Building a QA system (IID SQuAD track)

Stanford CS224N Default Project

I-Chien Lai Pei-Wei Kao
Department of Electrical Engineering Department of Electrical Engineering
Stanford University Stanford University
1ail998@stanford.edu pwkao@stanford.edu

Ta-Hsuan Chao
Department of Electrical Engineering
Stanford University
thchao@stanford.edu

Abstract

Our final project aims to implement a question answering system that works well on
SQuAD 2.0 by capturing long-term dependency. We implemented a Transformer-
based model on QA task, QANet to improve the performance compared to the
baseline model, BiDAF. In addition, we add character embedding and applied
the Transformer-XL to the original QANet to model long-term dependency. We
modified the starter code and trained our QANet according to the original paper,
and yielded better results than the baseline.

1 Key Information to include

* Mentor: Fenglu Hong
 External Collaborators (if you have any): No

* Sharing project: No

2 Introduction

The advent of artificial intelligence and machine learning have greatly eased many tasks of our
daily lives. The most successful tasks are those related to images, namely, computer vision, and
also, the spoken language. In this final project, we focus on one very interesting task, which is
reading comprehension. The task is difficult because even humans have difficulty doing reading
comprehension asks. One has to fully understand the passage and the question in order to get the
right answer, thus the task would even more difficult to teach machines how to answer reading
comprehension problems. The automation of this process would bring great convenience in various
applications related to the spoken language.

Thus, the goal of this project is to implement a question answering system that works well on SQuAD
2.0 by capturing long-term dependency. As we believe that Transformer-based model is a trending
structure in recent years, we would like to implement a Transformer-based model on QA task, namely,
the QANet [1], to see how it improve the performance on SQuAD 2.0, and compare it to the baseline
model BiDAF [2]].

To achieve better performance on longer contexts, we want to further adapt the ideas from Transformer-
XL [3] to QANet to see if it could learn longer-term dependencies of the texts. If we can consider
the entire context at once by applying Transformer-XL, we might see the improvement on SQuAD
dataset or other longer context QA dataset. Thus, we added the key points of Transformer-XL

Stanford CS224N Natural Language Processing with Deep Learning

(Segment-Level Recurrence with State Reuse and Relative Positional Encoding) to our QANet, so as
to solve longer context problems.

In this final project, we would show our results by comparing the EM/F1 scores with our baselines.
Besides comparing the performance of several models, we will discuss some comparisons and
ablation studies of the components in the QANet model to see which part is more beneficial to the
task. In addition, we would make experiments on whether adding the character embedding on top of
word embedding would improve the performance on the QA task.

3 Related Work

Various end-to-end models of machine learning or deep learning aim to solve this problem. As
the Recurrent Neural Network (RNN) [4] is one the first successful networks to deal with natural
language processing tasks. The RNet [3] is the one of the first successful approaches to solve
the Question Answering task which uses the RNN network. This method adds the concept of self-
attention to the RNN on the task. It adds two addition attention layers to the RNN, namely the
Context-to-Question attention layer and a Self-Matching Attention layer.

In addition to the RNet, the Bidirectional Attention Flow (BiDAF) [2] furthermore introduces the
Bidirectional Attention on top of the RNN. It is a very powerful concept added to the original RNN,
and achieved very promising results. Ths method is also the default baseline provided by the TA in
the handouts. It is a meaningful baseline , and thus we would compare it with the other models in this
final report.

Since adding more seen knowledge of the model can also improve the model, the DrQA [6] further
improves the Question answer task by adding additional information. This method based on the RNN,
but adds additional semantic features learned from other web language sources, namely, Wikipedia.
The added tags of words include features representing its frequency, part-of-speech tag, named entity
type, etc. This added tagging would greatly improve the Question Answering task.

The most successful end-to-end models solving these problems generally have two key ingredients:
(1) recurrent model to process sequential inputs, and (2) attention component. Although these models
already lead to strong results on many challenging datasets like the SQuAD dataset, the QANet [1]
points out that one crucial weakness is that these models are often too slow on both training and
inference. This could make the models hard to train on larger dataset due to the training speed, and
could prevent the models being deployed in real-time applications due to slow inference. Hence, we
choose to implement the QANet, and we aim to make the machine comprehension fast by removing
the recurrent nature of the past models, and exclusively use convolutions and self-attentions instead.

To further improve the task to answer questions with longer contexts, the Transformer-XL [3]]
solves the problem of QANet by introducing the notion of recurrence into the self-attention network
by reusing the hidden states obtained in previous segments. While reusing the hidden states, it is
necessary to use relative positional encodings rather than absolute ones. The method introduces
two components, the Segment-Level Recurrence with State Reuse and Relative Positional Encoding.
The Segment-Level Recurrence with State Reuse method states that, while training, the hidden state
sequence computed for the previous segment is fixed and cached to be reused as an extended context
when the model processes the next new segment. The fundamental idea of Positional Encoding is to
only encode the relative positional information in the hidden states. We can create a set of relative
positional encodings R €Xmaz %4 | where the i-th row R; indicates a relative distance of i between
two positions.

4 Approach

We choose to implement QANet [1]], a Transformer-based model that combines local convolution
with global self-attention on QA task. We also applied Transformer-XL [3] to the original QANet
to model longer-term dependency. We adopted the key points of Transformer-XL (Segment-Level
Recurrence with State Reuse and Relative Positional Encoding) to our QANet to see if it can improve
the performance, we called this new model QANet-XL.

For embedding, we added character embedding in addition to word embedding. Each character
will be represented as a trainable vector, and each word can be viewed as the concatenation of the

embedding vectors for each of its characters. So the output of the embedding layer would be the
combination of word embedding and character embedding.

In this report, we will describe how we implement our Pytorch version of QANet-XL, and report the
validation and test set scores of the model to see it’s performance compared to the baseline.

Block

End Probability ((;9 \
Feedfoward layer

Layernorm

Model One Encoder T

Start Probability

Softmax Softmax

ol
JUit

Linear Linear

Concat Concat

Stacked Model
Encoder Blocks
Stacked Model
Encoder Blocks
Stacked Model
Encoder Blocks

(Context-Query Attention)

Self-attention

Layernorm

l

Repeat

Conv

Stacked Embedding Stacked Embedding
Encoder Blocks Encoder Blocks
Embedding Embedding
0000 0000)

Context Question

Layernorm

it

e Input Embedding Layer: We used the standard method to obtain the embedding of each
word by concatenating its word embedding and character embedding, which used 300-
dimensional pre-trained word embeddings from GloVe [7] and 200-dimension trainable
vector for each character. As the QANet paper mentioned, we also adopted a two-layer
highway network [8]] on the embeddings.

* Embedding Encoder Layer: At first, we implemented our encoder layer as the QANet
paper mentioned, which is a stack of the following building block: [positional-encoding +
convolution-layer x # + self-attention-layer + feed-forward-layer] with residual connection
and layer normalization in between. We also adopted the layer dropout regularization method
mentioned in the origin paper, where sublayer [has survival probability p; = 1 — %(1 —pL)
where L is the last layer and p;, = 0.9. In addition, we added the recurrence mechanism
mentioned in the Transformer-XL [3]]|'| We stored the output of the previous hidden layer
from the previous segment that allows the model to create long-term dependencies. At the
same time, we used the relative distance between tokens instead of their absolute position to
do encoding. More details about these two key factors are introduced below.

— Segment-Level Recurrence with State Reuse: During training, the hidden state
sequence computed for the previous segment is fixed and cached to be reused as an
extended context when the model processes the next new segment.

— Relative Positional Encodings: : The fundamental idea is to only encode the relative
positional information in the hidden states. We can create a set of relative positional
encodings R glmazxd where the i-th row R, indicates a relative distance of 7 between
two positions.

'Transformer-XL official github: https://github. com/kimiyoung/transformer-x1l

https://github.com/kimiyoung/transformer-xl

* Context-Query Attention Layer: We implemented our context-query attention layer as the
standard module used in almost every previous reading comprehension models, which is the
same as BiDAF’s starter code.

* Model Encoder Layer: This layer used the same block as the Embedding Encoder Layer,
except that the convolution layer number is 2 within a block and the total number of blocks
are 7.

* QOutput layer: We concatenated the outputs of Model Encoder Layer My, M, and M», and
passed them through a convolutional layer referring to BangLiu’s implementationﬂ At last,
passed the outputs to masked-softmax layers to get the start probability and end probability.

5 Experiments

5.1 Data

We used the SQuAD 2.0 [9] provided by the starter repository. The dataset has three splits: train
(129,941 examples), dev (6078 examples), and test (5915 examples).

5.2 [Evaluation method

We used the F1 score and Exact Match (EM) score. The F1 score measures the portion of overlap
tokens between the answer predicted by our model and the ground truth. Thus, even if the answer
predicted is not totally correct, it would still gain some scores in the F1 score. The EM score on the
other hand, is 1 if the prediction of our model is exactly the same as ground truth, and 0 otherwise.
This metric is stricter than that of the F1 score.

5.3 Experimental details

For experiment, we implemented three different models on this task and all reached good results,
including BiDAF as the baseline, QANet, and QANet-XL. All three models integrated the pre-trained
word embedding and character embedding in the Input Embedding layer. We trained these models on
Azure’s virtual machine (Standard NC6 v3), with the following settings. The dropout rate, number of
heads, and the hidden size are set to 0.1, 8, and 128, respectively. For QANet-XL, the memory length
is set to 256.

5.4 Results

Table|l|and [2|showed that our QANet has successfully exceeded the baseline model BiDAF in both
the EM and F1 score. This indicated that removing the recurrent networks in the encoder could help
improve the performance on this task. And our QANet model was not only accurate but also fast,
because the model was fully feed forward, composed entirely of separable convolutions, attention,
linear layers, and layer normalization, which was suitable for parallel computation.

Although the results of QANet on validation set outperformed BiDAF a lot, the improvement on test
set was slight, which didn’t match the results in the QANet paper. We thought it was because we
didn’t implement the data augmentation trick mentioned in the paper on our QANet model . Referring
to the paper, they achieved significant gains by utilizing data augmentation consisting of translating
context and passage pairs to and from another language as a way of paraphrasing the questions and
contexts. We implemented most of the tricks and innovation methods mentioned in the paper instead
of data augmentation. We might reach a higher performance if we applied the data augmentation
method to our model in the future.

On the other hand, QANet-XL should improve due to the recurrence mechanism and the relative
position encoding, but the results on both validation set and test set showed that QANet-XL didn’t
achieve a higher score compared to the original QANet. One of the reasons we thought was that
the paragraphs in SQuAD dataset are not that long (maximum context length approximately 400
tokens), they don’t need to rely on Transformer-XL to achieve a remarkable result. And the other
reason we thought was the lack of training time. From the training loss visualization, it showed that

https://github.com/BangLiu/QANet-PyTorch

https://github.com/BangLiu/QANet-PyTorch

the learning rate of QANet-XL was slower than QANet, which implied that the model needed more
training epoch to reach the same performance as QANet. Due to the limitation of our computing
resources, we couldn’t train that long to see if QANet-XL could outperform QANet.

EM F1
BiDAF 62.141 65.606
QANet 64.191 67.677

QANet-XL 60.561 63.430
Table 1: Validation Set Results

EM F1
BiDAF 60.575 64.235
QANet 60.727 64.087

QANet-XL 57.853 61.022
Table 2: Test Set Results

6 Analysis

6.1 Ablation Study

We conducted ablation studies to exam the components of QANet model: the embedding, the self
attention mechanism, the layer dropout regularization method, and the feed forward layer. We report
the results on validation set in Table 3

At first, we compared the performance of using only word embeddings with that of adding character
embeddings on top of word embeddings as the input. We found that in both single-headed and
multi-headed attention model, using character embeddings plus word embeddings achieved better
score on validation set than only using word embeddings. It could improve approximately 2~3%
EM and 1~2% F1 scores. Then, we compared the results of using single-headed and multi-headed
attention. Although multi-headed attention required 2x training time, it could achieve better score than
single-headed attention. We believe that it’s because multi-headed attention could better generalize
the different token-token interactions than single-headed attention using multiple heads, just like the
filters in CNN model.

In addition, we examined the robustness of using the layer dropout regularization method in the
Encoder Block and the convolutional feed forward layer in both the Encoder Block and output module.
Surprisingly, we found that discarding the layer dropout method and using a constant dropout in the
Encoder Block improved the performance and achieved a comparable score with the multi-headed
attention model. We thought that it might because it reduced the over-fitting on training set, hence, it
appears to raise some improvement on validation set. As for the convolutional feed forward layer,
using convolution layer as feed forward layer yielded higher results than using linear layer, which
shows that convolution layer could better capture the local structure of the context.

Embedding Layer Dropout Attention Feed Forward EM F1 Difference

QANet word+char v single-head convolution 62.83 664
word v single-head convolution 60.46 64.19 -237/-2.21
word+char X single-head convolution 64.85 68.48 2.02/2.08
word+char v single-head linear 61.35 64.86 -1.48/-1.54
word+char X single-head linear 60.61 64.04 -2.22/-2.36
word+char v multi-head convolution 64.19 67.68 1.36/1.28
word v multi-head convolution 62.39 65.77 -0.44/-0.63

Table 3: Ablation studies on different components of QANet (validation score)

6.2 Error Analysis

We analyzed the outputs of three models: BIDAF, QANet, and QANet-XL (all used character and
word embeddings as input), to see how they failed or succeeded on the task. Here we use the results
on validation set for analysis.

Table [d] shows an example where all the models successfully output the correct answer. In this case,
all the models have the ability to recognize the named-entity ‘King George III* in the context to
answer the question. This example is considered as an easy question.

Table [5] shows an example where all the models failed to output an non-answerable question. In
this example, all the models could not identify the difference between ‘input‘ and ‘output. So they
answered the type of input graph in a decision problem as the answer. This example suggests that our
models still have room for improvement on distinguishing synonyms and antonyms.

Table [6] shows an example that our QANet model outperforms the other two models: BiDAF and
QANet-XL. The BiDAF model couldn’t correctly tag the answer span, which just predicted the
starting position right after the word ‘nucleons‘. The QANet-XL model didn’t even detect the answer.
In contrast, the QANet model successfully predicted the correct start and end positions, which shows
that it can better identify the proper answer span and achieve higher exact match score.

uuid Oe6bb4edacab88a3bee8d3ecs

Question Who issued the Royal Proclamation of 1763?

Context Following the treaty, King George III issued the Royal Proclamation of
1763 on October 7, 1763, which outlined

Gold King George II1

BiDAF King George 111

QANet King George III

QANet-XL. King George I1I
Table 4: Example for error analysis that all models succeed.

uuid 04ab24c55b6067b4£35e8746¢
Question What type of graph is an example of an output used in a decision problem?
Context An example of a decision problem is the following. The input is an arbi-

trary graph. The problem consists in deciding whether the given graph is
connected, or not

Gold
BiDAF arbitrary graph
QANet arbitrary

QANet-XL arbitrary
Table 5: Example for error analysis that all models fail.

uuid 075d3fdf07ba291acc81d747d
Question What is the force between nucleons?
Context The strong force only acts directly upon elementary particles. However, a

residual of the force is observed between hadrons (the best known example
being the force that acts between nucleons in atomic nuclei) as the nuclear

force
Gold nuclear force
BiDAF in atomic nuclei) as the nuclear force
QANet nuclear force

QANet-XL
Table 6: Example for error analysis that QANet outperforms the others.

7 Conclusion

In this project, we successfully implemented the Question Answering system along with several
models and ablation studies. We concluded that Transformer-based model, namely, the QANet,
performed better than RNN-based model, namely, the baseline BiDAF. In addition to that, adding
character embeddings would also greatly improve the performance of the model compared to that
with only word embeddings. However, we also found out that adding the two key points of the
Transformer-XL into our model would not improve the performance on SQuAD 2.0. The ablation
study shows the robustness of the character embeddings and convolution layers, and surprisingly
found that the layer dropout method isn’t really beneficial to the QANet model in this dataset. The
error analysis supports that the QANet model performs better in proper span tagging hence yields
higher exact match score.

Acknowledgement

We would like to thank the course CS224N to give us a chance to learn about the interesting concepts
of natural language processing, and to do a final project together on such an interesting problem.
We would also like to thank the instructor, Chris Manning, for his diligent teaching, and our mentor,
Fenglu Hong, for her informative feedback on our proposal and milestone report.

References

[1] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading
comprehension, 2018.

[2] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension, 2018.

[3] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xI: Attentive language models beyond a fixed-length context, 2019.

[4] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Interspeech, volume 2, pages 1045-1048. Makubhari,
2010.

[5] Natural Language Computing Group. R-net: Machine reading comprehension with self-matching
networks. May 2017.

[6] Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer
open-domain questions, 2017.

[7] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532—1543, Doha, Qatar, October 2014. Association for
Computational Linguistics.

[8] Rupesh Kumar Srivastava, Klaus Greff, and Jiirgen Schmidhuber. Highway networks, 2015.

[9] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuUAD. In Association for Computational Linguistics (ACL), 2018.

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Ablation Study
	Error Analysis

	Conclusion

