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Abstract

The automated question-answering system has always been an interesting and
challenging task. In this project, we implemented a baseline BiDAF model with
character-level embedding, a QANet model, and a QANet with transformer-XL
model to explore their performance on the SQuUAD 2.0 question-answering dataset.
From the result of our experiments, the QANet reaches EM of 52.86 and F1 of
55.74, and the QANet with the transformer-XL reaches EM of 50.92 and F1 of
51.01 on the dev set.
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2 Introduction

The automated question-answering system has always been an interesting and challenging task and
can be useful in many areas. For example, companies use chat-bots as virtual assistants, which needs
the model to generate answers according to customers’ specific questions. Our goal is to build a
question answering system using the Stanford Question Answering Dataset 2.0 (SQuAD 2.0), and try
to improve the performance using the QANet and Transformer-XLs.

The input to our model is a paragraph and a question about that paragraph, including both answerable
and unanswerable questions. The output is the best answer to that question. For the answerable
questions, the answers can be found directly from the original paragraph with no generation needed.

Our provided baseline for the question answering system is based on a Bidirectional Attention Flow
(BiDAF) model, which uses a bidirectional LSTM as a RNN encoder and a bidirectional attention
that flow in both directions - from the context to the question and from the question to the context.
This is helpful as the model captures useful information from the context, but LSTMs may have the
problem of vanishing and exploding gradients in long contexts. One potential improvement would
be using transformer-XLs as it is able to capture the longer-term dependency in the context. In this
project we made the following attempts to improve our model performance: using character-level
embedding, using QANet, and using Transformer-XLs.

From the result of our experiments, the QANet reaches EM of 52.86 and F1 of 55.74 on the dev set,
and the QANet with the transformer-XL reaches EM of 50.92 and F1 of 51.01 on the dev set.

3 Related Work

The provided baseline network was adapted from the BiDAF model [1]], which is composed of five
modules: an embedding layer used for generating the word-level embedding, an encoder layer which
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uses bidirectional LSTM, an attention layer that captures information from both context to question
and question to context, a modeling layer that uses two layers of bidirectional LSTM, and finally an
output layer computing the possibilities of each word in the context.

With the growing interest in machine reading, the QANet [2]] was then proposed to speed up the
training process. Essentially the QANet replaced the recurrent structure in the BIDAF model with a
bunch of encoder blocks that use convolutions and self-attentions. The model is also composed of
five layers, and will be discussed in details in the next section.

The LSTMs are widely used, but potentially they may have optimization problems due to gradient
vanishing and explosion between long-distance word pairs. Transformer-XL [3] is then proposed to
address this issue. The main contribution of transformer-x1 is a segment-level recurrence mechanism
and a relative positional encoding scheme. The segment-level recurrence mechanism reuses the
hidden states obtained in the previous segments. The relative positional encoding helps address the
incoherence in the positional information gives the model a temporary clue about where to attend. As
a result, modeling very long-term dependency becomes possible. In this project, we implemented
transformer-xI for the attention layer in the encoder blocks.

4 Approach

4.1 Baseline

Our baseline model is the default starter code. This model only uses a word embedding layer as
compared to the original BIDAF model [[1], but it follows the same high-level structure. This model
uses pretrained GloVe word embeddings [4]. All our other models are built upon this baseline model.

4.2 Character embedding layer

According to [[1]], they used a character-level embedding layer in addition to the word embedding.
We recovered this model by adding this character-level embedding layer. Specifically, we first used
an nn.Embedding layer to retrieve the 4-dimensional character embeddings, with the shape being
(batch size, text length, max word length, char embed size).

Then we permute this tensor and apply a convolutional layer over the embedding. This conv2d layer
treats the char embed size as the input channel and convolves over the max word length dimension, and
the parameters of this layer is Conv2d(out_channel=hidden_size, kernel_size=(1, 5)),
where size 5 is over the word length dimension, which is also the default value specified in [1]. We
set the kernel size on the text length dimension to 1 to guarantee that the conv layer does not look
at other words. Then we apply a maxpool to only the last dimension to yield the tensor with shape
(batch size, text length, hidden size).

The word embeddings are still passed into the projection layer. Then we stack the char embeddings
with word embeddings, and feed them into the rest of the network. Note that the highway encoder is
expanded to twice of the original size since we now have two embeddings.

4.3 QANet

Our second improvement is to use the transformer model instead of the LSTM structure adopted in
the baseline, since it has proved effective in many NLP tasks. Our implementation follows the QANet
architecture [2]]. The general architecture of our implementation is shown in Fig[I] which shares the
same high-level structure as QANet.

Embedding layer In our implementation, we keep our word and char embedding layers as described
in section@ The dimensions of both word and character embeddings are 100, therefore our model
dimension is set to 200 throughout all layers. We then pass the embeddings into the embedding
encoder layer, which is one QANet encoder block shown in Fig[Th] A positional encoding constructed
using sin and cos waves is added to the embeddings before they get passed into deeper layers in
the block. The second part has 4 conv blocks stacked together, each including a layernorm and a
depthwise separable convolution operation, as originally proposed in [S]]. The next layer consists of a
layernorm followed by a multi-head self-attention layer, which is adapted from the code in previous



course assignment. The outputs are finally passed into a two-layer MLP to generate inputs to the
other parts of the network. Note that throughout the entire encoder block, we keep the dimensions of
each output the same so as to realize the residual connections.

Context-query attention Different from the original QANet, we keep the bidirectional attention
flow layer the same as the one used in the BIDAF model. This layer computes a similarity matrix
between the context and question hidden states, and uses this matrix to distribute attention toward
either context or question.

Modeling layer In the modeling layer, we implement the structure same as the QANet, which
uses three stacked encoder blocks, with 7 encoder blocks in each stack. The three repetitive stacks
share weights between them. The structure of each encoder block is the same as the one described in
the embedding encoder except that it only has 2 conv layers instead of 4 in the embedding encoder,
which is also implemented according to the original QANet. To regularize this deep layer and prevent
overfitting, we follow the layer dropout method after each small layer (i.e. conv layer, self-attention
layer, and the MLP) as mentioned in QANet. This mechanism varies the drop out probability of each
layer according to Equation [T}
l

=d t 1
b ropout X total number of layers 0

Where [ is the number of current layer in the entire stack. By scaling the dropout ratio according to
the depth of layer, this method allows gradients from earlier layers to flow more easily into deeper
layers, and prevents too many hidden units from being zeroed out due to frequent dropout operation.

Output layer The last layer takes the outputs from the modeling layer, and compute a probability
distribution of the start and end positions of the answer in the context. The inputs from the first and
the second modeling encoder stacks are concatenated together and used to generate the probability for
the start position, and the second and third stack outputs are used to determine the end position. This
layer is simply implemented using a two-layer MLP followed by a masked log softmax operation.

4.4 TransformerXL in QANet

Based on the QANet, we further improved our model by implementing the transformer-XL for the
attention layer in the encoder blocks. This section will discuss the approach of building transformer-xI
as well as the combination to our overall QANet architecture.

4.4.1 TransformerXL

According to [3], transformer-XL has the following features and may help learn longer dependencies
and achieve better performance on both short and long dependencies:

* Segment-level recurrence: The main idea is to reuse the hidden state sequence from the
previous segment. The network now can process information in the history, and so it is able
to model longer-term dependency. Specifically, the n-th layer hidden state for segment s, 1,

denoted as ﬁ";%, is:
h?ﬁ = [SG(n}1), h¢+11]

.
Ay kvt = hT+1W hT+1Wk ah7+1
h},, = Transformer-Layer(q} |, k?ﬂ? vl )

where W is the model parameters, hT 11 is the n-th layer hidden state produced for the
7-th segment, SG stands for stop-gradient, [-, -] stands for the concatenation of the hidden
sequences.

* Relative positional encoding: To successfully reuse the hidden states, transformer-XL

encodes the relative positional information and injects into the attention score. Specifically,
the attention score can be calculated with:

A = TR+ TWE R R +ul ke + 0 W R

T'L,]

where u and v are trainable parameters and ¢ — j represents the relative position.



Start probabilit: End probabilit
[ B - Y | | P ~ ¥ ‘ / Encoder BION

Output layer Output layer L

Layernorm

Stacked model encoder blocks

Y

Stacked model encoder blocks

Self-attention

Y

Layernorm

Y

[ )
[ )
( stacked model encoder blocks |
[ Contextquery attentionllayer ]

Conv Conv Block

Layernorm

@ Positional encoding
l Context | | Question ‘ —
Previous layer output

(a) Architecture Overview (b) Encoder Block

[ Embedding encoder layer J { Embedding encoder layer }

[ Context embedding | | Question embedding ‘
¥ =

. Output layer

SoftMax

MLP

Concatenation

Output 1 | ‘ Output 2

(c) Output Layer
Figure 1: QANet Architecture

4.4.2 Transformer-xl in the QANet

The overall architecture is very similar to the QANet model, except for the encoder blocks used in the
encoding and modelling layers. That is to say, the embedding layer, attention layer, and the output
layer are exactly the same as in the QANet.

For the embedding encoders (the encoding layer), we modified its encoder block. The encoder block
for the QANet can be seen in Fig[T|(b). To implement the transformer-xI based on that, we made the
following changes:

* We kept a memory that contains information of the previous /,,,em hidden states spanning
multiple segments and inputted it to the encoder block. /,,,em is set to 128.

* We switched the positional encoding to a relative positional encoder with length 2*hid-
den_size, with hidden_size set to 200.

* We modified the self-attention to a multi-head attention with relative positional encoding
and learnable bias parameters. We set n_head as 8, d_head as 16, and a dropout of 0.1.

For the modelling layer, which was concatenated with three encoder blocks in the QANet model, is
now concatenated with seven modified encoder blocks.

S Experiments

5.1 Data

We use the SQuAD 2.0 dataset [6]. We use the data splits generated using the provided setup script,
making sure that we only trained with the train set and evaluated with the custom dev set following
the rules specified in the handout. There are 129941 examples in the train set, 6078 examples in the
dev set, and 5915 examples in the test set. Each example is composed of the context, question, and



answer. The task is to predict a span in the context that answers the question. When a question is not
answerable with texts directly taken from the context, the question is marked as unanswerable.

5.2 [Evaluation method

The evaluation metrics we use are F1, Exact Match (EM), and AvNA scores. We use F1 score to
determine the best model.

5.3 Experimental details

Baseline and character embedding We use the Adadelta optimizer with a constant learning rate
of 0.5, and exponential moving average (EMA) being 0.999. The drop out probability in the layers is
0.2. Both the word and character embedding have dimension of 100.

QANet We train this model using the Adadelta optimizer same as the baseline. We implement
a 1000-step inverse exponential increase warm-up period, and after that we train using a constant
learning rate of 0.5. We decrease the dropout rate to 0.1 when training this model. We train this
model for 1.7M iterations ( 14 epochs).

Transformer-xl To train the transformer-xl model, we used a constant learning rate of 0.005. We
train this model for 1.5M iterations with batch size 16.

5.4 Results

The results obtained from our baseline and the improved models tested on the dev set are shown in
Table[T} The training curves of both models are shown in Fig[2]

It can be seen that in the baseline and the char embedding models, the metric scores continued
improving across the training, and converged after around 3M iterations. The dev negative log
likelihood curve shows that the loss starts to rise at around 1.5M iterations, which implies the model
starts to overfit on the training set.

In the QANet training process, we see that the loss decreases slowly after 1.5M iterations. The
metric scores are also improving much more slowly than the BIDAF model even if they share the
same optimizer and learning rate. This could be due to the fact that QANet is a larger and also deeper
network, so it would be harder to train. From this observation, we suspect that some potential issues
to fix in the model include: 1) Size of the network. Our model currently uses 200 as model dimension
throughout all layers, while the original model is using 128 as their model size and can perform well.
Reducing the model dimension may help accelerate the convergence. 2) Regularization and drop
out. Currently we adopt the layer dropout scheme which scales the dropout probability based on
depth of each layer, but as we observe that there is a gap between the loss on the training data and
validation data, we should consider allowing more dropout or seek another better way to scale it so as
to close this gap and prevent overfitting. 3) Cross validation. We can consider doing cross validation
to include the dev set as part of our training set, and hold out some training data to save as dev data.
This may help also close the gap between the model behavior on the two datasets.

In the QANet with the transformer-xI training process, the loss decreases quickly in the first 500k
iterations, but then starts to oscillating and increases after 1.1M iterations. From the observation,
we think it might have the same overfitting problem as for the QANet, which potentially might be
fixed with reducing the number of layers we use in the model, or adding regularization. We also
think it might be helpful to tune the learning rate. In our experiments we found the QANet with
the transformer-xl is sensitive to the leraning rate as a little modification from 0.005 to 0.01 would
change the convergence. We may need to consider using adaptive learning rate for a better fitting.

6 Analysis

In this section we look at the output answer predictions to gain some insight about the characteristics
of the models. We first provide some common successful and failure cases of the BiDAF model from
the dev set, discuss what is observed from the pattern, and talk about the difference between the char



Model Test Set

Dev Set

EM F1 EM

F1

AvNA

Baseline N/A N/A 57.6
Char embedding 59.20 62.74 58.93
QANet 4977 52.14 53.32
Transformer-XL.  N/A N/A  50.92

60.94
62.11
55.74
51.01

67.23
68.58
63.07
54.56

Table 1: Model Performance on Dev and Test Sets
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embedding model output and the QANet output. We omit some of the context to save space and only
try to keep relevant information here.

(success - exact match) Question: When B cells and T cells begin to replicate, what do some of
their offspring cells become?

Context: When B cells and T cells are activated and begin to replicate, some of their offspring
become long-lived memory cells. ...(omitted)

Prediction: long-lived memory cells

(success - partial match) Question: The price of oil is usually a stable commodity until when?

Context: (omitted)... From 1947 to 1967, the dollar price of oil had risen by less than two percent
per year. Until the oil shock, the price had also remained fairly stable versus other currencies and
commodities. ...(omitted)

Prediction: the oil shock (Answer: Until the oil shock)

(failure - false answer) Question: Who ordered Loudoun to defend Louisbourg?

Context: Loudoun, a capable administrator but a cautious field commander, ...(omitted)... He was
then ordered by William Pitt, the Secretary of State responsible for the colonies, to attack Louisbourg
first. ...(omitted)

Prediction: William Pitt (Answer: N/A)

(failure - wrong range) Question: Thousands of madrasahs spawned what organization?

Context: The Taliban were spawned by the thousands of madrasahs the Deobandi movement
established for impoverished Afghan refugees and supported by governmental and religious groups
in neighboring Pakistan. ...(omitted)

Prediction: Deobandi (Answer: The Taliban)

(failure - no prediction) Question: Who founded Telnet

Context: Telenet was the first FCC-licensed public data network in the United States. It was founded
by former ARPA IPTO director Larry Roberts as a means of making ARPANET technology public.
...(omitted)

Prediction: N/A (Answer: Larry Roberts)

In the successful examples shown above, we see that the model is learning to check for key words
when predicting the answer, like the word "become" in the exact match example, and these examples
seem relatively easier to answer because they do not include complicated sentence structure that
requires high-level understanding. There are also many partially correct predictions that include a
couple more or fewer words than the ground truth, but are still logically acceptable.

We find that there are three major categories of failure cases: 1) False answer, in which case the
question is not answerable but the model gives a prediction, 2) Wrong range, when the model refers
to a wrong part in the context, and 3) No prediction, when the model cannot extract any answer. As
shown above, we see that if the ground truth answer is relatively far from the context that is relevant
to the question, there is a higher probability that the model fails. Usually it either provides a false
answer that is close to the question, or cannot find any answer. Interestingly, when there are two
words that are of the same type and match what the question is asking (e.g. both are numbers, places,
names, etc.), it could easily confuse the model.

These observations provide us some insight about what is being learned in our model and what is
not. First, we see that the model can learn the short-range correlations more easily than words that
span over a long sentence since short-term memories are easier to recover. Second, the model is
good at paying attention to key words. Even though it sometimes predicts a wrong answer, it usually
matches the question type and most times is highly relevant to part of the question. However, the
model cannot distinguish different grammars very well, for example, it does not look backward when
there is a passive voice, as shown in the wrong range failure case.



Now when we compare the above outputs from the BIDAF model to the QANet, though they still
share similar types of failures, we notice that the there is a higher chance for the QANet to predict
a wrong answer that is far away from the part relevant to the question. This happens even if the
ground truth answer is very close to the question-related text and should be easier to locate. We
think this is because the QANet treats the entire context as the input, so it has a wider receptive field
when predicting the answer but may not be better at predicting answers that are right neighboring the
question keywords than RNNss.

7 Conclusion

In this project, we explore the question answering problem using different NLP network structures.
Starting from the baseline BIDAF model [1]] without character embedding, we first recover the
original work by adding the character embedding layer. Then we study the QANet [2] mechanism
and adapt our model to it. Lastly, we try to combine the idea in Transformer-XL with QANet.

From the results, we see that adding the character embedding has improved the model performance
already. With the other two improvements, QANet and Transformer-XL, though in our implementa-
tion we do not observe the improvement, we do observe that using transformers allow the model to
better capture long-term information than the LSTMs used in BiDAF model.

Given the time span of this project, we expect that in the future we can try with different hyperpa-
rameters on the transformer models, such as a smaller network with fewer hidden units. We also
want to try other techniques that may help with training a deep network, such as a different drop out
mechanism that could help prevent overfitting or the Adam optimizer with a smaller learning rate.

Furthermore, from the qualitative results we see that although the models can capture many key
words, they tend to miss many grammatical details that are critical to locating the answer. A lot
of large models adopt pretraining with the NMT task before finetuning on the question answering
dataset, and we also hope that we have a chance to train a model with pretraining and see how it
helps.
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