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Abstract

In this paper, we extend the Question Answering Network (QANet) model for
the question-answering task and train on a modified SQuAD 2.0 dataset. Our
goal is to build a question answering model that can accurately predict whether a
question is answerable, and if it is, where the answer span lies within the given
context. To achieve this goal, we change the context-query attention mechanism
of the basic QANet to a multi-headed context-query attention, capturing different
interactions between context and query paragraphs. We also explore verifier models
to output a binary prediction of whether a question is answerable or not. Finally,
we experiment with various answer pointer networks. Our best ensemble model
achieved F1 score of 69.57 and EM of 66.54 on the test dataset.

1 Key Information to include
• Mentor: Kendrick Shen
• External Collaborators (if you have any): None
• Sharing project: None

2 Introduction

Question Answering (QA) is a task of predicting an answer to a given problem expressed in natural
language. In the context of the Stanford Question Answering Dataset (SQuAD) challenge, we are
given a context and question text, and our goal is to find a span of words in the given context paragraph
that can answer the given question (Table 1). Question answering systems can be used in various
domains, such as search engines and customer services.

Automated question answering with machine reading comprehension is challenging for several
reasons. First, answering questions based on a paragraph requires understanding of long sequential
data. Also, after understanding the given context and question paragraph, a model has to understand
the relationship between the context and question paragraphs to find the final answer. Finally,
recurrent neural network (RNN) structures that were traditionally used for the QA task required long
training time due to their sequential nature.

In 2018, the attention-based methods led to exciting breakthroughs in developing question-answering
deep learning models. QANet was among the first to apply the Transformer architecture to the QA
domain. By adopting the Transformer architecture and removing RNN counterparts, they could
achieve better performance on the official SQuAD leaderboard while reducing the training and
inference time significantly by parallelizing the training process.

Inspired by the performance of QANet and recent trend in the neural language models using attention-
based pre-trained language models, we decided to build a model based on QANet that is better
suited for SQuAD 2.0 challenge. Unlike SQuAD 1.0, the SQuAD 2.0 dataset contains unanswerable
questions, so models have to first determine if the given question is answerable based on the given
context or not. Thus, we focused on improving the QANet with following approaches.

Stanford CS224N Natural Language Processing with Deep Learning



Context Some disagree with such double or triple non-French linguistic origins, arguing
that for the word to have spread into common use in France, it must have
originated in the French language. The "Hugues hypothesis" argues that the name
was derived by association with Hugues Capet, king of France, who reigned
long before the Reformation. He was regarded by the Gallicans and Protestants
as a noble man who respected people’s dignity and lives. Janet Gray and other
supporters of the hypothesis suggest that the name huguenote would be roughly
equivalent to little Hugos, or those who want Hugo.

Question Who was the first king of France to reign during the Reformation?

Answer Not Answerable

Table 1: An example of the SQuAD dataset and its model prediction.

• We implemented a multihead context-query attention layer.

• We built an answerability verifier module predicting whether a question is answerable.

• We experimented with various answer span pointer networks and losses.

3 Related Work

3.1 Question Answering

Answering questions using a given context requires building accurate representations of question,
context, and the interaction between them. Our default baseline model, the Bi-Directional Attention
Flow (BiDAF) model uses Bi-directional Long Short-Term Memory (BiLSTM) model and attention
mechanism [1]. Its main mechanism is the bi-directional query-to-context and context-to-query
attention flow, which flows between each step of the LSTM and helps the model to build the context
representation conditioned on query.

Following the proposal of the Transformer, several models have adopted the Transformer and self-
attention mechanisms. QANet [2] (Fig. 1) adopts the Transformer architecture to remove recurrent
mechanisms inside the encoders. It takes the character and word-level embeddings of context and
answer paragraphs and outputs the starting and ending boundary of the answer span within the context
paragraph. Removing recurrent structures reduces its training time significantly by parallelizing the
sequential training process inherently required for sequential models.

More recent state-of-the-art models use pre-trained language models such as BERT [3], AlBERT [4],
and RoBERTa [5]. Such systems concatenate embeddings from pre-trained language models to basic
word- and character-level embeddings to take the advantage of well-defined embeddings supported
by the vast amount of language dataset learned by the models. However, because we were prohibited
from using pretrained models or pre-implemented model codes, we could not use such approaches.

3.2 Answer Pointer Network

Pointer Networks, as described by the original paper [6], are neural architectures that learn the
conditional probability of an output sequence with discrete tokens corresponding to positions in the
input sequence. The novelty in pointer networks is that attention is now used as a pointer to select a
member of the input sequence as the output, rather than using attention to blend hidden units of an
encoder to a context vector at each decoder step.

Several QA models have adopted Pointer Networks to improve the accuracy of their models. [7]
used the hidden state of the answer start token to predict the answer end token, in the prediction
layer of their model. [8] proposed a framework named CARTON (Context Transformer Stacked
Pointer Networks), which was able to perform multi-task semantic parsing and efficiently handles the
problem of conversational QA over a large scale knowledge graph. Their framework used a stack of
pointer networks to parse the input question and the dialog history and then generated a sequence of
actions that can be executed on the knowledge graph. [9] used answer pointer network that detected
the answer boundaries from the passage when the question is answerable with two trainable matrices
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Figure 1: QANet model architecture, taken from the original paper [2]

Ws and We to estimate the probability of the answer start and end boundaries of the ith word in the
passage, αi and βi. In fact, boundary-predicting approach is widely adopted by QA models [1, 2].

4 Approach

4.1 Baselines

The baseline for this project is the BiDAF implementation which was provided as a starter code by
the course staff. As stated in 3.1., the BiDAF model is a multi-stage hierarchical model representing
the context at different granularity levels, and further uses bi-directional attention flow mechanism to
obtain a query-aware context representation.

4.2 Question-Answering Network (QANet)

QANet has five major parts including the initial embedding, embedding encoding, and context-query
attention layer (Figure 1). We describe each part below.

Input Embedding Layer. The input embedding layer receives the fixed pretrained GLoVe word
embedding of 300-D and trainable character embedding of 200-D. We then pass the concatenated
embedding of dimension 500 to a two-layer highway network. We reuse the character embedding
and highway network implementations from the BiDAF model implementation by the course staff.
We use hidden dimension size of 256.

Embedding Encoder Layer. We stack multiple encoding blocks for the embedding encoder layer,
whose weights are shared between context and query embeddings. An encoding block consists of
multiple layers of the depthwise separable convolutions [10], a self-attention, and a final feed-forward
layer and uses the hidden dimension of 256.

(Multihead) Context-Query Attention. Based on the equivalence of equations for the bidirectional
context-query attention, we simply reuse the BiDAF model’s bidirectional attention module for the
default QANet implementation.

We then extend the structure to a multihead version to motivate different heads to focus on different
types of context-query interaction (Figure 2). We use hidden dimension of 256 separated into 8
heads for this layer. We found that the multihead context-query attention indeed improves the model
performance (Table 2).
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Figure 2: We replaced the context-query attention layer with a multiheaded variant.

Model Encoder Layer. This layer takes in the concatenated bidirectional attention scores and
encodes it to the hidden embeddings to predict the starting and ending position. There are three model
encoder layers sharing the same model weight. Note that the original QANet uses seven encoder
blocks inside the model encoder, but we had to decrease it to five layers due to the limitation in
computing power.

Output Layer. The original QANet uses a simple single-layer model for starting and ending point
prediction. Specifically, it applies a fully-connected layer to the concatenated feature maps from
the first and second model encoder sublayer to predict the starting position, and applies another
fully-connected layer to the feature maps from the first and third sublayer to predict the ending
position. We discuss our improvements over this default structure in detail in 4.3.

We implemented the QANet from scratch without reference to existing implementations other than
the BiDAF model, course assignment codes, and PyTorch APIs in accordance with the honor code.

4.3 Improving the Output Layer

The original QANet only uses single linear layer for each starting and ending boundary position
prediction (Figure 3(d)), i.e.

p1 = softmax(W1[M0;M1]), p2 = softmax(W2[M0;M2]) (1)

where p1 and p2 are respectively the answer span’s starting and ending boundary prediction, W1 and
W2 are two trainable variables, Mi is the output from the i-th model encoder layer [2].

We focused on changing the final output layers of the QANet to improve model accuracy. We
experimented with various additional auxiliary losses to improve our answer pointer layer. These
modules can be either used as auxiliary output nodes to guide the boundary prediction layer’s training
with additional losses and/or replace the simple boundary predictor. We describe each module below
and visualize them in Figure 3.

Answerability Verifier (V). For the SQuAD 2.0 challenge, we have to predict whether a question is
answerable or not. Thus, inspired by the verifiers in [11, 12, 9], we implemented a simple verifier
module for the task, which produces a binary output if a given question is answerable. This can be
expressed as below, where M2[0, :] denotes the feature map from the 0-th index (which denotes the
’unanswerable’ token) of M2.

pvi = sigmoid(WvM2[0, :]) (2)

To train the module, we use the binary cross-entropy loss between the model output probability and
the target answerability (0 = unanswerable, 1 = answerable) (Figure 3(a)), i.e.

Lv(θ) = − 1

N

N∑
i

[yvi × log pvi + (1− yvi)× log(1− pvi)] (3)

where yvi a binary indicator whether the given question i is answerable and pvi is the predicted
possibility of the question i being answerable. When using this module, we zeroed out the answer
span predictor’s boundary prediction and treated a question as unanswerable if the output of this
module was below certian threshold.
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Figure 3: Variations of answer pointer model. (a) Answer verifier module. (b) Sequential answer
pointer module. (c) Answer boundary pointers where the ending point predictor is conditioned on the
starting point prediction. (d) Answer boundary pointers suggested by the original QANet. Our best
model uses (a), (b), and (d) pointers at the same time (Appendix A).

Sequential Answer Pointer (SEQ). This mechanism was inspired by the sequential model from [13].
We added a node predicting whether a word was in the answer span or not (Figure 3(b)). We expected
that this auxiliary node would provide more information than the errors from the starting and ending
point prediction, since a model might be wrong by a few words, but that doesn’t necessarily mean
that the model is attending to the wrong part of the paragraph. It can be expressed as the equation
below, where s denotes the context paragraph and Wv is a trainable parameter of shape (d, 1). ps is a
vector of shape (sequence length, 1) where each value indicates the probability of the corresponding
token included in the answer span.

ps = sigmoid(WvM0) (4)

This module can be trained with the loss term below.

Ls(θ) = − 1

N

N∑
i

[
1

|Si|
∑
c∈Si

yc × log pc + (1− yc)× log(1− pc)] (5)

where Si is the token sequence of the given context i, c is a token in Si, yc a binary indicator whether
token c is included in the answer span or not, and pc is the predicted possibility of token c being
in the answer span. In other words, this loss corresponds to the mean binary cross-entropy loss of
predictions for all tokens in our training set.

Conditioning Ending Point Pointer (COND). As reported by [13], we also wanted to test if the
accuracy would be improved when the end pointer is conditioned on the start pointer. The goal is
to calibrate the end pointer so that its output index is always after the start index as we thought this
would give a more accurate answer boundary. We experimented with two single-layer feed-forward
networks for each of the start and end prediction pointers (Figure 3(c)).
p1 = softmax(W2 × relu(W1[M0;M1])), p2 = softmax(W4 × relu(W3[M0;M2; p

1])) (6)
where p1 and p2 are respectively the answer span’s starting and ending boundary prediction, W1, W2,
W3, W4 are trainable variables, Mi is the output from the i-th model encoder sublayer.

This module can be trained using the same loss function as the original QANet boundary prediction
model (Eq. 7).

Ensemble. For the in-class leaderboard, we ensembled the results from four model variants using
majority-vote rule, namely the “QANet,” “QANet + V + SEQ,” “Multihead QANet + V,” and
“Multihead QANet + V + SEQ” models in Table 2. We picked the combination of model variants
that empirically performed the best on the dev leaderboard. We chose the result from the “Multihead
QANet + V + SEQ” model whenever tie occurred.

4.4 Loss Function

To train the final layer variants suggested above, we add the corresponding auxiliary losses to the
original loss to calculate the final loss.

5



The original QANet’s loss function is a sum of negative log probabilities of predicted starting and
ending points, indexed by true start and end indices. Concretely,

Lqanet(θ) = − 1

N

N∑
i

[log(p1y1
i
) + log(p2y2

i
)] (7)

where y1i and y2i are respecively the groundtruth starting and ending position of the example i, and θ
is the set of all trainable variables.

Our best model uses the verifier (V) and sequential prediction model (SEQ) on top of the multihead
QANet model (Appendix A). Thus, our best model’s loss function is as follows.

Lbest(θ) = Lqanet(θ) + Ls(θ) + Lv(θ) (8)

4.5 Failed Experiments

Although they went in vain, we tried other variations of QANet. Here we list up some of the ideas we
had to early-stop due to poor performance or instability during the training.

• Training the context and query encoder separately: In our final model, context and query
paragraph encoders share the weights. Using separate encoders worsened performance, and
we suspect sharing weights allows the encoder to observe more training examples and help
align the context and query distribution.

• Local-aware feed-forward network using 1-D convolution: We tried replacing the feed-
forward layer in the encoder block with 1-D convolution with fixed kernel size to better
capture locality of tokens.

• Using the maximum value of probability prediction to predict answerability: We tried
to calibrate answerability prediction by approximating confidence level of answer span
prediction with the maximum value of the final softmax output.

5 Experiments

5.1 Data

We use the modified SQuAD 2.0 dataset offered by the course staff as a part of the Default Project -
I.I.D. SQuAD track 1. As stated in the project guideline, it contains 129,941 train, 6,078 dev, and
5,915 test examples 2. We did not use any other external dataset, including the original SQuAD
dataset [14].

5.2 Evaluation Method

We follow the class SQuAD leaderboard and use Exact Match (EM) and F1 score as our evaluation
metrics. We include the average answerability prediction accuracy (AvNA) as our third metric. Exact
Match is a binary measure (0 or 1) strictly reporting whether the system’s output is an exact match
with the ground truth answer. F1 score is the harmonic mean of the precision and recall. AnVA is the
average recall of non-answerable questions.

5.3 Experimental Details

We trained the baseline and experimental models using the whole training set. The BiDAF model
was trained only using word embeddings. Following the original paper, the QANet and its variants
were trained using both the word and character embeddings.

We trained the models using the default pipeline provided by the course staff. For the BiDAF baseline
model, we used the default set of hyperparameters provided in the args.py file. For the QANet-based
models, we mostly followed the set of hyperparameters specified in the paper including the learning

1https://github.com/michiyasunaga/squad
2http://web.stanford.edu/class/cs224n/project/default-final-project-handout-squad-track.pdf
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rate warmup process during the first 1000 steps, after which the learning rate stayed constant as 0.001.
We also applied dropout layers inside encoder blocks, but with the dropout rate of 0.2 instead of 0.1 in
the paper and applied the standard L2 weight decay with λ = 3× 10−7. We used the Adam optimizer
with β1 = 0.8, β2 = 0.999, and ϵ = 10−7. For all models, we used batch size of 32 and trained for
30 epochs. We used one NVIDIA V100 GPU to train all models. We used the pytorch_warmup
pip package 3 for the warmup, but didn’t use any other pre-implemented code repositories.

While producing the final prediction output, we added a simple rule-based post-processing for the
model variants with verifier modules. We used the output of the verifier module to predict if a given
question was answerable and ignored the starting and ending position prediction to mark the question
‘unanswerable’ if it was less than the fixed threshold (0.7).

5.4 Results and Ablations

Model Embedding AvNA F1 EM
BiDAF (Baseline) W 68.43 61.46 58.12

QANet (a) W + C 68.66 61.57 57.97
QANet + V W + C 71.16 63.96 60.28
QANet + V + SEQ (b) W + C 71.84 65.01 61.12
Multihead QANet + V (c) W + C 72.06 65.74 62.16
Multihead QANet + SEQ W + C 72.71 66.4 62.85
Multihead QANet + COND W + C 62.44 50.91 47.16
Multihead QANet + V + SEQ (d) W + C 72.68 66.88 63.38
Multihead QANet + V + SEQ + COND W + C 70.70 63.57 59.84

Ensemble (a+b+c+d) W + C 74.48 69.57 66.54

Table 2: Preliminary result of the model evaluated on the dev set. In the ‘Embedding’ column, ‘W’
refers to word-level and ‘W+C’ refers to the word and character-level embeddings.

The results of our model variants on the SQuAD 2.0 dev set are shown in Table 2. Note that
due to limitations in computing resource, we could not perform rigorous ablations across the entire
combinations of modules, but we report as many ablations as possible under our constraints, especially
among the multihead model variants.

Based on the overall F1 and EM score, our best model was “Multihead QANet + V + SEQ,” using the
baseline QANet model, answerability verifier module, and the sequential predictor module together.
Our extended model achieved superior performance to the baseline BiDAF model with AvNA of
72.68, F1 of 66.88, and EM of 63.38 on the dev dataset. The ensemble model of four model variants,
achieved significant gain over the baseline model with AvNA of 74.48, F1 score of 69.57, and EM of
66.54 on the dev leaderboard. It achieved F1 score of 66.3t and EM of 63.25 on the test leaderboard.

We saw increase in model performance when we used the verifier and sequential prediction model. We
saw slightly better performance when we used the sequential prediction model than the basic QANet
or QANet and the verifier module, confirming that the sequential auxiliary loss helped in model
training. Interestingly, conditioning ending predictor on the starting boundary prediction did not
improve performance. We observed the training and validation loss increase after getting to a certain
local minimum during training, alongside some fluctuations with the F1 and EM scores. We suspect
that we might have needed to tune the hyperparameters (e.g. the learning rate) to accommodate the
additional layers to the output.

6 Analysis

6.1 Answerability Prediction

For the verifier module, we first used threshold of 0.5 but ultimately adjusted it to 0.7 after witnessing
that the 0.5 threshold resulted in high false positive rate. We generally see high true negative and

3https://pypi.org/project/pytorch-warmup/
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Figure 4: Confusion matrix of
answerability prediction

Figure 5: Length distribution of ground truth and predicted answer
spans. Left: Answer span lengths of all questions. Right: Answer
span lengths of answerable questions.

positive rate on the textttdev dataset, with the average AvNA of 72.71%, but we find that further
improvements can be made to reduce the false positive rate (Figure 4).

Among the false positive predictions, we observe that the model is prone to output one-word questions
to unanswerable questions (Figure 5). Most likely, the model tries to output at least the one word with
the highest softmax probability while trying to predict the answer span. Qualitatively, we observed
that the model either outputted entirely wrong answer or a characteristic word included in both the
query and context paragraph for one-word answers.

6.2 Qualitative Error Analysis

To examine where our model was suffering, we performed a qualitative evaluation on individual
failure examples. First, we noticed that the model failed to produce concise answers. For example, it
returned “3 miles (5 km) west-northwest” to the question, “How far from state house in downtown
Boston is Harvard Yard?” when the ground truth was “3 miles.” We also noticed that the model
suffered to detect unanswerable questions when the question and candidate context span shared
similar tokens, but in fact one token made significant change in the meanings. For example, for the
question “In a 4-cylinder compound engine, what degree were the individual cranks balanced at?” on
the context “(omitted) the individual pistons within the group are usually balanced at 180° (omitted),”
the model outputted “180°” as the answer when in fact, the question about cranks was not answerable
from the given context on pistons. Finally, the model had problem capturing answer spans of complex
grammatical structure, such as outputting only “Iroquois Six Nations” when the ground truth was
“Iroquois Six Nations, and also by the Cherokee.”

7 Conclusion

In this paper, we introduce our attempts to implement and extend the QANet model for the modified
SQuAD 2.0 dataset. We use Transformer- and convolution-based QANet to encode question and
context paragraphs, and adopt multihead bi-directional attention to better capture the similarity
between questions and contexts. Our experiment results show that our model can better predict the
answerability of questions and answer spans for answerable questions than the baseline BiDAF or
original QANet model. Our basic ablation study demonstrates that the answerability verifier and
sequential prediction loss can help improve the prediction.

Future works include reducing false positive predictions, namely false-positive one-word predictions.
It could possibly be done by explicitly putting the verifier in front of answer span boundary prediction,
and developing more powerful verifiers. Also, we could potentially capture the context-query attention
in a more fine-grained way by making context-query multi-hop or multi-scale.
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A Appendix: Final Model Output Layer

Figure 6: Final output layer of our best model
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