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Abstract

Question Answering (QA) is a critical task for NLP applications such as con-
versational agents and search engines in which generalization to new domains is
highly desirable. Despite outperforming human benchmarks, state-of-the-art QA
models often fail to generalize to new domains without significant fine-tuning. To
address this challenge, Lee et al. [1] couples a pre-trained language model such
as BERT [2] and a discriminator model (which predicts domain labels) so that
the language model learns to predict features that are indistinguishable within the
in-domain datasets. We aim to build a robust question-answering model by apply-
ing above-mentioned adversarial learning approach with pre-trained distilBERT
[3] generator with a simple 3-layer discriminator. Our best model outperforms
baseline and attains F-1 score of 58.63 and EM score of 40.14 on test leaderboard
of RobustQA track. Alongside, we performed extensive experiments to determine
impact of hyper-parameters on F-1 score and EM metrics which can be seen in
results section.

1 Key Information to include

• Mentor: Kaili Huang
• External Collaborators (if you have any): None
• Sharing project: None

2 Introduction

Question Answering (QA) task is one of the highly sought-after areas in NLP research. Ability to
generalize on new datasets a.k.a. robustness of QA models is desirable for numerous applications in
wide range of domains such as Information Retrieval (identifying accurate answer given a search
query, e-commerce chatbot which resolve customer questions) to Education (virtual teaching assistant
that provides answers for students in remote areas).

Although QA models outperform human benchmarks in challenges such as SQuAD leaderboard, they
often over-fitted and fail to generalize on new datasets by a huge margin. One might suggest the use
of number of closed-domain QA models to resolve this issue. But, this solution is computationally
expensive and it is difficult to identify and gather training data for all possible domains at development
time. Thus, we must move towards open-domain Question-Answering. A step in that direction
is construction of robust QA models. One intriguing approach of creating robust QA models is
Adversarial Learning for Domain-Agnostic Question Answering [1].

Adversarial training technique has helped solve multiple challenges in deep learning networks in
the computer vision and it intrigued us to learn about its application in the NLP domain. Previously,
Lee et. al [1] explored using adversarial training framework for domain generalization in Question
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Answering (QA) task. Their model consists of a BERT [2] as conventional QA model and a 3 layer
MLP as a discriminator. The training is performed in the adversarial manner, where the two models
constantly compete with each other, so that QA model can learn domain-invariant features.

For our default project, we are required to use pre-trained distilBERT as our QA model. Hence we
employ distilBERT architecture as the Generator model within the adversarial architecture [3] with a
simple 3-layer MLP as discriminator model.

3 Related Work

3.1 DistilBERT

There is a growing trend of use of transfer learning with large-scale pre-trained language models
in Natural Language Processing. This has helped to significantly improve performance. However,
there are several downsides to this trend, including environmental cost of training these large models
and associated computational and memory requirements. In this context, DistilBERT was explored
as a smaller and faster alternative to the massive BERT model. DistilBERT, a general-purpose pre-
trained version of BERT, is 40% smaller, 60% faster, and retains 97% of the language understanding
capabilities of BERT [3].

DistilBERT leverages the Knowledge Distillation compression technique where the DistilBERT as a
student architecture is trained with a distillation loss over the soft target probabilities of the teacher,
BERT. For the DistilBERT, the number of layers is reduced by a factor of 2 compared to BERT.

The authors of DistilBERT opted for a general-purpose pre-training distillation rather than a task-
specific distillation. They proposed using a triple loss for training combining language modeling,
distillation and cosine-distance losses aimed at leveraging the inductive biases learned by larger
models during pre-training.

3.2 Adversarial Learning

In the adversarial approach for Domain-agnostic QA system, during training the QA model tries to
fool the discriminator so that the hidden representation becomes indistinguishable to the discriminator.
On the other hand, the discriminator is trained to classify the joint embedding of question and passage
from QA model into the given known domains. If the QA model can project question and passage
into an embedding space where the discriminator cannot tell the difference between embeddings from
different known domains, we assume the QA model learns domain-invariant feature representation.

This approach is applied on MRQA Shared Task 2019 and has shown better performance compared to
the baseline model. This technique helped the new model to outperform the baseline on DROP(DP),
DuoRC(DR), RelationExtraction(RE), and RACE(RA) dataset by large margin. The model shows
better performance in terms of EM (over 1.5 points) and F1 (over 2 points) on most of the test datasets
except for ST.

3.3 Meta Learning

Authors of Lee et. al [1] also experimented with meta learning, however BERT being a very large
model with millions of parameters, application of meta learning to do domain generalization did not
work well. In order to maximize meta objective in both train and test domain, it needed to compute
Hessian-vector products which slowed down training. Authors also tried to use Span refinement, to
find the most plausible answer span in a sentence which is similar to the question in terms of cosine
similarity, as golden span. The question and sentences in the passage are encoded into fixed-size
vectors with universal sentence encoder. This approach boosts up the performance of some datasets
but degrades the performance a lot in the other datasets.
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4 Approach

4.1 Baseline

For baseline, we will fine-tune pre-trained distilBERT model [3]. More details are found in cs224n
project handout [4].

4.2 Adversarial approach

For adversarial training approach, we select distilBERT as our pre-trained QA generator which learns
to predict domain-agnostic features which are then fed into a discriminator. The discriminator accepts
CLS features predicted by generator and learns to predict domain labels from 0, 1, ...K − 1 where K
is the number of in-domains. In our case, the discriminator is a MLP model with 3 hidden layers,
input size 768 and output layer is classification for K=3 with in-domains as SQuAD, NewsQA and
Natural Questions.

The discriminator tries to predict domain labels and the generator tries to fool the discriminator by
learning domain-agnostic features. Thus, they constantly compete with each other [5]. This can be
seen in 2. More concretely, generator loss (equation 4) is composed of two terms - QA loss (where
we maximize pstart(i)pend(i)) (equation 1) and adversarial loss (where we minimize KL divergence
between uniform probability distribution and softmax probability output from discriminator (equation
2). Thus, the generator learns to predict domain-agnostic features. On the other hand, discriminator
loss (equation 5) is simply cross entropy loss of predicting the correct domain label.

LQA = − 1

N

N∑
i=1

log pstart(i) + log pend(i) (1)

Ladv =
1

N

N∑
i=1

KL(U(l)||pϕ(l(i)|h(i))) (2)

Where KL divergence between probability distributions P and Q is defined as -

KL(P ∥ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(3)

LG = LQA + λLadv (4)

LD = − 1

N

N∑
i=1

log pϕ(l(i)) (5)

5 Experiments

This section contains the following:

5.1 Data

In this project, we have been provided with three in-domain reading comprehension datasets (Natural
Questions, NewsQA and SQuAD) for training a QA system which will be evaluated on test examples
from three different out-of-domain datasets (RelationExtraction, DuoRC, RACE).

Each data point in above-mentioned datasets can be represented as (q, c) for question q and context c
with label (s, e) such that answer a = c[s : e] i.e. text in context starting at s and ending at e.

Statistical details of these datasets can be found in table below:
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Figure 1: Overall training procedure for learning domain-invariant feature representation. QA Model
learns to predict start and end position in the passage and fool discriminator for domain-invariant
representation [1]

Dataset Question Source Passage Source Train Dev Test
in-domain Datasets

SQuAD Crowdsourced Wikipedia 50,000 10,507 -
NewsQA Crowdsourced News Articles 50,000 4,212 -

Natural Questions Search Logs Wikipedia 50,000 12,836 -
oo-domain Datasets

DuoRC Crowdsourced Movie Reviews 127 126 1,248
RACE Teachers Examinations 127 128 419

RelationExtraction Synthetic Wikipedia 127 128 2,693
Table 1: Statistics for datasets used for building the QA system for this project. Question Source and
Passage Source refer to data sources from which the questions and passages were obtained

5.2 Evaluation method

We used following metrics of success:

1. F1 score : the primary performance metric that will be used to rank submissions. F1 is the
harmonic mean of precision and recall. It is a less strict metric compared to the other metric below.

2. Exact Match : a binary measure (i.e. true/false) of whether the system output matches the ground
truth answer exactly.

5.3 Experimental details

We trained our baseline on indomain_train (training dataset composed of all three in-domain datasets)
with learning rate of 3e-5, batch size of 16 for 2 epochs. We also tried baseline for 3, 5 epochs but
best score found at 2 epochs.

For our adversarial experiments, we tuned dis-lambda (i.e. weight of adversarial loss), dropout and
hidden_size of discriminator. At a time, we fixed two of them and changed only one of them in order
to draw inference about impact of that hyper-parameter on performance. All of these experiments
used learning rate of 3e-5, batch size of 16 for 5 epochs. The adversarial model is trained on V100
GPU for about 6 GPU hours (we can observe combined training loss of generator and discriminator
in 2). All of these experiments are trained on indomain_train, validated on indomain_val and tested
on oodomain_val. Additionally, we submit our predictions for oodomain_test to test leader-board on
RobustQA track.
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Figure 2: Here we see that after initial epochs, we can see that generator loss and discriminator loss
compete with each other i.e. if one increases other decreases and vice-versa. [1]

5.4 Results

Datasets
Params dis-lambda=0.5 dis-lambda=0.1 dis-lambda=0.01

F1 EM F1 EM F1 EM
indomain-val 70.23 53.87 70.61 54.26 70.68 54.25
oodomain-val-all 48.51 32.72 49.21 34.55 49.75 32.98
Race 34.37 19.53 34.2 21.88 35.07 21.09
DuoRC 41.15 33.33 47.33 38.1 46.96 34.92
RelationExtraction 65.55 43.75 66.06 43.75 67.19 42.97

Table 2: Discriminator lambda vs Score (F1, EM) on different datasets (fixed hyper-parameters are
hidden_size = 768, dropout=2e-1)

As seem from table 2, F-1 score for oodomain_val steadily improves with decrease in λ. We believe
that too large value of λ (when λ = 0.5, 0.1) introduces more noise in generator loss. Thus, by
lowering λ (i.e. 0.01), generator is able to learn from QA loss as well as adversarial loss. This set of
experiments yield our best model which achieves 49.75 on F-1 score for oodomain_val dataset.

Datasets
Params dropout=0.2 dropout=0.1

F1 EM F1 EM
indomain-val 70.68 54.25 70.29 54.07
oodomain-val-all 49.75 32.98 48.41 32.2
Race 35.07 21.09 35.98 22.66
DuoRC 46.96 34.92 41.31 31.75
RelationExtraction 67.19 42.97 67.84 42.19

Table 3: Dropout vs Score (F1, EM) on different datasets (fixed hyper-parameters are hid-
den_size=768, dis-lambda=1e-2)

From table 3, we observe that F-1 score for oodomain_val increases as we increase dropout from 0.1
to 0.2. We hypothesize that high dropout leads the discriminator learn domain labels using lesser
information. So, it will not over-fit on training data. As a result the generator also improves by
competing with the discriminator.
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Datasets
Params hidden size = 768 hidden size = 512 hidden size = 256

F1 EM F1 EM F1 EM
indomain-val 70.68 54.25 70.90 54.85 70.85 54.69
oodomain-val-all 49.75 32.98 49.47 32.46 47.89 33.51
Race 35.07 21.09 37.62 22.66 36.53 23.44
DuoRC 46.96 34.92 38.38 24.6 41.49 33.33
RelationExtraction 67.19 42.97 72.25 50 65.55 43.75

Table 4: Hidden Layer dimension size vs Score (F1, EM) on different datasets (fixed hyper-parameters
are dropout=2e-1, dis-lambda=1e-2)

From table 4, we observe that F-1 score for out of domain validation set steadily increases with
Hidden size of the Discriminator. We hypothesize that - smaller hidden size (i.e. 512 and 256) leads
the model to under-fit the intricate boundaries between in-domains where larger hidden size (i.e. 768)
is able to fit the boundaries better.

Datasets
Model Our best model baseline

F1 EM F1 EM
indomain-val 70.68 54.25 70.43 54.46
oodomain-val-all 49.75 32.98 49.0 34.82
Race 35.07 21.09 35.44 21.88
DuoRC 46.96 34.92 41.69 33.33
RelationExtraction 67.19 42.97 69.76 49.22

Table 5: Score (F1, EM) of our model(hidden_size=768, dis-lambda=1e-2, dropout=2e-1) vs baseline
on different datasets

As seen from table 5, our best model achieves F-1 score of 49.75 on oodomain_val i.e. 0.75 point
improvement over the baseline. Additionally, our oodomain_val F-1 score improves by 5.27 points for
DuoRC which means the model indeed generalizes to new domains. Further, our oodomain_val F-1
score declines by 2.57 for Relation Extraction (which is very similar to training datasets). Thereby,
proving that our model is not over-fitting (as the baseline did) and rather generalizing to new domains.
We saw a small drop of 0.37 points in oodomain_val F-1 score for RACE which was unexpected. But
this drop is too small to draw inference from.

Lastly, our best model attains F1 score of 58.634 and EM score of 40.138 on test leader-board of
RobustQA track.

6 Analysis

We analyze our approach on the robustness of adversarial training for QA model by evaluating F1
and EM score of both indomain and ooomain validation dataset. As we can see in the Table 5 above,
we could improve F1 score on both indomain and oodomain datasets by 0.15 and 0.75 respectively
using adversarial training approach.

Figure 3: Examples for EM score comparison from gold truth, baseline and best model prediction
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At the same time, EM score for our model dropped down compared to the baseline. To understand fall
in EM score, we analyzed predicted and gold answers for both oodomain and indomain dataset as EM
is very sensitive to the exact prediction. We can observe from figure above as how an insignificant
but small difference in predictions may affect overall EM score.

Figure 4: Plot of F1, EM score for our best adversarial model vs baseline for all datasets

To draw more intuition and generate more insights, we compared scores of individual out-of-domain
datasets for both baseline and our best model, as shown in figure 4 above. We improved F-1 score
over the baseline for dataset DuoRC by more than 5 points and EM score by more than 1.5 points.
For RACE, We observe small decrease for our model in both F-1 and EM scores over baseline. We
do see drop of almost 2 points for RelationExtraction with our best model, which is understandable as
all indomain datasets are similar to RelationExtraction dataset. From these trends, we can conclude
that the baseline model seems to be overfitted to in-domain datasets, where as our model performance
generalizes better for out-of-domain dataset.

We experimented with batch size 16 and 32, this experiment did yield small improvement in EM but
negatively impacted the F-1 score. We also trained our adversarial model for 20 epochs in order to
draw insights about the training process. We found that the performance for adversarial model only
improved till epoch 5, and worsened for later epochs.

We started with initial size of 768 for all 3 hidden layers on our discriminator model. In our quest to
improve performance, We tried to boost the strength of discriminator by reducing size of 2nd and
3rd layer of the discriminator model to 512 and 256 respectively. However this did not improve
performance for out-of-domain datasets in comparison to our best model. Score on RACE dataset
improved in this experiment by 2 points but there was a negative impact on score of other two datasets.
This suggests that 768 is best-suited size for hidden layers in discriminator architecture as it increases
the ability of the discriminator to distinguish features from in-domain datasets.

7 Conclusion

We employ adversarial learning on Question-Answering task to learn domain-invariant features. On
test leaderboard, our best model attains F-1 score of 58.63 and EM score of 40.14. On validation
leaderboard, our best model achieves F-1 score of 49.75 and EM score of 32.98. Additionally,
we performed extensive experiments to determine relationship of hyper-parameters with model’s
performance. Our main findings include -

• large values of λ hurts model performance by introducing too much noise in generator loss
• too small value of λ also hurts model performance because it reduces the importance of

adversarial learning (setting λ = 0 means essentially reverting back to baseline)
• larger dropout improves model performance by preventing overfitting of the discriminator
• larger hidden_size in discriminator model architecture improves performance by better

fitting the intricate boundaries between in-domains
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We acknowledge that our model does not improve on RACE as it is very different from in-domains.
To resolve this issue in future, we will work towards building a more robust discriminator so that
generator would be able to generalize to out-domains that are significantly different from in-domain
datasets. To leverage out-of-domain information during training, we can use limited amount of
out-of-domain data points to improve QA model robustness as demonstrated in [6].

The code is available on github: https://github.com/aasavari-kakne/robustqa

References
[1] Seanie Lee, Donggyu Kim, and Jangwon Park. Domain-agnostic question-answering with

adversarial training. CoRR, abs/1910.09342, 2019.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[3] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019.

[4] 2022 CS224N teaching staff. Cs224n default project handout - robustqa track, February 2022.

[5] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

[6] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723, 2020.

8

https://github.com/aasavari-kakne/robustqa

	Key Information to include
	Introduction
	Related Work
	DistilBERT
	Adversarial Learning
	Meta Learning

	Approach
	Baseline
	Adversarial approach

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

