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Abstract

When given a large amount of data, Natural Language Processing (NLP) systems
that are fine-tuned on pretrained language models are able to achieve good perfor-
mance in Question Answering (QA) task. Yet, these systems cannot generalized
well to datasets from unseen domains. Kumar et al. [1] introduce the Feature
Distortion Theory, which attempts to explain the poor performance of the fully
fine-tuned pretrained model on out-of-domain image classification tasks. The
theory suggests that complete fine-tuning distorts the pretrained features. In this
project, we test the theory in NLP domain for QA task. Using the pretrained Distil-
BERT model and applying different partial fine-tuning strategies before fine-tuning
the full model, we find that partial fine-tuning does not significantly improve the
performance. In addition, to enhance the robustness of the QA system, we also use
other out-of-domain adaptation and few-shots learning methods, including Data
Augmentation and Mixture of Experts. The best model achieves F1 = 60.49 and
EM = 42.5 on the out-of-domain test set.
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2 Introduction

With the introduction of large pretrained language models, many NLP systems are able to improve
the performance on many downstream tasks, by using the representations from pretrained models and
further fine-tuning on additional data for specific tasks [2]. Transfer learning relaxes the requirement
of large-scale well-annotated datasets for complex tasks [3]. In this project we will focus on Question-
Answering tasks, where a model is shown a paragraph as the context and an question that queries
relevant information. The model is expected to extract the information and predict the span of text
within the context that answers the question concisely. Most approaches for the QA tasks assume that
the test data are independently and identical distributed as the training data. Thus, current QA models
trained on one types of data cannot be well generalized to unseen domains. The main goal of this
project is to build a QA system that is robust to the domain shift.

As an attempt to explain the tradeoff between the in-domain and out-of-domain performance in
fine-tuning, Kumer et al. [1] propose the feature distortion theory. Specifically, fine-tuning will distort
the pretrained features, as it tries to fit the pretained features onto a randomly initialized new head.
Hence, fully fine-tuning a pretrained model improves the performance on in-domain tasks but cannot

Stanford CS224N Natural Language Processing with Deep Learning



generalize will to out-of-domain tasks. On the other hand, tuning only the head while freezing the
lower layers preserves the pretrained features, which leads to better performance in out-of-domain
tasks. Testing on image classification in computer vision, they show that combining fine-tuning with
a method that only tunes part of the model parameters leads to better performance in out-of-domain
tasks. Hence, the additional goal of this project is to test the Feature Distory Theory in the NLP
domain, specifically on the QA task.

Moreover, there are many strategies that improve the robustness of the model. Recent study also
shows that the top layers of a pretrained model are more closely related to the pretrained task
and will modify significantly during fine-tuning, whereas the intermediate layers are closer to the
representation of the linguistic features and thus more transferable. Hence, re-initializing the top
layer can lead to a better performance in transfer learning [4]. In addition, Mixture-of-Exerts and
data augmentation are two addition methods that are commonly used in fewshot adaptation.

In this project, we first verify whether the hybrid strategy of combining complete and partial fine-
tuning. Besides linear probing, which is the method that is used in the original paper that only
tunes the random head, we use anothoer partial fine-tuning strategies, which only tunes the bias
terms. Additionally, we further improve the model performance by reinitializing the top layer of
the pretrained model. In addition to testing the theory, we also use different data augmentation
strategies[5] and mixture of experts[6] on the out-of-domain datasets to increase the robustness of
the model. We then analyze these effectiveness of these methods and show an improvement in the
performance on out-of-domain test data.

3 Related Work

3.1 Transfer Learning

Fine-tuning (FT) and linear probing (LP) are two main approaches to adapt a pretrained model to
specific downstream tasks in computer vision. Kumar et al. [1] show that FT models perform better
than LP models in in-domain tasks but worse in out-of-domain tasks. On the other hand, linear
probing freezes the pretrained features and only tunes the head, which leads to higher accuracy in
out-of-domain task. In order to combine the advantages of both approaches, [1] propose the LP-FT
model that trains the head with linear probing and then fine-tunes all parameters, and show that it
leads to better performance in both in-domain and out-of-domain image classification task.

In addition to LP, in the NLP domain, Zaken et al. [7] show that tuning only the additive bias terms
of BERT models (BitFit) can achieve comparable results as training the entire model. In particular,
they consider fine-tuning as a way to expose the pretrained language model to a specific task, instead
of letting it learn a completely new task. Moreover, this partial tuning strategies works well when the
size of the dataset is small.

3.2 Out-of-domain adaptation

Various methods are developed to adapt language models to out-of-domain data with few examples.
Zhang et al. [4] empirically shows that few-shot learning benefits from re-initializing pretrained
BERT model can help improving the generalization ability of the final model. Since we are interested
in generalizing over three different datasets, a natural approach is to have a specialized model that
handles different dataset. We took inspiration from another papers from image classification that
proposed sparsely gated Mixture of Expert (MoE) models, which a gate function picks the top 1 or 2
models to make final predictions[6]. This reduces the cost of training computation since only part of
the expert ensemble is trained at each data point, which makes it possible to create MoE model with
few data points.

3.3 Data augmentation

Since there are only few data in the out-of-domain training set, some of the correlations that the
model learns may be fragile and it is easy for the model to overfit. A common approach to introduce
more data and add noise to the data in low-resource tasks is data augmentation [8]. One popular
model-based strategy is to use backtranslation [9], which uses neural machine translation to translate
a sequence into a different language and then translate back to the original language. Additionally,
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[5] introduce Easy Data Augmentation (EDA) technqies, which consists a set of simple rule-based
operations that slightly modify the existing data, by 1) randomly deleting word (RD), 2) inserting a
synonym of a word in the sentence at a random location (RI) 3) randomly swapping the location of
two word (RS), 4) randomly select words and replace each of them with one of its synonym (SR).
The results in text classification tasks show substantial improvement especially when the size of the
dataset is small.

4 Approach

Base model Our baseline model is a DistilBERT [10] that is fine-tuned with all the in-domain training
datasets and evaluated on the out-of-domain validation sets. Our model input is Our loss function
is the sum of the negative log-likelihood (cross-entropy) loss for the start and end location of the
answering text.

In partial fine-tuning, we add l2 regularization term in the loss function. λ is our regularization factor,
and w is the weight of all trainable parameters in our model. Our final loss function is shown in
equation 1, where i and j are the true start and end position of the answer, and ps and pe are the
predicted logits of the start and end position, respectively:

loss = −logps(i)− logpe(j)− λ
∑

|w|2 (1)

We first implement LP [1] which freezes all the pretained DistilBERT layers and only trains on the
randomly initialized head for the QA task. To align our approach with the original paper, we test it
with additional l2 regularization. Additionally, we adopt BitFit [7], which freezes the most of the
encoder parameters and only fine-tunes the additive bias terms of the pretrained BERT model. In
order to obtain the optimal learning and weight decay value, we use Bayesian optimization at this
hyper-parameter search step. Additionally, since the higher layers are more related to the task of
the pre-trained model, we also reinitialize the top layer of the BitFit model to improve its ability
to generalize to new tasks. We then compare the performance of these hybrid models with the
performance of the baseline on both the in-domain and out-of-domain validation sets. The best model
structure is chosen as the expert for the Mixture of Experts step.

Data Augmentation For each sample in the out-of-domain datasets, we implement five different
strategies to augment the context paragraph, four at the token level and one at the sentence level. At
the token level, we adapt EDA [5] techniques to each sentence in the context paragraph. Then, we
discard the generated paragraphs that do not contain the original answers, and each strategy results in
four times more data than the original. Furthermore, we also augment the data at the sentence level
by inserting a sentence at a random position between sentences. To ensure that the model does not
simply memorize patterns from the in-domain sets, each of inserted sentences is randomly selected
from a set of target sentences (i.e. sentences contain the answer to the question) from the context
paragraph in the in-domain datasets. Each method produces approximately four times more data. We
test the effect of each augmentation method and use the combination of them for the final training.

Mixture of Experts Inspired by the sparsely gated mixture of expert models, we have a gate model
that assigns the query to best expert model base on the query content. This is a slightly different
approach to the original paper since we explicitly train our expert models with one out-of-domain
dataset each rather than training all expert models together. Our gating model (Expert Selector) is
also trained separately from the expert models. The full pipeline can be seen in Figure 1.

We implement our own Expert Selector model by fine-tuning a DistilBERT model for text classi-
fication. We use data from the three datasets as input and the name of their dataset as labels. The
expert selector model then predicts which dataset a query comes from and call the expert model
that specialize in that dataset. For each expert model, we trained the best model from the partial
fine-tuning part with one of the out-of-domain dataset. This way, decoupled the training of expert
models and gate model to save computing resources. Each expert model is fine-tuned on one of the
three out-of-domain dataset.
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Figure 1: Final model pipeline

5 Experiments

5.1 Data

We use the provided datasets, which include three in-domain reading comprehension datasets (SQuAD
[11], NewsQA [12], Natural Questions [13]) and three out-of-domain datasets (DuoRC [14], RACE
[15], RelationExtraction [16]).

In-domain Out-of-domain
SQuAD NewsQA Natural Questions DuoRC RACE Relation Extraction

Train 50,000 50,000 50,000 127 127 127
Aug* - - - 2082 1952 2035
Dev 10,507 4,212 12,836 126 128 128
Test - - - 1248 419 2693

Table 1: Statistics for datasets used in this project. The augmented dataset is only used when fine-
tuning the model for MoE.

5.2 Evaluation method

We use F1 and Exact Match (EM) as the evaluation metrics to measure the performance of the model.
F1 is the harmonic mean of precision and recall with a maximum value of 100. Exact match is a
binary measure to indicate the answer produced by the model is exactly the same as the ground truth,
maximum value of EM is also 100.

To quantify feature distortion during the training process, we also measured the average change in
weights in the pretrained model (excluding the randomly initialized head) in each trained model. The
average change in weights is computed as follows, where DB stand for DistilBert model, and DB′
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is the model after transfer learning for the question answering task with in-domain data. W (i) is the
weight matrix of the i-th layer, and b(i) is the bias term of the i-th layer.

∆W =

∑
i={1,2,3,4,5} |W

(i)
DB −W

(i)
DB′ |+ |b(i)DB − b

(i)
DB′ |∑

#ParametersDB
(2)

5.3 Experimental details

Bayesian Optimization: We modify the training loop and the trainer process to incorporate Bayesian
optimization from ax-platform library to find the best learning rate and regularization factor. In
general, we see that there are some hyper-parameter settings that will produce extremely poor
behavior, but there are not much difference in performance for "good" hyper-parameters. That is,
when we graph the fitted function from Bayesian optimization, the local maximums are very similar
in height and fairly flat. We show one such plot from the Bayesian optimization experiment when
fine-tuning our model on the relation extraction dataset in Figure 2.

Figure 2: Predicted F1 score from 30 Bayesian optimization trials

Training Configuration and Training Time: We use batch size of 16 for all training processes,
all QA models are trained for 3 epochs. For in-domain datasets, the training time of all LP models
are around 1.5 hours each, all BitFit models have training time of 2.25 hours, the fine-tuning steps
takes on average 3 hours. For out-of-domain datasets, our model is evaluated more frequently due
to the limited data, the overall training time for models vary from 1.5 minutes to around 5 minutes
depending how much augmented data is used. We run 30 rounds of training in Bayesian optimization,
so each experiment takes around 45 minutes to 3 hours. Finally, our expert selector model takes
less than 1 minute to train with batch size 8 and learning rate 3e-5, 1 epoch is enough for it to reach
100% accuracy in the training set. The configuration for each expert model is reported in Table 6 in
Appendix.

5.4 Results

According to the results in Table 2, using LP before the complete fine-tuning (LP-FT with regular-
ization) has the best performance on the in-domain validation set, but the performance is not better
than the baseline in out-of-domain. On the other hand, applying BitFit with reinitialization before
fine-tuning (BitFit Reinit FT) has the best performance on the out-of-domain development set. In
comparison to the vanilla BitFit model, BitFit Reinit has better performance, which suggests that
reinitialization indeed helps with generalizing the pre-trained language model to new tasks.

Yet, although BitFit Reinit is better than LP with regularization as it modifies slightly more parameters,
it still does not achieve comparable performance as the complete fine-tuning. The main reason why
this hybrid model does not work as expected is because the partial training does not yield good
initialization. When partial training performs very poorly, the model performance still largely relies
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on the fine-tuning process, such that the head gets changed significantly, eliminating any effect of
initialization by the partial training.

Model In-domain Out-of-domain
F1 EM F1 EM

FT (Baseline) 70.86 54.62 47.72 30.63
LP with regularization 19.61 10.86 11.45 03.93
LP-FT with regularization 71.36 54.99 46.26 32.20
BitFit 52.74 36.82 35.28 19.37
BitFit Reinit 63.85 47.40 42.39 25.39
BitFit Reinit FT 70.83 54.32 47.73 33.25

Table 2: F1 and EM score of the performance on each model in in-domain and out-of-domain
evaluation datasets.

Additionally, we test the BitFit Reinit FT model on the original and the augmented datasets, and the
result shows that data augmentation slightly improves the performance. Similarly, using MoE with
original data also marginally improves the results, and the best model uses MoE to select the best
model that is fine-tuned on the augmented dataset (F1 = 50.79, improves the baseline by 4.18%, F =
36.65, improves the baseline by 5.26%). The improvement is as expected, since data augmentation
not only increases the number of data but also adds randomness to prevent overfitting. Additionally,
since the Expert Selector is fairly accurate in classifying the text, it further boosts the performance.

Model Validation Test
F1 EM F1 EM

Baseline 48.75 34.82 – –
Baseline + Data Augmentation 49.27 35.08 – –
MoE 49.62 34.82 – –
MoE + Data Augmentation 50.79 36.65 60.49 42.50

Table 3: F1 and EM score of the model performance on out-of-domain datasets.

6 Analysis

6.1 Feature Distortion Theory

Figure 3: Performance of model vs change in average weight accross different training methods

We evaluate the feature distortion theory using different partial training methods when training the
baseline model on the in-domain datasets. We plotted the performance (F1) of a model against its
change in pretrained weight, as shown in Figure 3. Feature distortion theory highlights that the
fine-tuning process overfits the features to the randomly initialized head, so partial-pretraining would
train the head to adapt to the features first in order to minimized the change in pretrained weights in
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the final fine-tuning process. It is suggested that this approach might improve a model’s performance
on out-of-domain data. We notice that partial training does decrease the change in pretrained weights
significantly. However, we also observe that some distortion is required to achieve good performance.
In fact, all the models with good performance requires Fine-tuning, and they all have similar change
in weights. One possible reason is that partial training does not yield a good enough initialization,
and the model performance still largely rely on the later fine-tuning process. another possible reason
for this is that the features extracted by the pretrained model is overfitted to the text generation tasks
that DistilBERT is initially trained for and some distortion is required for the features to be useful
in QA tasks. In BERT structure, [17] found that early layers of BERT focuses on different question
keywords such as ’how’ and ’why’ in the questions after fine-tuning for Question-Answering tasks.
This means that fine-tuning all the early layers are necessary for BERT to perform well in QA tasks.
If DistilBERT has the same property, this might be able to explain why changing pretrained weights
is necessary. We conclude that combining partial training and fine-tuning, which is proposed
based on feature distortion theory, does not improve our model in this task.

6.2 Data Augmentation

As shown in Table 3 suggests, data augmentation improves the result, especially when combined
with the MoE. The five types of methods, namely RD, RI, RS, SR at the token level and Sentence
RI, all improve the prediction, and among them, SR has the best performance on the validation
set. These methods slightly modify the meaning and grammaticality of the sentence or the logical
flow of the paragraph. For instance, in one example augmented by SR, ‘fiction’ is replaced with its
synonym ‘fabrication’ in the compound noun ’science fiction.’ Thus, the result seems to suggest
that addition noise and randomness to the data can improve the robustness of the model. While this
may be counter-intuitive, since the meaning of the sentence is crucial to reading comprehension
and QA tasks, it will be interesting to compare these methods with other data meaning preserving
augmentation techniques, such as backtranslation, in future experiment.

6.3 Mixture of Experts Effectiveness

The expert selector model has 100% accuracy on the training data to pick the correct expert model
to query, and it is 99.01% accurate for the validation set. This means that the three out-of-domain
data-sets are easily separable. As a result, we see improvement of the performance of our model with
MoE structure, since our model can reliably pick the correct expert model which is trained on the
corresponding dataset. However, the overall performance is still bounded by the performance of the
expert models (Table 6 in Appendix).

6.4 Types of Mistakes

Error
Type

Question Context

Negation
Identifica-
tion

Where should you go to wash
your car when you are in
Moscow?

[...] In Moscow, if your car is dirty enough to
draw dust art, you will be fined about 2,000 rubles.
Worse yet, it’s not legal to wash your car by hand
in public places–forcing you to take it to one of
the few car wash facilities. [...]

Multiple
correct
answers

Who was the brother of Peter
Miller Cunningham?

[...] Peter Miller Cunningham was the fifth son
of John Cunningham, land steward and farmer
(1743–1800), and brother of Thomas Mounsey
Cunningham (1776–1834) and of Allan Cunning-
ham (1784–1842).

Wide
Answer
Span

When is the best time to visit
Stonehenge according to the
passage?

[...] As the weather can be pretty bleak in winter
and the crowds huge in summer, we suggest au-
tumn should be the best time to visit these monster
rocks. [...]

Table 4: Examples of different types of mistakes in model predictions. The ground truth answer is in
bold, and the predicted answer is in italics.
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We see that our model performs worse on datasets with long and complex contexts such as those in the
race dataset. We listed some common mistakes that our model makes in the validation data in table 4.
We observe our model has problem understanding uncommon negation and having trouble narrowing
down the answer span. However, there are also cases where there can be multiple instances/choices
of correct answers and our model simply does not agree with the option given in the validation set.

6.5 Final Performance

The test and validation performance are similar for our model. However, we see that our model have a
much higher F1 and EM score on the final test set, which, as of the writing of this report (March 12th,
2022), rank 2 in EM and 2 in F1 among the 27 test submissions. We see that test set is a lot more
skewed than the validation and training set. The expert selector is extremely effective on discerning
the source dataset of the queries, so we believe that our expert select is fairly reliable and the final
test set is in fact a skewed data set which favors the DuoRc and relation extraction models, which
both have better performance than our model trained on race dataset. This explains the higher final
test performance compare to the balanced training and validation sets.

7 Conclusion

In this project, we first tested feature distortion theory in our question answering task. We found
that feature distortion theory does not apply in our case. Partial training doesn’t yield a good enough
initialization, and the model performance still largely rely on the later fine-tuning process. We observe
that some distortion is required to achieve good performance. We wonder if this is characteristic of
model structure since there are a lot of weight sharing between tokens, or this may be because the
pretrained model is for a different task.

To improve our model’s performance on QA tasks, we then tried two main strategies: data augmenta-
tion and sparse Mixture-of-Experts.

In data augmentation, we note that since there are very few out-of-domain training data, randomly
changing the context not only increases the number of data but also adds noise to it, which leads to a
slightly better performance.

Our version of Mixture-of-Experts picks the best model to answer each question, but due to the
limitation on the performance of each expert model since we have limited out-of-domain data, it
only improves the overall performance slightly. However, in test settings where there are skewed
distribution of out-of-domain data, our model can perform better since it can reliably find the source
dataset of the queries and pick the best expert model.
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A Appendix

Model Training Validation
F1 EM F1 EM

Baseline 46.60 32.20 48.75 34.82
RD 47.83 33.51 49.89 35.86
RI 48.14 32.98 50.26 34.82
RS 48.48 33.77 50.00 35.08
SR 47.43 33.51 50.36 35.60
Sent_RI 48.09 33.51 49.13 33.77

Table 5: F1 and EM score of the performance using different data augmentation method.

Expert Learning Rate Weight Decay Rate F1
DuoRC 1e-05 0.00217 40.86
RACE 1e-05 0.00149 36.13
RelationExtraction 2.887e-05 0.00039 77.13

Table 6: Model configuration for each expert model. F1 is the best F1 score when trained on the
specific dataset.
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