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Abstract

Machine comprehension and question answering (QA) systems are quickly becom-
ing a staple of the modern world, with widespread commercial use from virtual
assistants to search engines. The recently-proposed QANet model performs well
on the earlier SQuAD 1.0 dataset, in large part due to its more parallelizable ar-
chitecture which enables it to have significantly faster training and inference. In
this project, we present our implementation of a custom QANet model and analyze
our QANet model’s performance on the newer SQuAD 2.0 dataset, which includes
unanswerable questions. We found that the QANet model underperformed and
hypothesize that this is in large part due to class imbalance within the SQuAD 2.0
dataset as well as memory and compute limitations with our model architecture and
training. We recommend several avenues for future work to explore to overcome
these limitations and achieve better performance on the SQuAD 2.0 dataset.
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2 Introduction

Machine comprehension and question answering (QA) systems are quickly becoming a staple of
the modern world, with widespread commercial use from virtual assistants to search engines. Since
recurrent neural networks (RNNs) are designed to process sequential data, they are typically used
within QA systems in order to process textual data, which is sequential. However, because RNNs
process data sequentially, they are unable to process language tokens in parallel, increasing both
their training and their inference time. While ongoing research into using reinforcement learning
techniques to skip unimportant language tokens may offer some potential speedup, such techniques
are not always effective when processing long sequences of text, as is necessary for QA systems.

The long training time of RNNs makes it difficult for researchers and AI developers to iterate on
these models, and so achieving good performance in QA systems is time and resource intensive.
Furthermore, the long inference time of RNNs makes them less suitable for application in QA systems,
as users may be turned off by the model’s latency. A new model named QANet [1] was proposed,
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which is capable of performing question answering with a more parallelizable model in place of a
recurrent neural network component.

Rather than using recurrent neural nets, QANet proposes to exclusively use convolutions and self-
attentions for encoders. The idea is that the convolution captures the local structure of the text while
the self-attention learns the global interaction between each pair of words. Consequently the model is
3x to 13x faster in training and 4x to 9x faster in inference on the SQuAD 1.0 dataset. The speed-up
in training allows for more iterations and therefore better results.

While the QANet model performs well on the SQuAD 1.0 dataset, we seek to investigate its per-
formance on the SQuAD 2.0 dataset, which adds 50,000 unanswerable questions. We compare its
performance with that of a baseline BiDAF model on the same dataset. We build upon the starter
code provided in the project handout and spent significant time and effort implementing the complex
QANet model architecture from scratch, including sub-components such as positional encodings, a
multi-head attention mechanism, and depthwise-separable convolutions. We have made available all
of our project code here: https://github.com/rickygv99/squad.

3 Related Work

A number of end-to-end neural networks have already been created for machine comprehension and
question answering that we used to inform the way we designed our approach. For example, BiDAF
[2] is a network that uses a bi-directional attention flow mechanism to get a context representation
without early summarization. This model is our baseline and therefore we looked into its details to
get insights into how we could improve their results. Another example of a related paper is r-net [3].
R-net is a gated self-matching network that creates a question aware passage representation, uses a
self-matching attention mechanism to refine the representation, and finally uses a pointer network to
locate the position of answers from passages. We looked into this paper because at the time of its
submission it held the first place on the SQuAD leaderboard for both single and ensemble model.

The progress in end-to-end neural networks for machine comprehension and question answering can
be attributed to the number of datasets available. Some datasets such as (Richardson et al., 2013;
Berant et al., 2014; Yang et al., 2015) [4] are labeled by humans and high in quality but consequently
are too small for training data intensive models. Conversely there are datasets that are automatically
generated that are very large and allow for training of more expressive models. MS MARCO is an
example of a large-scale dataset [5]. In this dataset specifically the questions are queries from Bing
or Cortana and the passages are webpages and there are several related passages provided for each
question in the dataset. Interestingly enough, the answers are human generated whereas in SQuAD
the answers are a span of the passage.

4 Approach

4.1 Baseline Model

As our baseline, we are using a modified Bidrectional Attention Flow (BiDAF) [2] model. Unlike the
BiDAF model from the original paper, our baseline BiDAF model does not include a character-level
embedding layer.

At a high-level, the BiDAF model uses a bidirectional attention mechanism, computing both query-
to-context and context-to-query attention. The two attention vectors are then combined together
to produce a matrix G, in which each column vector represents a query-aware representation of a
context word. A two-layer bidirectional LSTM [6] network takes this matrix G as input and produces
a matrix M, in which each column vector contains contextual information about a context word with
regard to both the whole context paragraph and the query. These matrices G and M can be used by
the model’s output layer (which is application-specific) in order to generate predictions.

4.2 Second Iteration

For the second iteration of our model, we sought to improve upon our BiDAF model by implementing
a QANet model [1]. As described in (Yu et al., 2018), the QANet model consists of five main
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components: an input embedding layer, an embedding encoder layer, a context-query attention layer,
a model encoder layer, and an output layer.

Input Embedding Layer: Our input embedding layer utilizes both the word embedding and the
character embedding for a given word. Word embeddings are fixed during training from p1 = 300
dimensional pre-trained GloVe word vectors [7]. All out of vocabulary words are replaced with an
<UNK> token which has a random embedding initialization. Character embeddings are initialized
similarly, with dimensionality p2 = 200, and are an alternative way of representing a given word – as
a concatenation of its individual character embeddings.

Input embeddings are generated for both the context paragraph C and the query sentence Q. When
generating the input embedding for a given word, both its word and its character embeddings
are passed through a dropout layer (p = 0.1). Its character embedding is then passed through a
convolutional layer (kernel size = (1,5)) and then the maximum value of each row is taken. These
maximum values are concatenated to the word embedding, producing [xw;xc] ∈ Rp1+p2 , where xw

is the word embedding and xc is the maximum values computed from the character embeddings of
x. Finally, this result [xw;xc] is passed through a two-layer highway network [8], and its output is
returned from this layer.

Embedding Encoder Layer: Our embedding encoder layer is applied separately to the input
embeddings of the context paragraph C and the query sentence Q. The inputs to this layer have a
dimension corresponding to word vector length of length p1 + p2 = 500 – we apply a depthwise-
separable convolution [9] to map this to the hidden size of the network (d=100). In order to represent
not just the meaning of each word in its embedding but also its position within the sentence, we
concatenate the positional encoding of each word to its embedding, as described in the paper [1]. We
used fixed positional encodings, which are calculated as follows:

PEpos,2i = sin(pos/100002i/d)

PEpos,2i+1 = cos(pos/100002i/d)

where pos is the position of the word within the text, i is the position of the word within the input
embedding, and d is the hidden size of the network.

We then perform 4 depthwise-separable convolutions on the resulting concatenation, each with d
filters and a kernel size of 7. Next, we pass the result through a multi-head attention mechanism, as
described in (Vaswani et al., 2017) [10]. This result is passed through one final feed-forward layer.

For each of these operations (conv/attention/ffn), the input is first layer-normalized [11]. Each
operation is also contained within a residual block. Thus, each operation is computed as
f(layernorm(x)) + x, where x is the input to the operation and f is the operation to be applied.

Context-Query Attention Layer: Our context-query attention layer takes in our query encoding
and context encoding as input and outputs the attention scores between the context and query. In
this layer, we first compute the similarities between each pair of context and query words, creating a
similarity matrix S ∈ Rnxm. Then each row of S is normalized with a softmax function resulting in
matrix S̄. We then compute the context-to-query attention as A = S̄ ·QT ∈ Rnxd.

Model Encoder Layer: Our model encoder layer consists of three model encoder blocks, each of
which generates a model encoding: M0,M1,M2. The attention passed into this layer has length 400
– to map this to the hidden size d = 100 of the network we apply a depthwise-separable convolution
with d filters. We then apply our first model encoder block to the attention scores to generate M0.
Each model encoder block consists of 7 embedding encoders, the latter 6 of which each take the
output of the previous encoder as input. The embedding encoders are nearly identical to the earlier
embedding encoder layer – the only difference is that 2 convolution operations are performed instead
of 4. We calculate M1 and M2 similarly – the only difference is that they take M0 and M1 respectively
as inputs rather than the attention scores. M0,M1,M2 are returned from this layer as output.

Output Layer: Our output layer predicts the probability of each position in the context to be either
the start or end of an answer span. The starting and ending positions are modeled as follows:

p1 = softmax(W1[M0;M1])

p2 = softmax(W2[M0;M2])
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where W1 and W2 are trainable variables and M0,M1,M2 are the outputs of our model encoder
layer. p1 and p2 are returned from this layer as output.

Objective Function: Our objective function is the sum of the negative log-likelihoods of the
distributions p1 and p2 (outputted from our output layer) over all the training examples.

L(θ) = − 1

N

N∑
i

[log(p1y1
i
) + log(p2y2

i
)]

where y1i and y2i are the starting and ending positions of the i’th training example, and θ contains our
trainable variables.

5 Experiments

5.1 Data

We trained and evaluated our model on examples from the SQuAD 2.0 dataset [12]. The dataset
consists of context, question, answer triples with the answer being a span of text from the context
that answers the question. SQuAD 2.0 differs from SQuAD 1.0 by including unanswerable questions
that do not contain an answer to the question within the context. The train split contains 129,941
examples with the dev set containing 6078 examples and the test set containing 5915 examples. The
dev and test set each contain about half of the official SquAD 2.0 dev set.

5.2 Evaluation method

We evaluated our model’s performance quantitatively, using F1 score and exact match (EM) score
averaged over all testing examples.

5.3 Experimental details

We trained the baseline model for 30 epochs and our QANet models for 20 epochs since early
stopping showed signs of overfitting near that number of epochs. We made several modifications
to the original QANet model from the paper. These include a larger QANet model with a hidden
size of 192 instead of 128 for the convolution filters and 11 encoder blocks instead of 7 within the
model encoder layer. We also trained a QANet model with the Adadelta optimizer used for the
BiDAF model, and another QANet model with the AdamW optimizer, which modifies the Adam
optimizer by decoupling weight decay from optimizations to our loss function, in order to improve
our model’s ability to generalize [13]. We also tried both a learning rate warmup and a constant
learning rate setup when training our models. The learning rate warmup was identical to the QANet
paper with an inverse exponential increase of the learning rate from 0 to 0.001 in the first 1000
steps of training whereas with the constant learning rate we kept it at 0.001. Additionally, we used
β1 = 0.9, β2 = 0.999, ϵ = 1 ∗ 10−7, and a weight decay of 5 ∗ 10−8 for Adam and AdamW. We
did some manual hyperparameter tuning for several parameters and ended up making some small
changes to the values from the QANet paper. Within the QANet model, we used a hidden size
of 100 and a dropout rate of 0.1 along with an L2 weight decay of θ = 3 ∗ 10( − 7) on trainable
parameters. Unlike the original QANet paper, we used a batch size of 16 rather than 32 in order to
remain within memory limits on the Azure virtual machine. Training our baseline BIDAF model took
around 4 hours. Training for the QANet models took about 16 hours which was likely due to memory
constraints since QANet is very memory intensive.
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5.4 Results

Model Type EM F1

Baseline 57.621 60.886
QANet Larger Model 52.193 52.193

Adam with learning rate warmup 52.193 52.193
Adadelta with constant learning rate 52.126 52.126

Adam with constant learning rate 51.941 51.951

AdamW with constant learning rate 52.159 52.159
Table 1: Performance of various models on the dev set for SQuAD 2.0.

Figure 1: EM score vs steps for various models on the dev set
Green - Adam with learning rate warmup,
Grey - Adam with constant learning rate,
Orange- AdamW with constant learning rate

Figure 2: F1 score vs steps for various models on the dev set
Green - Adam with learning rate warmup,
Grey - Adam with constant learning rate,
Orange- AdamW with constant learning rate

The results on the test set for the QANet model using AdamW were EM: 47.878 and F1: 47.878.
These are lower than the dev results which is expected due to some potential overfitting. However,
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the results overall were lower than expected for QANet given that the model performed very well on
SQuAD 1.0. There are several potential explanations for this such as differences from the original
model with a lower batch size and the use of a constant learning rate. The above figures show
extremely erratic training results over the 20 epochs for the experiment using Adam and the learning
rate warmup scheme with the EM and F1 scores fluctuating heavily even after the initial training
iterations. Because of this, we decided to go with a constant learning rate when trying AdamW which
gave a much smoother curve, but it does reveal the possibility that there were implementation errors
with the learning rate warmup that negatively impacted the model’s performance. It is also odd that
the EM and F1 scores ended up being identical for several of our experiments although this may not
be relevant.

6 Analysis

By inspecting the outputs of our model, we found that QANet had difficulties with answering various
types of questions which helps to explain the poor performance. All analysis done for QANet was
with the AdamW and constant learning rate model. Because of the drastic drop-off in performance of
QANet on the official SQuAD2.0 leaderboard compared to SQuAD1.0, we expected QANet to mostly
have issues with unanswerable questions. However, this was not the case as the model was actually
very consistent in predicting no-answer for unanswerable questions. On the other hand, the reason for
this was that the model was predicting no-answer very commonly which gave it poor performance on
answerable questions. Below are two examples where the first shows QANet outperforming BiDAF
in predicting no-answer for an unaswerable question and the second showing BiDAF outperforming
QANet in predicting the correct answer for an answerable question.

Question: Unsurprisingly, the mujahideen’s victory with the Soviets in the 1980s succeeded to
produce what?

Context: In Afghanistan, the mujahideen’s victory against the Soviet Union in the 1980s did not
lead to justice and prosperity, due to a vicious and destructive civil war between political and tribal
warlords, making Afghanistan one of the poorest countries on earth. In 1992, the Democratic Republic
of Afghanistan ruled by communist forces collapsed, and democratic Islamist elements of mujahdeen
founded the Islamic State of Afghanistan. In 1996, a more conservative and anti-democratic Islamist
movement known as the Taliban rose to power, defeated most of the warlords and took over roughly
80% of Afghanistan.

Answer: N/A

BiDAF prediction: justice and prosperity

QANet prediction: N/A

Question: What castle currently houses the Centre for Contemporary Art?

Context: The 17th century Royal Ujazdów Castle currently houses Centre for Contemporary Art,
with some permanent and temporary exhibitions, concerts, shows and creative workshops. The Centre
currently realizes about 500 projects a year. Zachęta National Gallery of Art, the oldest exhibition site
in Warsaw, with a tradition stretching back to the mid-19th century organises exhibitions of modern
art by Polish and international artists and promotes art in many other ways. Since 2011 Warsaw
Gallery Weekend is held on last weekend of September.

Answer: Royal Ujazdów Castle

BiDAF prediction: Royal Ujazdów Castle

QANet prediction: N/A

Question Type Who What Where When Why How Other
QANet F1 53.2 51.1 52.6 54.5 49.2 51.2 47.4

Table 2: QANet F1 score for different question types.
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Additionally, we computed the F1 scores of the QANet model for questions that start with "Who",
"What", "Where", "When", "Why", "How", and "Other" questions that started with something else.
This shows that QANet struggled the most with "Other" questions which makes sense because they
start with a wide range of different words so the model is less able to determine patterns for these
types of questions.

QANet has several advantages over BiDAF due to transformers being able to follow longer dependen-
cies in text and model stronger relationships between words with positional encoding when compared
to recurrent models. In the below example, BiDAF incorrectly answers "Informal rule" whereas
QANet correctly deduces that there is no answer because the question asks about imperialism and
QANet recognizes that imperialism and rule are different terms so any context about informal rule is
not relevant to the question.

Question: Which is less costly, formal, or informal imperialism?

Context: The definition of imperialism has not been finalized for centuries and was confusedly seen
to represent the policies of major powers, or simply, general-purpose aggressiveness. Further on,
some writers[who?] used the term imperialism, in slightly more discriminating fashion, to mean all
kinds of domination or control by a group of people over another. To clear out this confusion about the
definition of imperialism one could speak of "formal" and "informal" imperialism, the first meaning
physical control or "full-fledged colonial rule" while the second implied less direct rule though still
containing perceivable kinds of dominance. Informal rule is generally less costly than taking over
territories formally. This is because, with informal rule, the control is spread more subtly through
technological superiority, enforcing land officials into large debts that cannot be repaid, ownership
of private industries thus expanding the controlled area, or having countries agree to uneven trade
agreements forcefully.

Answer: N/A

BiDAF prediction: Informal rule

QANet prediction: N/A

7 Conclusion

In this paper, we implement the QANet model architecture and analyze its performance on the
SQuAD 2.0 dataset. Interestingly, while QANet performs well on the SQuAD 1.0 dataset, it struggles
to achieve good performance on the SQuAD 2.0 dataset and underperforms our baseline BiDAF
model. We found that our QANet displayed bias towards predicting "no answer" on the SQuAD 2.0
dataset. This is likely because since SQuAD 2.0 contains 100,000 answerable questions and 50,000
unanswerable questions, it is imbalanced – a model is able to trivially predict 1/3 of the answers
correctly by simply predicting "no answer" for everything. Possible avenues for future work to
overcome this issue include exploring the effects of random under-sampling, under-sampling through
Tomek links, and/or penalizing mistakes on answerable questions more strongly in our objective
function.

Our model architecture and training was limited somewhat by memory limits and limited compute
power on Microsoft Azure. We found that increasing the batch size from 8 to 16 improved our
model’s results; however, we were unable to use a batch size of 32 as in the original QANet paper
due to memory limitations. It would be interesting to explore the effect of even larger batch sizes
on the performance of our QANet model. We found the increasing the hidden size and number of
attention heads for our model also increased our model performance. However, the larger the hidden
size and number of attention heads, the more training time our model required, and consequently the
more compute power we used. We had a limited amount of compute power available on Microsoft
Azure, and so we had to limit the scale of our model. It would be interesting to explore the effect of a
larger hidden size and more attention heads on our model performance.
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