddings
	Vanilla and Chocolate Answer-Pointers
	Self Attention
	Coattention
	Models

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

