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Abstract

Question-Answering is a broadly researched NLP problem which has seen many
contributions. Many publications that approach the QA task leverage an attention
mechanism of some kind. In our paper, we explore the effectiveness of augment-
ing three different models which use attention with character-level and semantic
embeddings, and examine the qualitative effects on their attention behaviors.
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2 Introduction

Reading comprehension is one of the fundamental problems of NLP. One of the ways we measure
a machine’s ability to comprehend text is by seeing its performance on question answering tasks.
Question answering (QA) is a heavily researched topic and has seen a number of breakthroughs with
recent advancements in deep learning, most important of which may be the transformer. Question
Answering tasks come in many different forms, depending on what dataset researchers use to train
and evaluate a model on. One of these datasets is the Stanford Question Answering Dataset (SQuAD).
SQuAD provides crowdsourced questions based on passages sourced from Wikipedia, with answers
being a segment of text, or span, from the context passages. The best model in the official SQuAD
leaderboard reaches an F1 score of 93.214, beating even human performance.

Our paper focuses on three different models that were trained and evaluated on SQuAD: Bi-directional
Attention Flow (BiDAF), R-NET, and QANet. Each of these models have demonstrated strong
performance on SQuAD, but have distinct approaches to decoding texts. SQuAD’s latest iteration
SQuAD 2.0 introduces a new challenge for these models: to abstain from answering when no answer
can be found from the provided context passage. Because the models of focus in this paper were
created before SQuAD 2.0, the performance of these models on the newer dataset have, as anticipated,
decreased.

In our paper, we reimplemented these models and trained them on the SQuAD 2.0 dataset. In
addition, we investigated how the performance of these models changes with added features, such
as character-level embeddings, part of speech (POS) tagging, and named entity recognition (NER)
tagging. Additionally, we provide a qualitative examination of how these modifications changes the
attention mechanism that underlies each of these three models.

Stanford CS224N Natural Language Processing with Deep Learning



Figure 1: R-NET Architecture

3 Related Work

Models have long leveraged attention as a means of tackling the SQuAD challenge. BiDAF intro-
duced the notion of context-query attention to SQuAD, allowing it to augment prior state-of-the-art
recurrent models, and score competitively on the leaderboard at the time. Soon afterward, researchers
innovated on the attention mechanism with R-NET, which contributes two significant technical
details: first, a modification of attention units that additionally gates the output in a manner similar
to the gates found in GRU and LSTM. This gated attention mechanism is used in R-NET in place
of vanilla additive attention. The second key contribution is the introduction of a "self-attention"
mechanism. The authors of R-NET claim that QA tasks require understanding of question-to-passage
correspondence, provided by the gated attention units, but they might also require correspondence
between different parts of the passage itself, in cases where the answer might have clues derived
from different pieces of the passage. The authors note that while a typical recurrent model can
theoretically remember all of its input, and therefore derive information from past contexts, in
practice this is not the case on long horizons. To achieve contextualization, R-NET also attends over
its own intermediate alignment layers. In theory, self-attention encourages easier correspondence
between different sections of the passage, especially for longer inputs, but can pose prohibitive
computational load when attending very long passages against themselves.

Since the publication of R-NET, purely attention-based models like transformers have dra-
matically changed the landscape of deep learning by providing a cost-efficient yet effective alternative
to RNNs [1, 2]. Many QA models have embraced transformers; among the first successful examples
of these is QANet. QANet does away with the RNNs that R-NET used heavily, instead encoding
texts using a transformer-like module, detailed in Section 4.3.1.

4 Approach

Our experiments are built on three basic model architectures, each coded from scratch in PyTorch:
BiDAF, R-NET, and QANet. We extend these models with additional information in the form of
character-level embeddings, part-of-speech embeddings, and named-entity embeddings, and present
qualitative and quantitative analyses of the effects of these extensions.

4.1 BiDAF

The baseline model, provided by the starter code, is an implementation of BiDAF [3]. Pre-trained
word embeddings first go through a Contextual Embedding Layer, which uses LSTMs to gather
information from surrounding words in the context passage. The next layer, which is the key layer of
BiDAF, is the Attention Flow Layer, which uses an bidirectional attention mechanism, letting attention
flow from context to question and question to context. The embeddings then go through a Modeling
Layer, which uses bidirectional LSTMs to encode the query-aware representations of context words.
We used this model (without character embeddings) as a benchmark for the performance of our other
models.
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4.2 R-Net

Following the architecture of R-NET [4], our model is divided into 5 layers: the embedding layer, the
encoding layer, the question-passage matching layer, the passage self-matching layer, and the output
layer.
In the embedding layer, we create embeddings for both the question and context passage, adapting
the Embedding layer from the starter code to produce word and character-level embeddings. We
loosely follow the description provided in R-NET to create a character embdedding that we can
concatenate to each word embedding. We run the embeddings obtained from the provided character
vectors through a bidirectional GRU, taking the final hidden state and concatenating it to our word
embeddings [4]. We additionally project the embeddings to have a dimensionality of the hidden
size, then apply a highway network [5] to refine the embeddings, a feature used in BIDAF, but not in
R-NET.
To encode the context and question, we run the context and question embeddings through an RNN
[4]; in our implementation, we use GRU. The motivation for using GRU as opposed LSTM is GRU’s
computational efficiency.

We then run our both our encoded outputs through a gated attention-based recurrent network [4],
which matches the question with the passage, and outputs a sentence-pair representation vPt =
RNN(vPt−1, ct), where ct = att(uQ, uP

t ) is an attention-pooling vector of the question obtained by:

stj = v⊤ tanh(WQ
u uQ

j +WP
u uP

t +WP
v vPt−1) (1)

ati = softmax(sti) (2)

ct =
∑
i

atiu
Q
i (3)

The layer uses another gate to determine which parts of the context passage are relevant to the
question and attend to them.

gt = sigmoid(Wg[u
P
t , ct]) (4)

[uP
t , ct]

∗ = gt ⊙ [uP
t , ct] (5)

[uP
t , ct]

∗ is used in subsequent calculations instead of [uP
t , ct]

The self-matching attention layer directly matches the question-aware passage representation we
obtained from the previous layer on itself. The implementation for this layer is similar to the
question-passage matching layer before it, except we attend the vP embeddings against each other:

ct = att(vP , vPt ) (6)

In the output layer, we use a pointer network [6] to select a start and end position in the passage to
return an answer. We obtain these positions by using the same attention mechanism used before

stj = v⊤ tanh(WP
h hP

j +W a
hh

a
t−1) (7)

where ha
t−1 represents the last hidden state of the pointer network. We use a attention-pooling vector

based on current predicted probability at to obtain the next hidden state. The initial state of the
pointer network is obtained by using the attention mechanism on the question embeddings and the
output from the previous layer.

rQ = att(uQ, V Q
r ) (8)

We coded each layer from the bottom up, using basic Pytorch functions, though the embedding layer
is built over the vanilla embedding layer in the starter code. For the RNNs, we used GRU, as was
done in the R-NET paper [4]. The baseline for the BiDAF model was implemented entirely in the
starter code.

4.3 QANet

QANet is a development on both the BiDAF and R-NET models, which shares the Attention Flow
layers and the character-level embeddings, but replaces all recurrent encoders with “Encoder Blocks"
[7].
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Figure 2: The QANet architecture, with the encoder block shown at right.

4.3.1 Encoder Block

The Encoder Block, seen at right in Figure 2 uses positional encodings, followed by depthwise-
separable convolutions [8], a self-attention layer, and a fully-connected output projection. To
normalize inputs and improve training, every layer is preceded by layer normalization [9], uses a
residual connection, and uses dropout during training. The Encoder Block replaces both the encoding
layer and the modeling layer. In our implementation, we use a single block of 4 convolution layers
with kernel size of 7 in the encoding layer, and 3 stacks of 7 blocks, each containing 2 convolution
layers of kernel size 5. The primary advantage of the Encoder Block is that, in eliminating the
dependence on recurrent units, training speed is increased significantly, which allows a corresponding
increase in model complexity.

4.3.2 Context Query Attention

As mentioned above, QANet shares the BiDAF attention mechanism, detailed earlier in this paper.

4.3.3 Output Layer

QANet takes M1,M2,M3, the outputs of the three encoder stacks that comprise the modeling layer.
It models the start and end of the answer span as:

pstart = softmax(W0([M1;M2]))

pend = softmax(W0([M2;M3]))

5 Experiments

5.1 Character-level Embeddings

The first of our experimental extensions is a character-level embedding for BiDAF. R-NET and
QANet implement a character embedding by default, so no change is made in those cases. We chose
to implement character embeddings as the final hidden state of a bi-directional GRU applied to the
characters in each word token, as seen in R-NET.

5.2 POS and NER Tagging

To add additional features to our embeddings, we incorporated part of speech (POS) tagging and
named entity recognition (NER) tagging. POS tagging involves labeling each token in a document
sentence based on its part of speech (e.g. noun, verb, adjective) or grammatical function (e.g.
symbol, punctuation). POS tags can be further subdivided into smaller tag categories, such as making
distinctions between common nouns and pronouns, or creating separate tags for different verb tenses.
NER tagging labels each token based on its named entity type. Named entity recognition is meant to
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(a) F1 (b) EM (c) NLL

Figure 3: Training scores of BiDAF (orange), BiDAF-POS (cyan), R-NET (blue), and QANet (red)

identify and distinguish specific details in a text. A named entity includes anything that has a proper
name or specific value; this can include persons (e.g. Leland Stanford), organizations (e.g. NATO),
places (e.g. Kyoto), and dates (e.g. 1871). Words that are not named entitites (e.g. the, house, happy)
are tagged as non-entities. The spaCy taggers have 18 entity types.

While tokens tagged by humans would ensure accuracy, human tagging is costly both in money
and time and is not within the scope of our project. Instead, we opted to tag our data using NLP
pre-trained taggers provided by Natural Language Tookit (NLTK) and spaCy. These taggers can
potentially add rich descriptors of the behavior of individual words and can augment a model’s
understanding of its interactions with other words, especially early on in training.

We incorporated tags by using an embedding layer for each of 36 POS types and 18 entity types,
including an "unknown" embedding, and concatenating the embedding prior to the encoder, which is
a Highway Encoder [5] in BiDAF and QANet, and a GRU encoder in R-NET.

6 Experiments

6.1 Data

We trained and tested our model on the SQuAD 2.0 dataset, which contains passages from Wikipedia
and crowdsourced questions and answers based on those passages. We use the GloVE embeddings
[10] from the provided setup in the starter code.

6.2 Evaluation method

We measured the performance of our model using two different metrics: the Exact Match (EM)
score and the F1 score. Final scores are obtained by averaging EM and F1 scores across the entire
evaluation dataset.

6.3 Experimental details

The BiDAF and R-NET models were optimized using AdaDelta [11] with a learning rate of 0.5 and
a dropout chance of 20%. QANet was trained using Adam [12] with a learning rate of 0.001 and a
dropout chance of 10%. All models were trained to convergence in at most 30 epochs, and evaluated
on the dev set every 50000 steps; the highest-scoring checkpoint is the one we report.

6.4 Results

We quantitatively evaluate the success of our model using F1 and EM scores, reported in Table 1.
The addition of character embeddings to BiDAF increases performance noticeably, and allows it to
more closely match the performance of R-NET and QANet. Adding part of speech information to our
embeddings had a smaller but still noticeable improvement on BiDAF’s performance. NER tagging
worsened performance universally, and as such, were dropped from our experiments with the larger
models. Further details of NER are discussed in Section 7.2.

Augmenting our implementation of R-NET using POS tags improved performance to a similar degree.
An inspection of the F1 curves of the two R-NET models shows that R-NET POS improves slightly
more at all times. This indicates that POS tags may provide slightly more expressive input embedding
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(a) Vanilla (orange), POS (cyan) (b) Vanilla (orange), NER (pink) (c) Vanilla (orange), Char (blue)

Figure 4: F1 training scores of BiDAF models

(a) BiDAF: Vanilla (orange), POS
(cyan)

(b) R-NET: Vanilla (red), POS
(grey)

(c) QANet: Vanilla (cyan), POS
(orange)

Figure 5: Impact of POS tagging on F1 training scores

that improves gradients. Notably, POS improved R-NET more than it improved BiDAF, which might
be because we did not modify the BiDAF model size to accommodate a more expressive input.

The addition of POS tags improves the performance of QANet by a slim margin, where an examination
of the progression of EM and F1 scores shows that the two are so close that the improvement can be
characterized as due to randomness. We hypothesize that this is due to the significantly increased
model complexity of QANet – since vanilla QANet is complex and able to learn rich representations
of words already, the imprecise nature of POS tags likely ends up not contributing to the performance,
as the model learns to ignore it.

It is important to note in our analyses that POS tags may be imprecise, causing exact effects to be
hard to diagnose, as discussed in greater detail in Section 7.1.

Among all the models, the two versions of QANet perform best, which is not surprising since it is the
most complex model. We note that the performance on the test set is noticeably worse than on the
dev set. We believe that this is due to a difference in distribution between the two sets, as well as
some overfitting to the dev set, as the tested model is chosen based on which performs best on dev set
evaluation.

Performance on Dev Set
Model F1 EM AvNA
BiDAF Baseline 61.22 57.69 68.06
BiDAF POS 61.76 58.63 67.94
BiDAF NER 60.83 57.52 67.92
BiDAF NER POS 61.75 58.44 68.21
BiDAF Char Embeddings 62.59 59.17 68.96
BiDAF Char Embeddings POS 63.14 59.94 69.8
R-NET 62.66 59.47 69.27
R-NET POS 64.23 60.83 70.71
QANet 65.45 62.41 71.55
QANet POS (dev) 65.62 62.41 71.79
QANet POS (test) 62.88 59.73 -

Table 1: Quantitative results of tested models
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Figure 6: A visualization of the attention layers of each architecture, with and without POS tags.
BiDAF is significantly impacted by POS, while QANet is almost unaffected.

7 Qualitative Analysis and Discussion

In addition to our observation of the performance metrics and the trends therein, we believe that
examinations of the model attention layers help us gain an understanding of their inner understandings
of natural language. Shown in Figure 6 is a visualization of the context-query attention of each of
the three models, with and without POS tags – the attention maps produced by question answering
models can be used as rough visual aids to understand their inner “understanding" of natural language.
Although it is generally not possible to use attention maps in a fully-interpretable way, the high-level
effect of POS tags on the three models is clearly visible. The effect of POS tags is significant on
BiDAF, less so for R-NET, and almost nonexistent for QANet. This confirms our hypothesis that
these more complex attention-based models learn rich representations of words that, over the course
of training, incorporate semantic understanding of the words such as part-of-speech features. By
comparison, BiDAF is significantly affected by POS tags, both qualitatively and quantitatively, which
suggests that its understanding of words is limited and does not yet reach full semantic understanding.

It is also possible that the addition of POS tags was beneficial to R-NET and BiDAF not for semantic
reasons, but as a side effect of its noisy nature. As discussed in Section 7.1, POS tags are slightly
imperfect, which allows it to potentially act as a regularizer that prevents overfitting. This theory
is supported by the training progressions we observed: Figure 4 shows that the dev set loss of the
BiDAF model exhibits clear overfitting towards later iterations, while BiDAF POS shows a better fit
on the dev distribution.

As discussed in Section 7.2, NER tags are similarly noisy. However, our experiments showed that
NER tags universally worsened performance. Although time constraints caused us to cut short
experimentation on the addition of NER to the more complex models, its failure to benefit BiDAF
indicated that it was unlikely to improve BiDAF’s more complex counterparts.

The immediate lack of usefulness of external NER tags is visible from observing the text summaries
from training the baseline model. We found that even an unmodified BiDAF model, the lowest-
performing of all the models we tested, did not have difficulty identifying named entities (notice
BiDAF attends to “Ronald Reagan" in the figure). While some questions have named entities as
their answers, QA models demonstrate an ability to make these answer choices based on context as
opposed to an explicit knowledge of whether or not a word is a named entity. Furthermore, the most
difficult questions in SQuAD require advanced information synthesis, whereas NER can, at best, help
only with simple name retrieval, a category that the baseline has no trouble with.

7.1 Limitations of POS Tagging

Because NLTK and spaCy taggers are pretrained on separate corpora and use statistical models, they
can be subject to imprecision in their classification, which limits their usefulness in a deep learning
context. Consider the question and context from SQuAD:
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Context: The mermaid (syrenka) is Warsaw’s symbol and can be found on statues throughout the
city and on the city’s coat of arms. This imagery has been in use since at least the mid-14th century.
The oldest existing armed seal of Warsaw is from the year 1390, consisting of a round seal bordered
with the Latin inscription Sigilium Civitatis Varsoviensis (Seal of the city of Warsaw). City records
as far back as 1609 document the use of a crude form of a sea monster with a female upper body and
holding a sword in its claws. In 1653 the poet Zygmunt Laukowski asks the question:
Question: What is polish for "mermaid"?.

The spaCy tagger outputs the following:

Context (truncated): [(’The’, ’DET’), (’mermaid’, ’ADJ’), (’(’, ’PUNCT’),
(’syrenka’, ’NOUN’), (’)’, ’PUNCT’), (’is’, ’VERB’), (’Warsaw’, ’PROPN’),
("’s", ’PART’), (’symbol’, ’NOUN’), ..., (’:’, ’PUNCT’)]

Question: "[(’What’, ’NOUN’), (’is’, ’VERB’), (’polish’, ’ADJ’), (’for’,
’ADP’), (’"’, ’PUNCT’), (’mermaid’, ’VERB’), (’"’, ’PUNCT’), (’?’,
’PUNCT’)]"

Notice that in both context and question, the tagger mislabels "mermaid". Moreover, the tagger is
not consistent with how it tags "mermaid"; in the context, it is labeled as an adjective, while in the
question, it is labeled as a verb. This presents a major problem for the model, as "mermaid" is a
key word that the model has to recognize in both the question and the context in order to answer the
question. By not only assigning the wrong part of speech to "mermaid", but also not assigning the
same part of speech in both question and context, we introduce inaccuracies to the input embeddings
that could compromise the model’s ability to identify important information. A model exposed to
overly imprecise tags will eventually learn to ignore them. However, the shown example is an edge
case (“mermaid" is likely a rare out-of-distribution word), and empirically, the POS taggers that we
use have been shown to achieve F1 scores above 90% on the NLTK Brown corpus, indicating that the
inaccuracy is likely not so significant that it would damage a model that uses them.

7.2 Limitations of NER Tagging

NER taggers experience the same limitations as POS taggers: they rely on pre-trained models that
are not entirely accurate. However, spaCy NER taggers have a lower accuracy than POS taggers
(97.2 vs 85.5 on en_core_web_lg pipeline), which amplifies its problems. In addition, identifying
named entities have little importance in questions that don’t ask about named entities (e.g. "How do
centripetal forces act in relation to vectors of velocity?").

8 Conclusion

We explored the effects of different embeddings on attention behavior in three models. BiDAF’s
dramatic improvement from the use of character-level embeddings underscore the importance of
including morphological information in reading comprehension tasks. From our investigations of
POS and NER tagging, we found that POS tagging could improve older recurrent models, but NER
tagging was detrimental to performance. In the case of POS tags, their noisy nature prevented
overfitting and provided improvements to performance, but more complex models eventually learned
them away in later training. This suggests that a strategic tuning of other regularization techniques
(e.g. dropout, normalization) is likely altogether enough to replace POS tags. Using more powerful
and accurate state-of-the-art taggers may improve the performance seen in this paper, but it is very
unlikely that it would make a significant impact given the diminishing returns observed on QANet.
We concluded that tagging features are ultimately unnecessary in self-attention models, adding
superfluous information to sophisticated models that can already infer these complex grammatical
properties. While both QANet and R-NET had impressive results, QANet’s superior performance
and computational efficiency suggest RNNs have a diminished importance in NLP problems such
as question-answering. Indeed, purely attention-based models, such as BERT [2], dominate the
state-of-the-art in all major NLP tasks.
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