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Abstract

This work aims to investigate innovative designs of model architectures that can
help boost performance on the SQuAD 2.0 dataset, without using pre-trained
language models. Since around half of the questions are unanswerable, it is
important for the model to tactfully abstain from answering. The main contribution
is a self-implemented QANet architecture with extensions on the embedding layer
and the output layer. By using unified encoding for the context and question
before feeding into context-query attention and employing threshold-based answer
verification during testing, the model achieves stronger out-of-sample performance
than the original QANet baseline. With a novel debiased ensemble method, the
model achieves an EM score of 67.68 and F1 score of 70.53 on the test leaderboard
for the IID SQuAD track.

1 Key Information to include

• Mentor: Elaine Sui
• External Collaborators (if you have any): N/A
• Sharing project: N/A

2 Introduction

Machine reading comprehension (MRC) and question answering (Q&A) has gained a lot of research
attention over these years because of its theoretical importance and wide range of practical appli-
cations. Typically, a reading comprehension task involves letting the machine understand a given
context paragraph, and outputting a span of the paragraph as the answer of an input query. This
requires the machine to encode the paragraph and question into neural representations, and model the
probability of every possible answer candidates. Besides, there are questions that are unanswerable
based on the given context. An unanswerable example with a plausible answer is shown as follows:

Article : Endangered Species Act [1]
Context: "...Other legislation followed, including the Migratory Bird Conservation Act of 1929,
a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection
Act of 1940. These later laws had a low cost to society-the species were relatively rare-and little
opposition was raised."
Question: “Which laws faced significant opposition?”
Answer: N/A
Plausible Answer: later laws

Since the advent of BERT [2], natural language research has shifted to a new paradigm that heavily
utilizes pre-trained contextual embeddings trained by external data source. Among the models that do
not use pre-trained contextual embeddings, QANet achieves state-of-the-art performance on SQuAD
1.1 dataset in 2018. QANet is an end-to-end Q&A model whose encoder only consists convolution
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and self-attention, without recurrent components [3]. On the other hand, SQuAD 2.0 was published
later with around half of the questions unanswerable, which raises challenges on predicting the
answer using previous Q&A models like QANet. Our empirical studies show that a base QANet
model frequently gives plausible answer to unanswerable questions. These facts motivates us to make
the following extensions to the QANet architecture to better adapt it to SQuAD 2.0 dataset:

1. We implemented the unified embedding layer for the concatenated context and question,
with additional segment embedding to distinguish context and question segments.

2. We utilized threshold-based answer verification (TAV) to make the model tactfully abstain
from answering when the predicted no-answer probability is high.

3. We tested the Unified QANet Model + TAV on the SQuAD 2.0 dataset and throughly
evaluated its performance and limitations.

Models with various hyper-parameter configurations were trained using the training data and evaluated
on the development set. We foundd that the default depth for encoder blocks in the original QANet
paper is already close to optimal. The unified encoding layer only slightly improves the performance,
yet the threshold-based verification significantly boosts the performance metrics, especially the exact
match (EM) score. We attribute this improvement to successfully avoid providing plausible answers
to some unanswerable questions. Finally, we proposed a novel ensemble method which can debias
the predicted length distribution and further improve performance on test set.

3 Related Work

Recurrent model that processes sequential inputs was widely used for natural language processing
tasks. For MRC tasks, it is usually combined with attention mechanism to deal with interactions
between the context and question. The Bidirectional Attention Flow (BiDAF) model [4] utilizes
two-way attention to encode the context into a question-aware neural representation, which achieved
strong results on SQuAD dataset [5].

On the other hand, transformer models later dominate natural language processing tasks through
its structural efficiency and strong performance. Inspired by the transformer architecture, QANet is
invented as an end-to-end model whose encoder only consists depthwise-separable convolution and
self-attention [3]. QANet achieves state-of-the-art performance on SQuAD 1.1 dataset in 2018.

The recent progress on the machine reading comprehension task without using pre-trained models
mainly focuses on building verifiers that can successfully detect those question whose answer is
not available from the given paragraph. [6] proposed a read-then-verify system, which leverages an
answer verifier to decide whether the predicted answer is entailed by the input snippets. [7] introduced
a retrospective reader (Retro-Reader) that integrates two stages of reading and verification strategies,
ending with a threshold-based verification heuristic. Meanwhile, there are following research show
that apart from the benefits of pre-training, performance can also be improved by using a unified
encoding and matching network architecture similar to BERT transformer [8].

In this work, we take these ideas as inspiration to improve the architecture of QANet. The goal is
to improve the QANet architecture to better adapt it to SQuAD 2.0. According to [8], we designed
a unified variation of the embedding layer for QANet. Inspired by [6] and [7], we experimented
two variants of the answer verification strategies to improve the model’s decision-making before
outputting the predicted result.

4 Approach

The reading comprehension task in SQuAD is defined as follows [5]: Given a context paragraph with
n words C = {c1, c2, ..., cn} and the question sentence with m words Q = {q1, q2, ..., qm}, output a
span S = {ci, ci+1, ..., cj} from the original paragraph C using the model. For SQuAD dataset, the
loss function is the averaged cross entropy between the predicted softmax distribution of the starting
and ending position of the span and the reality (s, e):

Lspan = − 1

N

N∑
i=1

[
log(psys

i
) + log(peye

i
)
]
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Figure 1: The QANet architecture. Source: [3]

where ysi and yei are respectively the groundtruth starting and ending position of example i. During
inference, the optimal (ŷsi , ŷ

e
i ) which maximizes the psŷs

i
peŷe

i
with ŷsi ≤ ŷei and ŷei − ŷsi + 1 ≤ Lmax

will be used as the predicted span for example i. Lmax is set to 15 to avoid predicting long answers
for stable inference.

4.1 BiDAF Baseline

BiDAF Baseline The BiDAF model provided by CS224N project starter code is used as the baseline.
The architecture of BiDAF is omitted for brevity and can be find in [4]. Besides the original model, we
extended BiDAF by incorporating character-level embedding using 2D-convolution and max-pooling.
This character embedding is shared with the later QANet implementation and will be detailed shortly.

4.2 QANet1

The QANet model consists of five layers, which are introduced below. See Figure 1. We use h to
indicate the hidden size variable of the model.

Input embedding layer The raw text of contexts and questions were first processed into token
indexes that can query for word and character embeddings. We use 300-D pre-trained GloVe word
vectors[9] for the word embedding, followed by a linear projection of Rh×300. For the charactor
embedding, each character has 64-D vector representation and every word is padded or truncated
to a length of 16. A single word’s character representation is of dimension R16×64. We used a 2D
convolution with dimension (64, h) of size 5 across the sequence length, and then max-pool across
the characters to get a vector representation of the word. Then they were concatenated together and
resized by a linear projection of dimension Rh×2h. Finally, a two-layer highway network was applied
to the hidden representation before generating the output.

Embedding & model encoder block The embedding encoder block and model encoder block share
the same structure: It begins with a sinusoidal positional encoder [10]. Then there are several repeated
depthwise-separable convolution layers, followed by a multi-head attention and a feed forward layer.
Layer normalization was applied before each of the above components, and residual connection was

1The positional encoding is adapted from https://github.com/BangLiu/QANet-PyTorch. The QANet imple-
mentation was done from scratch, besides referring to online tutorial and threads for debugging purposes.
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employed in every sub-block to avoid vanishing gradient problem due to the stacking depth. Similar
to [3], we used 1 embedding encoder block, which contains 4 convolution layers with kernel size
7, before feeding into the context-query attention. To speed up training, we use 5 stacked model
encoder layers instead of 7, with 2 convolution and a kernel size of 5. The same stacked model
encoder blocks, with 5 encoder layers, are stacked 3 times with sharing weight to generate the span
matching representation after the context-query attention. Due to GPU memory constraint, we set all
the number of multi-head attention to 4 instead of 8.

Context-query attention layer QANet use a standard context-to-query attention constructed by
similarities between each pair of context and query words [3]. They find that the additional query-
to-context attention from BiDAF can provide little benefits. Since our goal is to improve QANet,
we directly use the bi-directional attention from [4], hoping it can have synergy with other later
modifications of the QANet architecture.

Output layer QANet adopts the strategy of [4] to predict the probability of each position being
the start or end of an answer span. The hidden vectors of different stacked model encoder blocks
M0, M1, M2 are used as the input. With two linear projection W1, W2 ∈ Rh×2h, the probability of
starting and ending position of the answer span are predicted using softmax layer:

ps = softmax (W1[M0;M1]) , pe = softmax (W2[M0;M2])

The predicted probability is then used to compute the pre-defined negative log likelihood loss.

4.3 Extensions

Unified encoding (Unified QANet) Inspired by [8], we implemented a unified embedding layer,
which encodes the concatenated question and context representation. It performs the same operations
as the QANet input embedding layer, with an additional trainable segment embedding to indicate
whether the word belongs to context or passage segment. For a single word representation xj , the
final output is the sum of the original output of highway network and the segment embedding:

xj = highway(W [xw
j ;x

c
j ]) + xsj , xsj ∈ Rh, sj ∈ {0, 1}

where W ∈ Rh×2h is the previous linear projection for concatenated word and character embedding.
sj = 0 indicates context words and sj = 1 indicates passage words. Using this embedding, the
self-attention weights can be automatically learned across the two segments for question-to-passage
or passage-to-question matching.

Threshold-based answerable verification (TAV) From the original QANet paper, c0 = OOV
(Out of Vocabulary) is inserted at the beginning of each paragraph as a start placeholder, and span
S = {c0} will indicate a no-answer output. Among all the valid starting and ending position pairs,
(0, 0), which indicates no answer, is only one of these l(l + 1)/2 possible cases (l is the sequence
length of the context). This makes QANet frequently give plausible answers to unanswerable queries.

Therefore, two different verification methods were implemented:

1. (TAV1) We extended the final output layer of QANet with an additional binary classifier
branch to predict answerability. The extended model will output a tuple (ŷsi , ŷ

e
i , p̂

na
i ) for

example i, where the last entry is the predicted no-answer probability.

ps = softmax (W1[M0;M1]) , pe = softmax (W2[M0;M2])

pna = Sigmoid (W3[pool([M0;M1], p
s); pool([M0;M2], p

e)])

where W3 ∈ R1×2h, the pooling indicated the sum of the hidden vectors across con-
text/question length weighted by the predicted probability vector pe and ps, respectively.
The the loss function is extended with the binary cross entropy of classification:

L = Lspan − 1

N

N∑
i=1

[ynai log(pnai ) + (1− ynai ) log(1− pnai )]

2. (TAV2) Alternatively, we can use a heuristic strategy to decide whether a question is
answerable according to the predicted start and end probability [7]. Given the output
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probability vector ps and pe, we can calculate the no-answer probability pna and has-answer
probability phas:

pna = ps0p
e
0; phas = max

0<i≤j≤n

(
psip

e
j

)
, j − i+ 1 ≤ lmax

scorena = pna − phas

For both strategies, an answerable threshold δ is determined by the development set performance. If
the final probability/score is above the threshold δ, the original answer will be replaced by the null
string.

Model ensemble We use a majority voting approach to ensemble 7 models: 3 copies of QANet
models and 4 copies of Unified QANet model with TAV2. Descending weights are assigned to
models from the one with the highest development set performance to the lowest for tie breaking.
After comparing the prediction answer length with the ground truth, we find that the predicted length
distribution differs from the real distribution. We attribute this to the independent architecture of
starting & ending position prediction. Therefore, we proposed an original weighting scheme on top
of the majority voting.

Assuming there are k models M1, ...,Mk from a I.I.D model distribution, then the majority voting
answer score is approximately proportional to predicted density. Therefore, we define the new
length-debiased score by:

scoreA =

k∑
i=1

I{Mi(C,Q) = A}

scoredebiasedA = scoreA × Pl(l = lA)

PM
l (l = lA)

where A, C, Q are the corresponding answer, context and question. Pl and PM
l are the probability

mass functions of ground truth answer length and predicted answer length.

5 Experiments

5.1 Data

The SQuAD 2.0 dataset contains IID (context, question, answer) triples [1]. The training data
consists of 129941 examples. The dev and test set both consist around 6k examples. The raw data is
pre-processed to tokens and then represented by the pre-trained GloVe [9] word vectors combining
with randomly initialized trainable character embeddings.

5.2 Evaluation method

The performance are evaluated using three metrics: Exact Match (EM), F1 and AvNA.

• Exact Match (EM) is a binary measure indicating whether the output matches the ground
truth answer exactly.

• F1 is the harmonic mean of precision and recall.
• AvNA is the precision of the model’s prediction on whether a question is answerable.

The averaged scores over the entire development/test set will be used as the reported scores.

5.3 Experimental details

BiDAF We run the BiDAF model with character embeddings using the same configuration as in the
starter code for 30 epochs. Both took around 3.5 hours on a GeForce RTX 2080 GPU.

QANet The QANet is trained using AdamDelta, with a hidden size of 128, batch size of 24, EMA
decay of 0.999, dropout rate of 0.1, multi-head attention heads number of 4, and a learning rate of 0.5
for 30 epochs. The layer configuration are the same as [3], except that the query-to-context attention
was added to the context-query attention layer, and the number of stacked model encoder blocks is
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Table 1: Model performance comparison on the SQuAD 2.0 development set

Model EM F1 AvNA

BiDAF (Baseline) 58.01 61.26 68.27
BiDAF + Character Embeddings 60.36 63.41 69.37

QANet 66.27 69.45 75.32
UnifiedQANet 66.32 69.72 76.02
UnifiedQANet (1 more embedding encoder) 66.09 69.49 74.79
UnifiedQANet (1 more model encoder) 65.94 69.38 75.47
UnifiedQANet + TAV1 65.48 68.65 74.09
UnifiedQANet + TAV2 67.13 69.97 75.52

Ensemble 69.50 72.35 N/A
Ensemble + Length debiasing 70.32 73.10 N/A

decreased from 7 to 5 for training speedup. We train the model for 30 epochs on a GeForce RTX
2080 GPU in around 14 hours.

UnifiedQANet The Unified QANet variants are trained using the same optimization configuration
as QANet. We trained the Unified QANet with one more embedding encoder layer (2 in total) and
with one more model encoder layer (6 in total). After observing they achieves lower development
performance metrics, we decide not to explore layer depth configurations further. We then trained
the model with TAV1 with the additional branch for classification. After tuning on the development
set, the optimized no-answer probability threshold for TAV1 is set to be δ1 = 0.4. We then applied
TAV2 to the original Unified QANet since it only requires changes in model inference phase. The
optimized no-answer score threshold for TAV2 is δ2 = 0.1.

5.4 Results

The experiment results are shown in Table 1. For the BiDAF baseline, incorporating character
embedding improves the performance. We also observe that our implementation of QANet greatly
outperforms both the BiDAF baseline and the one with char embeddings in terms of both EM, F1 and
AvNA scores.

The Unified QANet performed slightly better than the QANet, but the difference is not significant
enough. Since our QANet only consists of 5 model encoder layers, instead of 7 in the original paper,
we tried two upsized variants, one with 1 more embedding encoder and the other with 1 more model
encoder. However, they did not achieve performance gain, which suggests that for our implementation
and dropout configuration, the model complexity is already around the sweet spot.

The Unified QANet with TAV2 achieved the highest performance. The result is expected since a
perfect score for a specific example can be achieved by successfully predicting unanswerability. By
slightly shrinking towards not giving an answer, the model can benefits from the strategic trade-off
between answering and giving up. On the other hand, the Unified QANet with TAV1 did not perform
well. There are two possible reasons: 1. The classification branch may not be well designed. 2. The
original cost function is extended with an additional binary cross entropy term. This can hurt the
model’s learning towards the ground truth span, since now only half of the gradient is focusing on the
span loss function during backpropagation.

Finally, we see that the two ensemble of the seven models both achieve significant improvement in
EM and F1 score on the development set. The best ensemble achieves an EM score of 67.68 and
F1 score of 70.53 on the test leaderboard. The performance difference in development and test sets
indicates there are some minor overfitting during our hyperparameter optimization, which is based on
development score. It is also possible that there exists distribution shifts between the dev and test set.

6 Analysis

Predicted answer length distribution One of the deficiency of QANet span matching is that the
starting position and ending position are predicted independently. Even with architecture modifica-
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Figure 2: The QANet architecture. Source: [3]

Table 2: Performance breakdown of the UnifedQANet on different types of questions (dev)

What Who How When Where Which Why Other

EM 66.32 67.88 64.95 75.00 62.07 68.49 59.52 63.67

F1 69.86 70.32 69.32 75.85 66.60 74.41 67.60 67.61

AvNA 75.96 74.50 74.85 81.36 75.00 82.87 77.38 75.74

tions, it is still not guaranteed that the model can fully take the answer length into account when
choosing the optimal one among all the solution candidates. The upper two plots in figure 2 show
the histogram of ground truth answer length (only contains those length within lmax) and predicted
answer length. The lower left is the density ratio of the predicted length and ground truth length. We
can see that the model is predicting less NULL answer and promoting answers with length from 2 to
12. The bottom right shows that the model tends to over estimate the answer length when the answer
is less than or equal to 1 word. Therefore, we use the weight from bottom left to debias the answer
length distribution during ensemble. This provides 0.82 increase of EM and 0.75 increase of F1 on
the SQuAD development set, besides the majority voting ensemble.

Performance breakdown & Error analysis Table 2 shows the performance breakdown for different
type of questions. To better understand when the model makes mistakes, we took 3 examples from
the development set for further analysis. See Table 3 for the concrete examples.

In example 1, the model fails to understand the difference between "modern" and "medieval", and
outputs a plausible answer. This is sensible since in GloVE these two words should be quite close
in terms of distance, though they carry different meanings. A possible remedy is to use a higher-
dimension word vector or pre-trained contextual embedding which understand the intricate difference
between these two words. Example 2 is a "why" question, which the model is not good at answering.
The answer hides in the previous sentence but the subject is implicit, so the model fails to deduce it
from later context. For example 3, the model fails to match the question when the correct answer.
The prepositional phrase "Immediately after Decision Time" is the obvious answer. However, the
model does not represent and understand this phrase well enough, and output the "45 min" since it is
more related with time sensitive queries.
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Table 3: Error examples

Context paragraph Question Ground truth Predicted

1. ...The Norman dynasty had a major politi-
cal, cultural and military impact on medieval
Europe and even the Near East. The Normans
were famed for their martial spirit and eventu-
ally for their Christian piety, becoming expo-
nents...

What type of major impact did
the Norman dynasty have on
modern Europe ?

N/A political, cultural and
military impact

2. ...The earlier they surrendered to the Mon-
gols, the higher they were placed, the more the
held out, the lower they were ranked. The
Northern Chinese were ranked higher and
Southern Chinese were ranked lower because
southern China withstood and fought to the
last before caving in...

Why were Northern Chinese
ranked higher ?

they surrendered N/A

3. Immediately after Decision Time a " Mem-
bers Debate " is held , which lasts for 45 min-
utes. Members Business is a debate on a mo-
tion proposed by an –OOV– who is not a Scot-
tish minister...

When is the Members Debate
held ?

Immediately after De-
cision Time

45 minutes

Table 4: Confusion matrix and rates on detecting unanswerability (no answer is Positive)

Model #TP #TN #FP #FN TPR TNR AvNA

UnifiedQANet 2162 2362 486 941 82.65% 71.51% 76.02
UnifiedQANet + (TAV2) 2257 2237 611 846 78.70% 72.56% 75.52

The three examples shows two deficiencies of the model: 1. The embedding from the encoder layer
is not comprehensive enough to carry complicated information for context-query matching. 2. The
model is unsure about answerablity when there are required logical deduction for the question.

AvNA model comparison Table 4 shows the answerability prediction comparison between two
models. From Table 1 we know the second one performs better. We can see that thresholding is
basically a trade-off between True Positive Rate (TPR) and False Positive Rate (TNR). It is inituitive
why it can boost performance: A perfect score for this example can be achieved by successfully
predicting that a question is unanswerable, but nothing is guaranteed for the opposite. For real world
application, it is also beneficial for the NLP model to abstain from answering and call for expert
intervention instead of providing plausible answers by doing this trade-off.

7 Conclusion

In this project, we deal with the machine reading comprehension task. By implementing and extending
QANet, we achieved strong out-of-sample results on the SQuAD 2.0 dataset. Using a unified encoder
layer and tuning the layer depth parameters does not seem to improve the model significantly. On the
other hand, we are able to significantly improve performance by using threshold-based verification
and length-debiased ensemble, which are both extensions related with answerability. We find that
our model usually make mistakes when the ground truth answer is long or when plausible answer
exists. Therefore, it remains promising to see whether pre-trained language models with deeper
representation ability can further boost the performance. Finally, it will be interesting to explore more
advanced answer verification techniques. For example, combining sketchy reading and intensive
reading, which uses additional neural architectures to learn the interaction between question and the
truncated context that contains the potential answer obtained by sketchy reading.
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