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Abstract

Commonly used pre-trained token embeddings work well at encapsulating word
meaning and semantic representation and act as great resources for numerous
language modeling tasks. These models represent words such that similar words
are mapped to similar regions knowns as embedding spaces. However, one major
drawback that arises is that the same words can have different meanings within
different contexts or positional orientations, and models generally have a difficult
time picking up on these nuances. A single word’s presence can dramatically
affect the meaning of other words, and many pre-trained models have difficulty in
tuning to these situations as sequences become longer. Furthermore, the internal
structure of words is often lost when solely focusing on words as a whole and their
external relationships with other words, which can prove difficult for accurately
representing rarer words and phrases.

I aim to address these issues by constructing an NLP mechanism that will
add this contextual awareness to word embeddings that would ultimately improve
question and answering systems, which greatly depend on accurate word and
phrase relationships within and between queries and their corresponding contexts.
In this project, I implemented a sinusoidal and learned positional encoding
scheme and a pre-model self-attention mechanism to transform the GLoVE input
embeddings to the baseline model into more context-aware and positionally
attuned inputs. I also developed a character-level embedding layer using CNN to
condition this internal word structure. Overall, I found that while some increased
level of context-awareness proves to enhance performance in our question and
answering task, too many added layers of such context-building implementations
can ultimately reverse the benefits and confuse the model.

1 Key Information to include

e Mentor: Vincent Li
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2 Introduction

Given the baseline BiDAF model for Question and Answering, I am to improve the model by
implementing additional layers or altering the model architecture as a whole. Specifically, given
a question and a context in which the answer to the question can be found, our goal is to improve
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the baseline model that retrieves the correct answer from the context. Such a task can prove
useful in a variety of disciplines from individuals conducting research in science and humanities,
to helping patients and doctors diagnosing or treating illnesses in the medical field. Furthermore,
many implementations withing the larger question-answering framework have applications in a
variety of other language modeling tasks, such as machine translation, sentiment analysis, and text
summarization. Thus, methods I implemented enhancing context awareness can potentially be applied
to these other areas and improve their frameworks.

There are a variety of cutting-edge models which perform question and answering to a high degree,
many of which I drew inspiration from for this project. The BIDAF model described in Seo et al.,
2016 [3], which acts as the baseline for my project, makes use of bi-directional attention flow to
encode contextual information between the query and context and an RNN modeling layer to obtain
the interaction of the context words based on the query. Ultimately, the model’s separation of the
attention and modeling layers allows for enhanced learning and between query and context, and the
attention mechanism avoids dependence on attended outputs at previous time steps which helps to
avoid exacerbations on incorrect dependencies. One of the drawbacks of this approach is the slow
rate of training caused by the recurrent networks. The QANet architecture described in Yu et al.,
2018 [2], on the other hand, avoids these recurrent structures all together to speed up training and
makes use of multiple encoder blocks involving convolution, attention, and feed forward layers to
encode the context and query sequences.

Ultimately, I want to capture the novel mechanism of using convolutions and self-attention to enhance
the BiDAF baseline. Specifically, I implemented three major components from scratch to the current
model. The first is a learned positional encoding layer that adds information about relative word
order, position, and distance into the context and the query vectors. Secondly, I implemented a
scaled-dot product (SDP) attention layer to further refine contextual awareness among the context and
the query. And finally, I implemented a character-level embedding layer using 2D-convolution and
max pooling, which I concatenated to the attuned word embeddings prior to passing them along to
the rest of the BIDAF model. Positional encoding allows for query and context sequences to encode
information on the positions of words and their internal relationships. As I will explain later, both the
sinusoidal approach (described in the original Transformer architecture, Vaswani et al., 2017 [1]) and
the learned positional encoding scheme (this is the one I eventually used in my final model) allow for
words that are closer together to have similar positional encodings which representing closeness and
high association and words that are farther apart to have less positional similarity. The scaled dot
product attention mechanism I implemented made use of learnable key, query, and value weights to
compute attention scores prior to being forwarded to the rest of the model. Lastly, the character-level
embedding layer made use of 2D convolution in order to hone in on the internal structure of words,
enhancing embedding refinement for less common words or character sequences.

After concatenating the word and character embeddings, we pass on the result to the rest of the BiDAF
model, as described in Seo et al., 2016 [3]. In short, it first enters a two-layer highway network to
further refine the embeddings. Then, the model passes these embeddings through a bidirectional
LSTM to model temporal interactions between words Afterward, it enters the bi-directional attention
flow layer which models attention flowing from both the context to the query and from the query to
the context. Finally, the model makes use of the query-conditioned context embeddings and performs
a two-layer bi-directional LSTM which outputs a matrix passed onto the output to predict the answer.

Overall, I found that by adding implementations and layers that emphasize contextual and positional
awareness to the context/query embeddings, as well as incorporating key information on internal word
structures through character-level embeddings, I was able to significantly improve upon the baseline
BiDAF model. Specifically, my implementation outscored the baseline by over 4 points in both the F1
and EM score categories (these metrics will be explained later). I also found that too much attention
can be detrimental and confuse our model, as the SDP attention layer after the positional encoding
implementation actually worsened overall performance, suggesting that the pre-encoder attention
layer may confuse the model.

3 Related Work

The main inspiration of this project stems from the transformer-based approach described in Vaswani
etal., 2017 [1], which uses multiple attention-based mechanisms and layers to replace the effective



but slow and complex nature of recurrent neural networks. Specifically, the transformer model makes
use of multi-headed attention, which itself is a series of parallelizable scaled dot product attention
schemes that I incorporated in my project. Another significant element of the transformer architecture
is the positional encoding scheme it places before the encoder/decoder blocks to make use of the
word order and to inject information about the position of a word within a sentence or paragraph.
While the paper preferred the sinusoidal frequency-based approach, I will be experimenting with both
this version as well as a learned positional encoding layer in my model. The transformer model is a
major component in the BERT language model described in Devlin et al., 2019 [5], which makes use
of the encoder block of a transformer as well as a pre-training and fine-tuning framework to perform
question and answering, along with other common NLP tasks.

The use of convolution neural networks in NLP models was introduced by Kim, 2014 [6], which use
computer vision techniques of applying convolving filters to local features. In my case, I will perform
such operations on character sequences to learn information on the local and internal features of
words which will then be used alongside the attuned word embeddings.

Ultimately, my work will show what would happen if you do not simply replace recurrent neural
networks as a whole, but when you incorporate elements of these “replacements” (i.e., positional
encodings and attention mechanisms) to current recurrent models like BiDAF. Many works like Kim’s
use of convolutional neural networks have shown the value in enhancing local and internal contextual
awareness, and so enhancing this aspect of the baseline model will show how to implement such
conditioning alongside recurrent networks.

4 Approach

The main idea behind positional encoding is that the position of a word ultimately matters, but regular
word embeddings do not contain this positional information. Thus, we must inject some weight to the
word embeddings (pre-determined or learned) in order to account for these positional relationships.
Below is a trivial example of why position in a sentence is important, and also a simplified overview
of how to positionally encode our embeddings.

0.145 Positional 0.216
0.512 Encoding 0.434
Ed Sheeran’s is very lazy = pos 3 0393 Vector | o365
Ed Sheeran walks like a - pos 6 0.708 0.688
Word Encoding of position Embedding for
embedding for in sentence “cat” with context
“cat” information

Figure 1: It is clear "cat" should not be treated the same in both these sentences.

I developed and tested two different approaches to positional encoding. While I implemented both
from scratch, the first was described in the original Transformer paper, Vaswani et al., 2017 [1], while
the second is a learned implementation I developed myself.

Prior to entering these layers, the current input, X, representing the query or context sequence, is
of dimension (batch size, sequence length, word embedding size), where batch size is 64, sequence
length is the length of the longest sequence in the batch, and the word embedding size is 100.

4.1 Positional Encoding: Sinusoidal (Coded Myself)

For this approach, I used the recommended sinusoidal frequency curves that were stated in Vaswani,
et al., 2017,[1] which are shown below.

PE(pos,2i) = sin(pos, 100002/ dmer)
PE(pos 2i41) = cos(pos/ 10000 %/ dmsiet)
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where pos is the current word position in the sequence (i.e., 0 < pos < total sequence length), dmodel is
the embedding size (100), and i is the current embedding position. We apply the following equations
at each word and embedding position and add the resulting matrix to the current word embeddings,
essentially injecting the “positional” information into the current word embeddings. We also applied
a dropout layer in order to prevent sequences from overfitting to themselves and to ultimately be
more robust.

The key intuition stems from two concepts as shown in the sin and cosine graphs below. First,
for different positions in the input, the height of the sine curve will vary with different positions,
and so different positions will deviate different amounts along the y-axis, and within a fixed range,
providing each position in the sequence a sense of which portion of the input it’s dealing with without
significant distorting the embedding. Secondly, the issue with the cyclical nature of sinusoidal
representations and having later positions in the sequence re-map themselves to values associated
with earlier positions is solved through the embedding indices being used to vary frequency of
the sinusoidal representations. Positions that are truly close together will retain similar positional
embedding values for lower frequencies, whereas positions that are farther apart but that may be
mapped to the same sin or cosine value due to the cyclical nature of the curves will differ dramatically
as frequency is increased minimally. Therefore, positional embedding encapsulates both these factors
to accurately incorporate position information within the embeddings.

@

Figure 2: Visual Guide to Transformer Neural Networks - (Episode 1) Position Embeddings.

4.2 Positional Encoding: Learned (Original and Coded Myself)

I also wanted to extend this idea of positional information into a more trainable approach, since even
the sinusoidal approach makes some underlying assumption regarding how position is distributed
across a sequence. Specifically, I wanted to see if I could learn a positional matrix that could pick up
on positional relationships not identified by the sinusoidal approach.

I initialized a trainable matrix to be the same dimensions of our input (i.e., sequence length x
embedding size) via a linear layer. I then trained this weight on the input by adding the positional
weight to the input batch and applying dropout in the same manner as the sinusoidal approach.

4.3 Self Attention (Coded Myself)
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Figure 3: Key, Query, Value Self-Attention

This layer would take in the input X and perform scaled dot product attention described in Vaswani,
et al., 2017 [1]. Specifically, this attention mechanism begins with initializing and training three
weights, K, Q, and V, corresponding to the key, query, and value, respectively. To obtain the key,
query, and value matrices, we multiply these trainable weights with our input embeddings. I also
initialized a standard dropout to avoid overfitting and embedding co-adaptations. We then calculate
attentions scores by multiplying the query vector by the keys, and then scaling the result by dividing
by v/dy, the dimensionality of the key vector. We then apply the softmax function to normalize



the scores, implement dropout, and finally take the weighted sum of values using the value weight.
Above is a model I created depicting the pathway of the input embeddings through the attention layer.

4.4 Character-Level Embeddings (Coded Myself, some original implementation)

The crux of our attention-based approach lies in the character-level embedding layer. To start,
our character embeddings are slightly different than our word embeddings. That is, the character
embeddings for each batch are of the shape (batch size, sequence length, maximum word length,
character dimension), whereas the word embeddings for each batch are of shape (batch size, sequence
length, word dimension size). Ultimately, we would want to concatenate the word embeddings
with their respective character embeddings, and so to this we would need to project the character
embeddings down to the shape (batch size, sequence length, character dimension size).

To implement this layer, we must first initialize a 2D convolution setting our in-channel to 1 and
our out-channel to 100. The number of out channels represents how many different filters we would
want to convolve over our character embeddings, and it ultimately represents the size of the character
embedding (we will see why). It is typically a value between 100 and 1000, as explained in Kim, et
al., 2015 [7]. We also initialize the size of a 2D kernel for convolution, which is of size (character
embedding size, w), where character embedding size is 64 and w is the window over which we want
to convolve over. We will discuss the different values I used for w in the experiments section, but
ultimately, I decided with 7 as being the most ideal. Additional layers within this implementation
include ReLLU and dropout layers.

I first implemented the dropout upon the input, and then rearranged the dimensions of the input in
order to prepare it for the convolution layer. After performing the 2D convolution, I then passed
the input through the ReLLU layer. Now, the values that are attained through the convolution are
then compared in the maxpooling layer, where the highest convolution value would be the feature
to represent the character embedding for that particular filter. The convolution does this for all 100
filters, and so we are left with a matrix of dimension (batch size, sequence length, number of filters).
And as explained earlier, the number of filters we use in the 2D convolution is exactly our desired
character embedding size.

Finally, we concatenate our final character embeddings to the end of the attuned word embeddings,
which is then passed on to the highway encoder and the rest of the BiDAF model, where it will
predict a start and end sequence within the context for the answer to the given query. Below is an
illustration of how our word and character embeddings are passed through this implementation.
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Figure 4: Character Embedding Layer Using 2D Convolution



5 Experiments

5.1 Data

The data I will be using to train and test my model will be the Official SQuAD 2.0 dataset. However,
due to the official test set is hidden, my test set during the development phase of my project involved
using roughly half of the official dev set as our “test” set. Specifically, the dataset involves a context
and a query (there can be multiple queries per context), and for each query, several ground truth
answers are given which can directly be found in the context. Below is an example.

The Normans were in contact with England from an early date. Not only were Who did Emma Marry?
their original Viking brethren still ravaging the English coasts, they occupied most Ground Truth Answers: King Ethelred I Ethelred Il King Ethelred II
of t

portant ports opposite Engl
ip eventually produced clo:

‘Who was Emma's brother?

ichar and
of this, Ethelred fled to Normandy in 1013, when he wa Ground Truth Answers: Duke Richard Il Duke Richard Il Duke Richard I

o
his kingdom by Sweyn Forkbeard. His stay in Normandy (until 1016) influenced
him and his sons by Emma, who stayed in Normandy after Cnut the Great's To where did Ethelred flee?

conquest of the isle. Ground Truth Answers: Normandy Normandy Normandy

Figure 5: Sample Context and Query from the official SQuAD 2.0 Dataset

Basically, the output of our model is a start and end sequence within the context which corresponds
to the answer for the given query. We would then evaluate our model’s answers to the ground truth
answers (examples shown above) via the methods described in the next section.

5.2 Evaluation method

I will use two metrics to evaluate my model’s performance: the Exact Match (EM) score, which is a
binary measure of whether the output matches the ground truth answer exactly, and the F1 score, a
less strict measure that is the harmonic mean of precision and recall.

Essentially, for the EM score, the model’s answer must match the ground truth answer exactly in
order for the score for that example to be 1. If it is not an exact match, then the score for that example
is 0.

For the F1 score, we first find the precision of the model’s output answer (whether the answer is a
subset of the ground truth answer) and the recall of the model’s output answer (how many words from
the ground truth answer did the model output divided by the total number of words in the ground
truth answer) and calculate the harmonic mean of the two using the equation (2 ¢ precision * recall) /
(precision + recall).

5.3 Experimental details

I ran a total of 5 main experiments with different variations of my implementations in order to see
what combination produces the best results. However, after finding the best structural implementation,
I also experimented with various kernel sizes within my 2D convolution in the character embedding
layer to find the optimal window size.

Unless otherwise mentioned, for all experiments, I trained until completion (i.e., the full training set,
30 epochs). Training was conducted using the Google Colab environment with the runtime set to
GPU and High-RAM configurations.

The first experiment was simply training on the baseline BIDAF model without any of my implemen-
tations. Training took approximately 3.5 hours to train.

I then ran two separate tests to determine which positional encoding scheme produced the best results:
the sinusoidal implementation or the learned implementation. Again, both took approximately 3.5
hours to train.

As I will explain in the next section, the learned positional encoding scheme fared much better than
the sinusoidal approach, and so for the remaining experiments throughout this project I used the
learned positional encoding layer rather than the sinusoidal approach.

After testing positional encoding, I experimented with a learned positional encoding layer coupled
with the self-attention layer. Training time on this implementation also took roughly 3.5 hours.



For my final experiments, I tested the learned positional encoding scheme with the character level
embedding via CNN implementation. However, for the character embedding layer, I ran several
different experiments with varying kernel sizes (specifically, the second dimension for the kernel
input for the 2D convolution). For my first experiment, my window size was 3. For my second
experiment, my window size was 7. And for my third and final experiment, my window size was 9,
although I did not run this third experiment until completion in training.

5.4 Results

I am on the IID SQuAD track

The results of the experiments run on the dev set are as follows:

Baseline BiDAF model 60.55 57.10
Sinusoidal Positional Encoding 58.20 54.80
Implementation Scores: : :
Learned Positional Encoding 60.91 57.92

Scores:
Learned Positional Encoding +
SDP Attention Scores: 2L 2L
Learned Positional Encoding + 64.57 61.49

Best Character Level
Embeddings:

Figure 6: Main Experiments, as described in 5.3. Notice that the final row is the best performance
taken from the experiments in Figure 8.

Figure 7: Visualization of training progressions for all 5 main tests

Learned Positional 63.42 60.31
Encoding + Character
ith

Learned Positional 64.57 61.49
Encoding + Character
Level Embeddings with
kernel sze (64, 7)

Encoding + Character
Level g
kernel size (64,9)

Figure 8: Experiments on kernel size (window size) with the positional encoding and character level
embedding implementation.

Final 62532 59.560
Implementation
on Test Set

Figure 9: Final test set performance.

It is clear that my final implementation of a learned positional encoding layer and a character-level
encoding improved upon the baseline model, which was expected. However, I am quite surprised by
some of the individual implementation performances. Specifically, I was initially surprised when
the sinusoidal positional encoding implementation fared slightly worse than the baseline model, as
it actually decreased performance. Perhaps the sinusoidal approach was too ideal for the complex
Question and Answering system, as its initial use was for machine translation tasks in the transformer
model. At the same time, I was not surprised that the learned positional encoding scheme fared better
than the sinusoidal approach since it accounts for more nuances and positional patterns that occur in
question answering and especially in context-query relationships which the model ultimately depends



on and can learn from. As expected, the positional encoding implementation improved upon the
baseline.

I was not expecting that the scaled dot product attention layer would fare so poorly when included
in the model, as it F1 and EM scores cause drops of 8 and 5 points from the baseline model,
respectively. Furthermore, the training performance is somewhat of an outlier compared to all of
the other implementation tests, as its F1 and EM scores decrease for far longer at the beginning
of training before going up slightly. On the other hand, all the other implementations followed a
trajectory of decreasing for several epochs but then rapidly increasing for the next 10 epochs, which
is then followed by a gradual plateau of the scores.

Finally, the results from the kernel size experiments makes sense, as you would ideally want to
perform convolution over enough nearby characters to get an accurate representation of the feature
described by the current filter, while also not extending to characters that are farther away which may
add undesired noise to the final embeddings.

6 Analysis

Overall, we find that the addition of positional encoding allows key positional information to be
injected into our word embeddings, and the addition of character level embeddings on top of this
layer adds important internal conditioning and awareness within words that can enhance language
modeling tasks such as question and answering.

However, “attention overload” as the title of my paper suggests, is not as simple as including as many
attention and context-based layers into a model. As we see from my experiments, the combination of
a positional encoder, a self-attention layer for our word embeddings, and a bi-directional attention
scheme can prove detrimental to our overall performance. It appears that too many attention-based
layers can create noise and confuse our model to know exactly what to attend to. And beyond just the
F1 and EM scores, the progressions seen in figure 7 show that this added attention layer causes the
model to train abnormally when compared to the other implementations.

We also see that just as in computer vision, kernel size does can have a significant effect on the
output. Too small of a kernel means you aren’t adjusting for local features that are significant to the
current feature of interest, and too large of a kernel can cause unnecessary noise and produce less
useful information to supplement word embeddings. Ultimately, the character level embeddings are
a key aspect of this internal conditioning, which ultimately enhance our model’s awareness for the
character-based structures within sequences.

7 Conclusion

From this project, we can conclude that implementing attention schemes such as learned positional
encoding and adding character level embeddings prior to the highway encoder of the BIDAF model
can significantly enhance the architecture’s overall performance. Of course, I found that too much
attention-based layers at the forefront of the model is not ideal, but it does not take away from the
overall attention-filled nature of my new BiDAF model, one whose emphasis on internal and external
conditioning can be seen through my own additions as well as the baseline model’s bi-directional
attention layer itself.

One of the main avenues I would like to explore is the diminishing returns that my self-attention layer
produces, and the unorthodox training patterns that are associated with it. Although it makes sense
why the self-attention layer could produce counterintuitive scores, the progression of its performance
during training involves deeper research that would be essential to understanding why this specific
attention approach does not work and how to change it so that it might.

Of course, the primary limitation of my work is the fact that I am new to the field. This was one
of the most challenging projects I have ever confronted, but also one of the most rewarding. With
more experience, I may have been able to find the time to implement structures and architectures that
could enhance the model further, but unfortunately a lot of my time went into understanding some of
the basic architectures and how the codebase worked. Despite this however, my implementation has
found ways to apply additional attention-based mechanisms to recurrent models instead of simply
replacing them.
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